Меню

Метод узловых напряжений контурных токов принцип наложения

Метод узловых (потенциалов) напряжений

ads

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Рис.1. Схема постоянного тока

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

– сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

– сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

– сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Источник

Основы символического метода расчета. Методы контурных токов и узловых потенциалов.

Закон Ома для участка цепи с источником ЭДС


Возьмем два участка цепи a — b и c — d (см. рис. 1) и составим для них уравнения в комплексной форме с учетом указанных на рис. 1 положительных направлений напряжений и токов.

Объединяя оба случая, получим

или для постоянного тока

Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с источником ЭДС , согласно которому ток на участке цепи с источником ЭДС равен алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на сопротивление участка. В случае переменного тока все указанные величины суть комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление совпадает с выбранным направлением тока, и со знаком “-”, если их направление противоположно направлению тока.

Основы символического метода расчета цепей
синусоидального тока

Расчет цепей переменного синусоидального тока может производиться не только путем построения векторных диаграмм, но и аналитически – путем операций с комплексами, символически изображающими синусоидальные ЭДС, напряжения и токи. Достоинством векторных диаграмм является их наглядность, недостатком – малая точность графических построений. Применение символического метода позволяет производить расчеты цепей с большой степенью точности.

Символический метод расчета цепей синусоидального тока основан на законах Кирхгофа и законе Ома в комплексной форме.

Уравнения, выражающие законы Кирхгофа в комплексной форме, имеют совершенно такой же вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, напряжения и сопротивления входят в уравнение в виде комплексных величин.

Читайте также:  Шестифазный генератор переменного тока

1. Первый закон Кирхгофа в комплексной форме:

2. Второй закон Кирхгофа в комплексной форме:

или применительно к схемам замещения с источниками ЭДС

3. Соответственно матричная запись законов Кирхгофа в комплексной форме имеет вид:

§ первый закон Кирхгофа:

§ второй закон Кирхгофа

Определить: 1) полное комплексное сопротивление цепи ;
2) токи
Рис. 2

4. Принимая начальную фазу напряжения за нуль, запишем:

5. Поскольку ток распределяется обратно пропорционально сопротивлению ветвей (это вытекает из закона Ома), то

7. Аналогичный результат можно получить, составив для данной схемы уравнения по законам Кирхгофа в комплексной форме

или после подстановки численных значений параметров схемы

Специальные методы расчета

Режим работы любой цепи полностью характеризуется уравнениями, составленными на основании законов Кирхгофа. При этом необходимо составить и решить систему с n неизвестными, что может оказаться весьма трудоемкой задачей при большом числе n ветвей схемы. Однако, число уравнений, подлежащих решению, может быть сокращено, если воспользоваться специальными методами расчета , к которым относятся методы контурных токов и узловых потенциалов.

Метод контурных токов

Идея метода контурных токов: уравнения составляются только по второму закону Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей связи. Число уравнений равно числу независимых контуров, т.е. числу ветвей связи графа . Первый закон Кирхгофа выполняется автоматически. Контуры можно выбирать произвольно, лишь бы их число было равно и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми . Их выбор облегчает использование топологических понятий дерева и ветвей связи.

Направления истинных и контурных токов выбираются произвольно. Выбор положительных направлений перед началом расчета может не определять действительные направления токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его истинное направление противоположно.

Пусть имеем схему по рис. 3.

Выразим токи ветвей через контурные токи:

Обойдя контур aeda, по второму закону Кирхгофа имеем

Таким образом, получили уравнение для первого контура относительно контурных токов. Аналогично можно составить уравнения для второго, третьего и четвертого контуров:

совместно с первым решить их относительно контурных токов и затем по уравнениям, связывающим контурные токи и токи ветвей, найти последние.

Однако данная система уравнений может быть составлена формальным путем:

При составлении уравнений необходимо помнить следующее:

— сумма сопротивлений, входящих в i- й контур;

— сумма сопротивлений, общих для i- го и k- го контуров, причем ;

члены на главной диагонали всегда пишутся со знаком “+”;

знак “+” перед остальными членами ставится в случае, если через общее сопротивление i- й и k- й контурные токи проходят в одном направлении, в противном случае ставится знак “-”;

если i- й и k- й контуры не имеют общих сопротивлений, то ;

в правой части уравнений записывается алгебраическая сумма ЭДС, входящих в контур: со знаком “+”, если направление ЭДС совпадает с выбранным направлением контурного тока, и “-”, если не совпадает.

В нашем случае, для первого уравнения системы, имеем:

Следует обратить внимание на то, что, поскольку , коэффициенты контурных уравнений всегда симметричны относительно главной диагонали.

