Меню

Мощность тока нагрев нагревателя

Расчет мощности и габаритов электрического нагревателя

Расчет электрических и геометрических параметров электронагревателя определяется, принимая во внимание множество нюансов. Для корректного расчета мощности электронагревателя необходимо знать теплофизические свойства нагреваемой среды, такие как плотность и теплоемкость, вязкость и теплопроводность. Однако, для общего понимания процесса расчета нагревательного оборудования, в данной статье мы приведем несколько формул и объясним основные принципы расчета нагревателей.

РАСЧЕТ ТРЕБУЕМОЙ МОЩНОСТИ

В зависимости от типа нагрева (статический или динамический), формулы расчета мощности несколько отличаются.

Расчет мощности нагревателя для нагрева жидкости в резервуаре достаточно точно может быть произведен по следующей формуле:

P= ((V* ρ * Сp* (Т2-T1)/(3600* t)) +К , где

P – мощность электрического нагревателя, кВт;

V – нагреваемый объем в литрах;

ρ – плотность жидкости, кг/м3;

Сp – удельная теплоемкость жидкости, кДж/ кг °С;

Т1 – начальная температура жидкости, °С

Т2 — требуемая температура жидкости, °С

t – требуемое время нагрева, ч;

К – коэффициент запаса (%). Величина коэффициента определяется температурой окружающей среды и толщиной теплоизоляции резервуара. Значения коэффициента принимаются в диапазоне 5….25%.

По данной формуле можно достаточно точно рассчитать требуемую мощность для нагрева жидкости в резервуаре. Если же необходимо рассчитать мощность прочного подогревателя жидкости или газа , то данная формула примет следующий вид:

P= ((V* ρ * Сp* (Т2-T1)/(3600) +К , где

P – мощность электрического нагревателя, кВт;

V – нагреваемый объем нм3/ час;

ρ – плотность нагреваемой среды, кг/м3;

Сp – удельная теплоемкость нагреваемой среды, кДж/ кг °С;

Т1 – температура на входе в подогреватель, °С

Т2 — требуемая температура на выходе из подогревателя, °С

К – коэффициент запаса (%). Величина коэффициента определяется температурой окружающей среды и толщиной теплоизоляции сосуда. Значения коэффициента принимаются в диапазоне 5….25%.

В качестве примера произведем расчет мощности проточного подогревателя для нагрева воздуха с расходом 3000 нм3/час от +5ºС до +40ºС при рабочем давлении 1 атм., тогда:

P = 3000 x 1,24 x 1,05 x (40-5)/ 3600 = 37, 98 кВт

Данной мощности 38 кВт будет достаточно только при идеальных условиях. Под идеальными условиями подразумевается отсутствие теплопотерь, падения напряжений, а также абсолютная точность при изготовлении никель-хромовой спирали нагревательных элементов. К сожалению, на практике идеальных условий не бывает, поэтому в случае стабильного напряжения и расположения подогревателя в отапливаемом помещении, будет достаточно принять запас 10% — тогда требуемая мощность подогревателя составит 42 кВт. Если же напряжение питания нестабильно и оборудование располагается на улице при температуре до -50ºС, то рекомендуется принять запас по мощности не менее 25% — тогда мощность подогревателя должна быть порядка 48 кВт. Если пренебречь запасом мощности и принять только мощность, необходимую на процесс нагрева, то есть вероятность, что подогреватель не сможет выйти на рабочий режим и осуществить подогрев воздуха до +40ºС.

РАСЧЕТ ГАБАРИТОВ ОБОРУДОВАНИЯ

Габариты нагревателя определяются исходя из количества нагревательных элементов и погружной длины. Данные параметры зависят от расхода, требуемой температуры нагреваемой среды и от мощности нагервателя. Количество ТЭН и погружная длина подбирается исходя из допустимой удельной мощности. Чем выше температура нагреваемой среды, тем ниже должна быть удельная мощность нагревательных элементов, во избежание перегрева и выхода оборудования из строя. Также, при расчете габаритов нагревателя нужно учитывать, что в случае нагрева до температур выше +100ºС между монтажным фланцем обязательно нужно предусматривать холодную хону от 100 до 400 мм, во избежание перегрева клеммной коробки. Величина холодной зоны определяется температурой нагреваемой среды.