Если в цепи содержатся помимо источников ЭДС источники тока, то они учитываются в левых частях уравнений как известные контурные токи: k- й контурный ток, проходящий через ветвь с k- м источником тока равен этому току .

Метод узловых потенциалов

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно , т.е. числу ветвей дерева .

Пусть имеем схему по рис. 4, в которой примем .

Допустим, что и известны. Тогда значения токов на основании закона Ома для участка цепи с источником ЭДС

Запишем уравнение по первому закону Кирхгофа для узла а :

и подставим значения входящих в него токов, определенных выше:

Сгруппировав соответствующие члены, получим:

Аналогично можно записать для узла b :

Как и по методу контурных токов, система уравнений по методу узловых потенциалов может быть составлена формальным путем. При этом необходимо руководствоваться следующими правилами:

1. В левой части i- го уравнения записывается со знаком “+”потенциал i- го узла, для которого составляется данное i- е уравнение, умноженный на сумму проводимостей ветвей, присоединенных к данному i- му узлу, и со знаком “-”потенциал соседних узлов, каждый из которых умножен на сумму проводимостей ветвей, присоединенных к i- му и k- му узлам.

Из сказанного следует, что все члены , стоящие на главной диагонали в левой части системы уравнений, записываются со знаком “+”, а все остальные – со знаком “-”, причем . Последнее равенство по аналогии с методом контурных токов обеспечивает симметрию коэффициентов уравнений относительно главной диагонали.

2. В правой части i- го уравнения записывается так называемый узловой ток , равный сумме произведений ЭДС ветвей, подходящих к i- му узлу, и проводимостей этих ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС направлена к i- му узлу, в противном случае ставится знак “-”. Если в подходящих к i- му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих в узловой ток простыми слагаемыми, определяются аналогично.

Читайте также:  Трансформатор тока резонанс напряжений

В заключение отметим, что выбор того или иного из рассмотренных методов определяется тем, что следует найти, а также тем, какой из них обеспечивает меньший порядок системы уравнений. При расчете токов при одинаковом числе уравнений предпочтительнее использовать метод контурных токов, так как он не требует дополнительных вычислений с использованием закона Ома. Метод узловых потенциалов очень удобен при расчетах многофазных цепей, но не удобен при расчете цепей со взаимной индуктивностью.

1. Основы теории цепей: Учеб.для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

1. В ветви на рис. 1 . Определить ток .

2. В чем заключается сущность символического метода расчета цепей синусоидального тока?

3. В чем состоит сущность метода контурных токов?

4. В чем состоит сущность метода узловых потенциалов?

5. В цепи на рис. 5 ; ; ; . Методом контурных токов определить комплексы действующих значений токов ветвей.

6. В цепи на рис. 6 . Рассчитать токи в ветвях, используя метод узловых потенциалов.

Источник



Метод узловых напряжений

Метод узловых напряжений заключается в определении на основании первого закона Кирхгофа потенциалов в узлах электрической цепи относительного некоторого базисного узла. Базисный узел в общем случае выбирается произвольно, потенциал этого узла принимается равным нулю. Разности потенциалов рассматриваемого и базисного узлов называется узловым напряжением.

На рис.29 представлена схема электрической цепи, содержащая пять ветвей и три узла. За базисный принят узел с индексом «0».

Узловое напряжение U10=j1-j. Положительное напряжение узловых напряжений указывается стрелкой от рассматриваемого узла к базисному.

Рис.29. Иллюстрация к методу узловых напряжений.

Напряжение на ветвях цепи равно, очевидно, разности узловых напряжений концов данной ветви. Например, напряжение ветви 4 равно: U4=I4R4=U10-U20 (30)

Из формулы (30) видно, что, зная узловые напряжения, можно найти ток ветви.

Структуру уравнений получим, рассматривая схему рис.30.

Т.к. узел с индексом «0» принят за базисный, то его потенциал равен нулю. Узловые напряжения (потенциалы) узлов 1 и 2 – неизвестны.

Уравнения по первому закону Кирхгофа для 1 и 2 узлов соответственно записываются:

(31)

Узловое напряжение (32)

Отсюда (33,а)

Аналогично для оставшихся токов:

(33,б)

Выражения (33,а,б) подставляем в систему (31) и после некоторых арифметических преобразований получаем:

(34)

q12=q21=q4+q5 – взаимная проводимость ветви, соединяющей узлы 1 и 2.

Из приведенных выражений видно:

Собственная проводимость узла равна сумме проводимостей ветвей, сходящихся в данном узле.

Взаимная проводимость равна сумме проводимостей ветвей, соединяющих данные узлы.

Узловой ток (теоретическое понятие) – это алгебраическая сумма произведений Eiqi и Ji источников тока (если они есть) всех ветвей, примыкающих к рассматриваемому узлу. Слагаемое входит в выражение со знаком «+», если э.д.с. и источник тока направлены к узлу. В противном случае – ставится знак «-».

После введенных обозначений система (34) принимает вид:

(35)

Из формул (35) видно, что собственная проводимость входит в выражения со знаком «+», а взаимная проводимость – со знаком «-».

Для произвольной схемы, содержащей n+1 узлов, система уравнений по методу узловых напряжений имеет вид:

(36)

Число уравнений, составляемое по методу узловых напряжений, равно

где Nэ.д.с. – число идеальных источников э.д.с.

Пример: (общий случай)

Пример: (с идеальными э.д.с.)

Порядок расчета электрических цепей по методу узловых напряжений:

1. Выбираем произвольно базисный узел. Желательно нулевой потенциал представить тому узлу, где сходится большее количество ветвей. Если имеется ветвь, содержащая идеальную э.д.с., то базисный узел должен быть концом или началом этой ветви.

2. Составляется система уравнений для неизвестных узловых напряжений в соответствии с общей структурой этих уравнений (36).

3. Решая данную систему, находят напряжения узлов относительно базиса.

4. Токи ветвей определяют по обобщенному закону Ома:

(38)

Следствие: Если схема содержит только два узла, то в соответствие с методом узловых напряжений (в отсутствие идеальных э.д.с.) составляется только одно уравнение.

Например, для схемы рис.30:

Формула (39) носит название метода двух узлов.

Рис.30. Иллюстрация к методу двух узлов.

Узловое напряжение по методу двух узлов равно:

(40)

Определить все токи методом узловых напряжений.

Т.к. электрическая цепь содержит три узла и не содержит ветвей с идеальными источниками э.д.с., то число уравнений, составляемых по методу узловых напряжений равно 2.

Узел 3 будем считать базисным.

Тогда

Где

В результате решения системы определяем U13=2,8 B; U23=-1,95 B.

Токи в ветвях определяем по закону Ома:

Метод наложения (суперпозиции).

Метод наложения основан на применении принципа наложения, который формулируется следующим образом:

Ток в любой ветви электрической цепи равен сумме токов, обусловленных действием каждого источника в отдельности, при отсутствии других источников.

Рассматриваемый принцип называют принципом независимого действия.

При действии только одного из источников напряжения предполагается, что э.д.с. всех остальных источников равны нулю, так же как равны нулю и токи всех источников тока. Отсутствие напряжения на зажимах источников напряжения равносильно короткому замыканию их зажимов. Отсутствие тока в ветви с источником тока равносильно разрыву этой ветви.

Если источник э.д.с. содержит внутреннее сопротивление, то, полагая э.д.с. равной нулю, следует оставлять в его ветви внутреннее сопротивление. Аналогично в случае источника тока с параллельной внутренней проводимостью, следует, разрывая ветвь источника (т.е. полагая J=0), оставлять включенной параллельную ветвь с внутренним сопротивлением.

Читайте также:  Стиральная машина самсунг бьет током через корпус причина

Пусть в цепи действуют источники с параметрами E и J, I // n и I / n – токи n-ой ветви, создаваемые каждым из этих источников в отдельности. Искомый ток

Принцип суперпозиции применим к напряжениям, т.к. между током и напряжением рассматривается линейная зависимость (закон Ома); но не применим к мощности:

т.к. мощности – это квадратичные функции токов.

Определить все токи методом наложения.

1. Заменяем источник э.д.с. E короткозамкнутым участком (т.к. его rвн=0) (схема рис.2).

Т.к. конфигурация цепи изменилась, то в цепи рис.2 протекают токи отличные от токов цепи рис.1. Их называют первые частичные токи и обозначают со штрихом.

Т.к. схема упростилась, то токи можно рассчитать, применяя правило плеч. Схему цепи рис.2 более наглядно представим на рис.3.

2. Разорвем ветвь с источником тока J. Токи, протекающие в цепи рис.4 называют вторыми частичными токами и обозначают с двумя штрихами.

3. Искомые токи найдем как алгебраическую (т.е. с учетом направлений) сумму частичных токов:

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Лекция №3. 1. Метод контурных токов (ячеек)

План лекции:

1. Метод контурных токов (ячеек)

2. Метод узловых потенциалов

3.Метод наложения (суперпозиции)

4. Метод эквивалентного генератора (активного двухполюсника)

1. Метод контурных токов (ячеек)

Порядок системы уравнений, составленных по законам Кирхгофа, быстро возрастает с ростом сложности схемы, поэтому естественно желание отыскать менее трудоемкий метод анализа. Таким является метод контурных токов. Он позволяет для схемы с «к» узлами и «n» ветвями составлять и решать систему из n-(к-1) уравнений.