УДЕЛЬНАЯ МОЩНОСТЬ ТЭН

Определяющим параметром, влияющим на габариты изделия является удельная мощность нагревательных элементов, которая измеряется в Вт/см2 т.е. сколько Вт энергии выделяется с 1 см2 поверхности нагревательных элементов. От данного параметра зависят окончательные размеры оборудования — чем удельная мощность выше, тем габаритные размеры подогревателя будут меньше. Но нужно понимать, что нельзя бесконечно увеличивать удельную мощность чтобы сделать нагреватель меньше, тем самым уменьшив его стоимость. Слишком высокая удельная мощность ведет к увеличенной температуре на поверхности нагревательных элементов и сокращению срока службы изделия. Удельная мощность также зависит от диаметра нагревательных элементов. Так при одинаковой мощности и длине, у нагревательного элемента ø16 мм удельная мощность будет меньше, чем у нагревательного элемента ø10 мм.

Удельная мощность нагревательного элемента рассчитывается по следующей формуле:

W = P/n х 3.14 х Ø х L , где

W — удельная мощность (Вт/см2);

P — мощность нагревательного элемента, Вт;

n — количество нагревательных элементов в подогревателе, шт.;

Ø — диаметр нагревательного элемента, см;

L — развернутая рабочая длина нагревательного элемента, см;

В качестве примера, возьмём вышеописанный подогреватель воздуха, мощностью 42 кВт. Предположим, что он состоит из 12 U-образных нагревательных элементов диаметром 10 мм с погружной длинной 2000 мм, из которых 200 мм холодной (ненагреваемой) длины. Рассчитаем удельную мощность нагревательных элементов:

W = 42000/ 12 x 3,14 x 1 х 360 = 3, 09 Вт/ см2

В случае невысоких температур нагрева, можно принять удельную мощность нагревательных элементов по следующей таблице:

нагрев воздуха до температуры +100 и более градусов, нагрев мазута и битума, дизельного топлива, нефти, нагрев термального масла до +300 С

подогрев антифриза с концентрацией более 50%, подогрев термального масла, подогрев воздуха до +80. 90 С, подогрев природного газа

подогрев щелочных растворов, подогрев антифриза с концентрацией до 50%

подогрев воды, проточный подогрев антифриза с концентрацией до 30%

нагрев воды в проточном режиме в больших объемах, электрические парогенераторы.

Указанные в таблице значения являются ориентировочными, более точным является подбор удельной мощности по температуре нагревательных элементов.

ТЕМПЕРАТУРА НА ПОВЕРХНОСТИ НАГРЕВАТЕЛЬНЫХ ЭЛЕМЕНТОВ

Температура на поверхности нагревательных элементов зависит от удельной мощности и расхода нагреваемой среды, но также на нее влияют теплофизические свойства нагреваемой среды и температура на выходе из подогревателя. Если использовать один и тот же проточный нагреватель для нагрева воды и воздуха, то в первом случае температура нагревательных элементов будет меньше т.к. жидкости обладают большей теплоемкостью и лучше снимают тепло с нагревательных элементов. Точный расчет температуры нагревательных элементов производится с помощью специального софта, который учитывает все геометрические параметры нагревателя, количество нагревательных элементов, удельную мощность, тип нагреваемой среды, требуемую температуру и давление. Вручную рассчитать температуру нагревательных элементов без знания углубленного курса теплофизики практически невозможно. Существуют методики определения температуры ТЭН для статического нагрева жидкости, температура ТЭН в данном случае имеет некую зависимость от удельной мощности и температуры нагреваемой среды, но данные методики не являются точными и имеют определенную погрешность. Определив необходимую удельную мощность и рассчитав температуру нагревательных элементов, мы можем понять какие габариты будут у нашего изделия и рассчитать его стоимость.

ВАЖНО.