Метод контурных токов является одним из основных методов расчета сложных цепей. Он заключается в том, что вместо токов в ветвях определяются на основа­нии 2-го закона Кирхгофа так называемые контурные токи. При этом исключаютсяуравнения 1-го закона Кирхгофа.

Для независимых контуров по 2-ому закон Кирхгофа :

Исключим токи внутренних ветвей, выразив их через токи внешних

Полученная система уравнений содержит три неизвестных I1 , I2 , I3 , через которые могут быть затем определены I4 иI5 .

Уравнения могут быть записаны сразу, если приписать каждой ячей­ке некоторый контурный ток, совпадающий с током внешних ветвей. Тогда в каждой ячейке алгебраическая сумма эдс равна алгебраической сумме произведений

а) контурного тока данной ячейки на сумму сопротивлений конту-

б) контурных токов каждой смежной ячейки — на сопротивления смеж-

Правило знаков остается таким же, как и при записи уравнений 2-го закона Кирхгофа.

2. Метод узловых потенциалов

Этот метод позволяет уменьшить число уравнений Кирхгофа за счет исключения уравнений 2-го закона. На схеме принимаем потенциал точки «О» равным нулю.

Выразим токи всех ветвей, примыкающих к узлу «а» по закону Ома:

На основании 1-го закона Кирхгофа:

Аналогичного вида уравнения могут быть получены для узла ‘b’, а также для любого узла более сложной схемы.

Анализ уравнений показывает, что для любого узла алгебраическая сумма произведений эдс на проводимость всех подключенных к нему ветвей равна

а) потенциалу данного узла, умноженному на сумму проводимостей подключенных к нему ветвей,

б) минус произведение потенциалов остальных узлов, умноженных каждый на сумму проводимостей ветвей, соединяющих узел с тем, для которого пишется уравнение.

Если эдс направлена к узлу, то EkGk входит в уравнения с «плюсом», от узла — с «минусом».

Источники тока следует учитывать в левой части уравнений с «плюсом», если они направлены к данному узлу.

Общий вид уравнений:

G11 — сумма проводимостей ветвей, подключенных к 1-му узлу,

G12 — сумма проводимостей ветвей, соединяющих 1-й узел со 2-м.

Уравнения записываются для (n — 1) узлов и решаются, например, с помощью определителей. По полученным узловым потенциалам определяют­ся токи ветвей с помощью закона Ома.

3. Метод наложения (суперпозиции)

Пусть для некоторой электрической цепи записаны уравнения Кирх­гофа вида:

Решение системы линейных уравнений однозначно определяет токи.

Предполагая поочередно в этой же цепи наличие только одной эдс при прочих равных нулю, можно для каждой эдс вычислить соответствующие токи ветвей, составив уравнения:

Сложив уравнения почленно, получим:

Полученная система имеет единственное решение для неизвестных

Из сравнения исходных уравнений и только что полученных следует, что решения должны совпадать, т.е.

Таким образом, ток каждой ветви равен алгебраической сумме частичных токов, образованных действием каждой эдс в отдельности (принцип на­ложения).

На этом основан расчет цепей методом наложения.

Напряжение на участке цепи с сопротивлением R:

т.е. принцип наложения применим и к напряжениям.

Принцип наложения применим также и к источникам тока. При этом остальные источники тока отключаются.

Принцип наложения не применяется для мощностей — квадратичных функций токов и напряжений.

4. Метод эквивалентного генератора (активного двухполюсника)

Метод эквивалентного генератора используется в тех случаях, когда требуется определить ток в какой-либо ветви сложной схемы, а также исследовать, как будет меняться этот ток при изменении сопротивления ветви. Суть метода состоит с том, что действие всей схемы на исследуемую ветвь заменяется действием некоторого эквивалентного источника ЭДС Еэк с внутренним сопротивлением Rэк.

Для полученной схемы ток I определяется из закона Ома:

Следовательно задача распадается на две подзадачи: определение Еэк и определение Rэк.

а) Определение Еэк.

Для того, чтобы найти Еэк достаточно разомкнуть исследуемую ветвь и замерить или вычислить напряжение между точками «а» и «в» — Uав, т.к.при разомкнутой ветви Еэк = Uав хх,

б) Определение Rэк.

Rэк это внутреннее сопротивление всей схемы со стороны клемм «а» и «в». Для определения Rэк надо положить равным нулю все ЭДС и вычислить Rэк, используя правила преобразования пассивных цепей.

Источник