Если Вы не имеете опыта расчетов подобного оборудования — настоятельно рекомендуем Вам обратиться в наш технический отдел т.к. при неправильном выборе параметров для общепромышленного оборудования Вы рискуете стабильностью его работы и процесса нагрева. Если же речь идет о расчетах взрывозащищенного оборудования, то данные расчеты могут быть выполнены только специалистами т.к. помимо нестабильной работы, при неправильном определении параметров нагревателя есть риск спровоцировать взрывоопасную ситуацию на объекте. Специалисты компании ООО «СИСТЕМЫ ПОДОГРЕВА» имеют специализированное ПО и огромный опыт в данной области. Расчет и подбор оборудования может быть осуществлены в течение 1- 2 рабочих дней.

Источник

Как выбрать обогреватель: рассчитываем мощность

мощность обогревателя

Желаете, чтобы мощности обогревателя хватало на то, чтобы согреть Вас в самые холодные зимние вечера? Тогда стоит подойти к выбору ответственно. Перед покупкой лучше ознакомиться с рядом параметров приборов различного типа, учесть метраж прогреваемого помещения, а также такие факторы, как отсутствие/наличие теплоизоляции, толщину стен и максимальную разницу между уличной и комнатной температурой в самое холодное время года. В случае ошибки в расчетах вы рискуете приобрести обогреватель с большей мощностью, чем это необходимо (что обернется переплатами за электроэнергию), или, наоборот, устройство с меньшей мощностью, которое не способно эффективно прогреть площадь комнаты.

Виды электрических обогревателей, их отличия друг от друга

Электрические обогреватели бывают разных видов, каждый из которых имеет свои преимущества, недостатки, принцип и скорость действия.

Перечислим некоторые из них:

  1. Тепловой вентилятор – такое устройство чем-то напоминает обычный вентилятор, однако перед его лопастями помещена накаливающаяся спираль, которая обеспечивает обогрев той части комнаты, на которую направлен поток воздуха. Несмотря на то что тепловентилятор достаточно эффективен, он не предназначен для постоянного обогрева помещения. Существенный недостаток такого устройство – краткосрочность результата от его воздействия на окружающую среду.
  2. Обогреватель из керамики по принципу действия очень похож на тепловентилятор, только в качестве нагревателя выступают керамические пластины. Подобные модели работают на газе и от электросети, бывают напольные, настенные и даже настольные. Основным преимуществом керамического обогревателя является сохранение влажности в помещении.
  3. Радиатор масляного типа справляется с нагревом воздуха в очень короткие сроки, однако его не стоит приобретать, если в доме есть животные или маленькие дети, поскольку и те, и те рискуют обжечься. Такой прибор считается не самым экономичным вариантом – он расходует много электроэнергии.
  4. Электрические модели нагревают воздух до нужной температуры достаточно быстро, а сами остывают медленно. В основе принципа работы этих устройств – конвекция. В нижней части прибора расположены детали, всасывающие воздух, нагрев происходит за счет работы ТЭНа – трубчатого электронагревателя, от площади которого напрямую зависит объем разогретого газа. Именно поэтому ТЭН часто производят с ребристой поверхностью. Преимущество конвектора перед масляным обогревателем состоит в том, что температура теплоносителя повышается с большей скоростью, а значит, не придется ждать, пока в комнате потеплеет. Кроме того, эти устройства гораздо компактнее. Особенно популярны настенные модели.
  5. Инфракрасный обогреватель. Работа устройств этого вида основана на электромагнитном излучении – при этом нагреваются сначала предметы, попадающие под воздействие волн, а затем – сам воздух. Конструктивными элементами прибора также выступают ТЭНы. Другой вариант – открытые спирали, иногда защищенные кварцевыми трубками, либо металлические сетки, пластиковые панели с отверстиями или карбоновое покрытие. В комнатах обогреватель защищают прозрачными перегородками или металлическими сетками. Инфракрасные обогреватели бывают разных типов. В зависимости от длины волн их делят на коротковолновые, средне- и длинноволновые, от источника энергии – электрические, газовые, дизельные и водяные, от способа установки – передвижные и стационарные.
Читайте также:  Магнитный момент кольцевого тока это

Как рассчитать мощность обогревателя?

Все современные приборы оснащены термостатами, которые позволяют поддерживать определенную температуру. Сам тип обогревателя мало влияет на эффективность его работы – тут важно произвести правильный расчет.

Чтобы согреть воздух в квартире, необходимо с помощью конвектора поддержать температуру воздуха с определенной теплоемкостью.

  1. Минимальная уличная температура в зимний период.
  2. Комфортная температура в комнате.
  3. Плотность воздуха – 1,3 кг/м3.
  4. Теплоемкость воздуха – 0,001 МДж.
  5. Теплота 1 МДж – 0,277кВт/ч

Количество тепла, необходимого для разогрева конкретного помещения, можно высчитать по формуле: с= Q/m(t2 — t1), где с — удельная теплоемкость, Q — теплота, m — масса воздуха.

Преобразуем формулу, получится: Q=c*m*(t2-t1), теперь нужно узнать массу воздуха в комнате.

Формула для её вычисления проста: m= ϱ*Р*h, где ϱ — плотность воздуха, Р — площадь помещения, h — высота.

Таким образом, формула расхода тепла приобретает формулу: kWt= 0,277*c*ϱ*Р*h*(t2-t1).

Итак, можно рассчитать примерные энергозатраты на обогрев небольшой комнаты (в 40 кв. м при высоте потолка в 3 м. при минимальной температуре – 10 и необходимой +20).

kWt= 0,277*0,001*1,3*3*40*30= 1,29636 (кВт/ч).

Теплопотери

Существует несколько причин, по которым тепло уходит из помещения:

  • вентиляция;
  • теплопроводность стен, окон, потолка и пр.;
  • излучение.

По нормам СНиП, примерный объем циркуляции свежего воздуха – 20 кв. м. в час.Чтобы согреть вновь поступивший прохладный воздух необходимо дополнительное количество энергии. Расчет производится по той же формуле: kWt= 0,277*0,001*1,3*20*30=0,21606 (кВт/ч).

Формула для расчета теплопотерь выглядит так: Q=λ*(t1-t2)*S/L, где S — площадь стенки, L — толщина стены, λ — коэффициент теплопроводности, который индивидуален для каждого материала.

Например, для кирпича λ = 0,5 Вт/(м*С), длина стены = 8 м, высота = 3 м, толщина стены = 0,5 м.

Q=0,5*30*96/0,5= 2880 (Вт)=2,88 (кВт).

Таким образом, теплопотери уже превышают необходимые энергозатраты для обогрева помещения без их учета. Но не стоит забывать, что необходимо ещё учесть показатель крышного перекрытия, а там теплопотери могут достигать нескольких десятков.Выходит, что для поддержания нормальной температуры в помещении требуется чуть ли не в пятнадцать раз больше электроэнергии, чем для его «чистого» обогрева.

обогреватель

Учет теплоизоляции

Значительную роль в расчете необходимой мощности играет теплоизоляция. Например, слой минеральной ваты в 2 м значительно снизит теплопотери , λ = 0,06 (для вышеперечисленных параметров):

Q= 0,06*30*40/0,2 = 360 (Вт) = 0, 36 (кВт).

При расчете теплопотерь пола во внимание берут то, что грунт имеет изначальную температуру около 5 градусов тепла.

Если помещение изолировано, то понадобится в среднем от 3 до 5 кВт для компенсации теплопотерь. Расчет собственного примера можно сделать по приведенному примеру, данные о конкретных материалах легко найти в справочниках.

Как выбрать обогреватель?

Произведя необходимые подсчеты, следует выбирать прибор по показателю максимальной мощности с небольшим запасом – умножая полученный в результате расчетов коэффициент на 1,2, тем более что все современные модели имеют терморегулятор.

Мощное устройство быстрее прогреет помещение. Сохранить тепло помогут шторы, которые служат своеобразным теплоизолятором. Для конвекторных обогревателей нужно создать условия по свободной циркуляции воздуха.

Выбрав устройство с помощью расчетов, Вы избежите лишней траты денег.

Только лучшие и достойные модели обогревателей

Только лучшие и достойные модели обогревателей

Источник



Как выбрать обогреватель для дома

В условиях российской зимы, когда центрального отопления не хватает, невозможно обойтись без дополнительных обогревателей. Точнее обойтись можно, но какой ценой? Постоянными простудами, кашлем или бронхитом. Такая экономия обернется большими затратами на восстановление подорванного здоровья.

как выбрать обогреватель

Но даже если вы понимаете необходимость установки в доме обогревателя, нужно выбрать правильную модель, которая будет отапливать комнату и потреблять минимум электроэнергии.

Как рассчитать мощность

Для расчета мощности обогревателя можно воспользоваться простой формулой, которую предлагают практически все производители. Формула актуальна для всех устройств, кроме инфракрасных радиаторов (для них сделаем отдельный расчет).

Мощность зависит от размера отапливаемого помещения, но не только от квадратных метров – также нужно знать высоту потолков. Допустим, площадь комнаты 20 квадратов, потолки стандартные – 2.7 метров. Нужно умножить 20 м2 на 2.7 м. Получаем объем помещения, равный 54. Далее делим 54 на 30 (неизменный коэффициент, который предлагают использовать для расчета производители). Мощность радиатора должна быть не менее 1.8 кВт.

Если этот способ сложный, можно воспользоваться более простым методом, но он подойдет только для домов с высотой потолков до 3 метров. На 1 квадратный метр требуется минимум 100 Вт. Нужно умножить площадь комнаты на 100 Вт. Полученный ответ – рекомендуемая мощность. К примеру, размер помещения 15 квадратов. Умножаем 15 на 100, получаем 1.5 кВт.

мощность обогревателя для дома

Однако при расчете не учитываются нюансы: наличие щелей в окнах и стенах, из которых поступает холодный воздух, торцевое расположение квартиры, сквозняки и так далее. При наличии перечисленных проблем, а также для неотапливаемых помещений, к полученной мощности нужно прибавить 20-30%, чтобы обогреватель работал корректно и выполнял свои функции.

Для инфракрасных приборов мощность рассчитывается иначе, поскольку они отличаются высоким классом энергопотребления. Чтобы устройство работало максимально эффективно, учитывают не только квадратуру дома, но и количество находящихся людей и предметов в комнате. В среднем для нагрева 1 квадратного метра требуется 50 Вт, что в 2 раза меньше, чем для остальных моделей.

Как производители обеспечивают безопасность

Безопасность – один из основных критериев при выборе радиатора. Прибор должен поддерживать функцию автоматического выключения при перегреве, наклоне и опрокидывании. Это позволит оставлять устройство включенным, даже если вас не будет дома.

Опция отключения при перегреве обеспечивается за счет датчика температуры. При достижении максимальной температуры ТЭНом, датчик температуры разрывает соединение в электрической цепи, что приводит к выключению.

Безопасность обогревателя

Желательно, чтобы обогреватель мог поддерживать функцию антизамерзания, когда температура воздуха в комнате не опускается ниже 5-7 градусов. Конечно, для человека это некомфортные условия. Однако для помещений с водопроводом, канализацией при отключенном отоплении – этой температуры будет достаточно, чтобы трубы не замерзли.

Если вы выбираете прибор для обогрева ванной комнаты, бани или других помещений с повышенным уровнем влажности, выбирайте модель с водозащитным корпусом. Иначе не избежать замыканий, что может привести к поломке устройства и пожару.

Какое управление выбрать

Управление обогревателями для дома

Для большинства людей, вид управления нагревательным прибором – не принципиален, пока они не узнают о возможностях электронного управления. Рассмотрим их:

  • Точное выставление температуры с шагом в 1 градус. В механическом управлении можно выставить температуру 5-30 градусов.
  • Таймер. Можно выставить определенное время для включения и выключения устройства. Например, перед приходом домой за 30-60 минут включите прибор, к вашему возвращению дома будет тепло.
  • Управление на расстоянии. Современные модели с помощью специальных программ передают данные через Wi-Fi и Bluetooth на мобильный телефон. С телефона можно включить или выключить обогреватель, установить температуру, запрограммировать таймер и так далее.

Радиаторы с механическим управлением лишены этих возможностей.

Какие виды обогревателей представлены на рынке

По принципу действия выделяют масляные, конвекторные радиаторы, тепловые пушки или тепловентиляторы меньшей мощности, тепловые завесы, инфракрасные обогреватели и электрокамины.

Масляные

Принцип работы прибора заключается в названии. Внутри герметичного корпуса находится минеральное масло, которое нагревается под воздействием ТЭНа. От масла нагревается металлический корпус, который отдает тепло в помещение. Корпус состоит из 6-10 секций с ребрами, в зависимости от размера обогревателя. Чем больше секций, тем быстрее происходит нагрев воздуха.

Масляный обогреватель для дома

Достоинства масляных нагревателей:

  • Встроенный вентилятор. Некоторые модели комплектуются дополнительным вентилятором, который быстро распределяет тепло в комнате.
  • Сохранение тепла. Даже после выключения, устройство продолжает нагревать воздух, поскольку корпус долго остывает.

Но есть и недостатки: скопление пыли на корпусе, которая из-за высокой температуры начинает гореть, выделяя углекислый газ и запах гари. Такие приборы нельзя оставлять без присмотра – они могут перегреваться, что создает опасность пожара. Через несколько лет масло внутри радиатора изнашивается, теряет свои свойства, а это может привести к воспламенению. Также к минусам можно отнести крупные габариты и большой расход электричества.

Конвекторы

Принцип функционирования конвекторных радиаторов основан на конвенции. Воздух в прибор поступает снизу, проходя через ТЭН, установленный в корпусе. После нагрева до нужной температуры, воздух попадает в комнату через специальные прорези, которые находятся в верхней части обогревателя, для наибольшей эффективности они расположены под углом. В современных брендовых моделях корпус конвектора не нагревается выше 60 градусов.

Обогреватель электрический

Плюсы конвекторов:

  • Пожаробезопасность. Конвектор может работать круглосуточно, и его можно оставлять без присмотра, он оснащен датчиками перегрева и температуры воздуха. Также в моделях может присутствовать таймер для более удобного управления;
  • Корпус прибора закрывает нагревательный элемент, благодаря чему на него не попадает и не сгорает пыль;
  • Быстрый обогрев помещения. Нагревательный элемент включается очень быстро, подавая теплый воздух в квартиру;
  • Компактные размеры. Конвекторы – тонкие и легкие, их можно переносить из одной комнаты в другую (при мобильном размещении);
  • Удобство установки. Можно установить на стене или на полу на ножках. Благодаря тонкому корпусу и невысокому нагреву корпуса, конвектор можно ставить близко к стене или вешать на нее. Как правило, модели оснащены кронштейнами для монтажа;
  • Возможность интеграции с «Умным домом». Продвинутые брендовые модели имеют электронный блок управления, что позволяет интегрировать их в систему удаленного управления с мобильного телефона на расстоянии.
Читайте также:  Измерение потребляемого тока тестером

Недостатки: высокая стоимость в сравнении с масляными аналогами.

Новый вид конвектора – инфракрасный, который объединил преимущества конвекторных и инфракрасных радиаторов. Обогрев дома осуществляется за счет конвекции и нагрева предметов, находящихся в комнате. Прибор отличается высокой экономичностью.

Тепловые пушки

Более мощные тепловентиляторы. У них аналогичный принцип работы, но предназначены они для обогрева больших или технических помещений (например, гаража). Как правило, используются на промышленных объектах и объектах общественного назначения – складах, заводах и т.д. Для квартиры прибор не подойдет, поскольку он шумный и потребляет много электричества. Как и в случае с тепловентиляторами, пыль, попадая на ТЭН, горит, выделяя углекислый газ. Но есть модели с встроенным фильтром, который препятствует попаданию пыли на электрические спирали.

Тепловая пушка

Тепловентиляторы (или тепловые пушки малой мощности)

Все приборы, независимо от размера, устроены одним образом. Они прогоняют воздух через нагревательный элемент при помощи вентилятора. Обычно их используют для обогрева какой-то определенной зоны небольшого размера – спального места, рабочего стола, дивана, детской кроватки. Тепловентиляторы не имеют нагреваемого корпуса, который бы равномерно распределял тепло в помещении. Поэтому они не подходят для продолжительной работы, зато они прекрасно себя показывают, когда нужно обогреть комнату максимально быстро.

Тепловентилятор

Качественные модели могут поворачивать корпус, чтобы можно было изменить зону обогрева. Решетки снимаются, поэтому не возникает трудностей во время чистки прибора. Хорошие тепловентиляторы оборудованы таймером, термостатом и регулятором температуры.

Тепловентиляторы компактны и мобильны, их легко переносить. Некоторые модели работают в режиме вентилятора, не нагревая воздух.

Недостатки нагревательных устройств:

  • высокий расход электричества;
  • малая площадь обогрева;
  • эффект «испаряется» после выключения прибора;
  • шум во время работы;
  • поскольку ТЭН расположен за решеткой, туда может легко попасть пыль, в результате чего она начинает гореть, выделяя углекислый газ и характерный запах.

Тепловые завесы

Принцип работы устройства – прост и понятен. Прибор выдает поток нагретого воздуха. Обычно их устанавливают над дверным или оконным проемом в торговых центрах, магазинах, офисах и т.д. для того, чтобы не пускать холодные потоки воздуха или сквозняки с улицы, и сохранить тепло внутри помещения. Использование тепловой завесы позволяет предотвратить утечку тепла сквозь открытые окна, двери или щели.

Тепловая завеса

При выборе тепловой завесы, учитывайте максимальную высоту монтажа. Бытовые модели подойдут для стандартной высоты — 2.7-3 метра. Для высоких потолков или нежилых помещений, максимальная высота установки должна быть не менее 3 метров.

Инфракрасные

Данный вид отопительных приборов отличается по принципу работы, поскольку нагревается не воздух, а окружающие предметы, расположенные в зоне действия ИК-лучей, которые передают тепло в комнату. К предметам относится не только мебель, но и стены, потолок, шторы, и даже люди. Поэтому нужно быть осторожным – чтобы не перегреться рядом с таким обогревателем, т.к. это влияет на самочувствие. Лучше всего использовать обогреватель, пока никого нет в комнате.

Инфракрасный обогреватель

Плюсы:

  • быстрый обогрев комнаты;
  • не выделяется углекислый газ;
  • тихий режим работы;
  • равномерное распределение тепла в помещении;
  • разные варианты установки – на полу, потолке, стене;
  • защита от пожара.

Несмотря на преимущества, инфракрасные обогреватели имеют минусы:

  • высокое потребление электроэнергии;
  • некомфортно находиться длительное время под ИК-лучами, могут вызвать плохое самочувствие;
  • повреждения лакокрасочного покрытия мебели из-за нагрева поверхности;
  • нагревательный элемент светится красным цветом, что может мешать сну ночью.

Для квартир чаще выбирают комбинированный вид обогревателя – инфракрасно-конвекционный, который сочетает 2 принципа работы, о которых мы писали выше. Обычно в жилые помещения устанавливают напольные приборы.

Электрокамины

Элегантный способ, позволяющий привнести в дизайн стильный элемент и создать дополнительный источник тепла. Современные модели электрических каминов отлично справляются с обогревом комнаты до 20 квадратных метров.

Принцип работы современных моделей – комбинированный. Они сочетают работу тепловентиляторов и излучателей. Отражатели направляют нагретый воздух в комнату, а вентилятор способствует быстрому распределению потока.

Мощность электрических каминов 500-2500 Вт. Поскольку камин имеет электрический блок управления, производители предусматривают различные режимы обогрева, таймер и точную настройку температуры с минимальным отклонением. Потребление – 100 Вт в режиме пламени, которое создает атмосферу домашнего уюта и тепла в доме.

Электрокамины

Преимущества электрокаминов:

  • реалистичное пламя, похожее на огонь настоящего камина;
  • сочетание функций декора и обогрева;
  • небольшое потребление энергии;
  • пожаробезопасность;
  • удобство использования;
  • возможность выбора дизайна, подходящего под любой интерьер.

Камины могут быть разного расположения и способа установки: напольные, настенные, угловые, встроенные камины, очаги открытого и закрытого типа, с декоративным порталом или без и т.д.

Недостатки: высокая стоимость современных моделей очагов.

Какой нагревательный элемент подойдет для дома

В инфракрасном обогревателе устанавливают галогенные, карбоновые и микатермические нагреватели. Для дома подойдет микатермический элемент нагрева. Он более экономичный, бесшумный и безопасный. В большинстве конвекторах используют именно этот вид.

В масляных и стандартных конвекторных радиаторах используют 3 вида ТЭНа:

  • Ленточно-игольчатый. Отличается быстрым нагреванием и остыванием, высокой температурой. Из недостатков – хрупкость, из-за которой производители отказываются от ленточно-игольчатого ТЭНа.
  • Трубчатый. Его устанавливают практически во все конвекторные модели. Можно отличить по характерному потрескиванию во время работы. Недостатков нет, кроме звуков, которые издает прибор при перепаде температур.
  • Монолитный. Нагревательный элемент работает бесшумно, быстро нагревает помещение и потребляет минимум электричества.

В тепловентиляторах и пушках используют электрические спирали. Они быстро нагреваются до максимальной температуры – 800 градусов Цельсия, но быстро остывают. Стоит выключить прибор, как тепло начнет «уходить» из помещения. Еще один существенный минус – горение пыли из-за открытого типа нагревателя. Пыль попадает на спираль, выделяя неприятный запах и углекислый газ.

В дорогих моделях установлен керамический элемент, он лучше распределяют тепло, потребляет меньше энергии, не приводит к «высушиванию» воздуха.

Вывод: что покупать

Каждый из представленных обогревателей применяют для решения разных задач. Для точечного обогрева в течение короткого времени подойдет тепловентилятор, но для больших помещений его использовать не стоит. Если нужно обогреть склад, подвал, гараж – можно использовать тепловую пушку, однако для квартиры она не годится.

Для круглосуточного использования в квартире рекомендуем конвектор, потому что он безопасен на 100%, потребляет минимум энергии, нет риска обжечься, ведь корпус нагревается до 60 градусов. Конвектор можно поставить на стену или установить на пол, в зависимости от пожеланий.

В отличие от инфракрасного обогревателя, вам будет комфортно проводить время в комнате при включенном конвекторе. От инфракрасных лучей человек часто чувствует усталость и вялость.

Стоимость конвекторных обогревателей зависит от нагревательного элемента. Самыми лучшими являются микатермический и монолитный ТЭН.

Источник

Как выбрать электрический водонагреватель

Как выбрать электрический водонагреватель

Аватар пользователя

Электрические водонагреватели, изначально предназначенные для частных домов, сегодня все чаще можно встретить и в городских квартирах. Благодаря оставшейся с советских времен практике летних отключений горячей воды, миллионы городских жителей ежегодно оказываются перед выбором: начать закаливаться холодными душами, мыться по старинке ковшиком, кипятя воду на газовой плите, или не мыться вообще.

Или – купить и установить электрический водонагреватель.

Цены на водонагреватели начинаются со вполне доступных сумм, что многих подталкивает в сторону последнего варианта решения проблемы, но поговорка «скупой платит дважды» верна и в этом случае. Малая мощность и небольшой объем дешевого водонагревателя не позволят не то, что принять душ, но даже умыться с комфортом. А простая его конструкция приведет к быстрому выходу из строя.

Поэтому выбирать водонагреватель нужно по его параметрам, хорошо представляя, для чего и как вы его будете использовать. Неплохо также перед выбором узнать жесткость воды – той, которую вы собираетесь греть.

Характеристики электрических водонагревателей

По видуводонагреватели разделяются на накопительныеи проточные.

Накопительные водонагреватели нагревают до заданной температуры некоторый объем воды, который хранится в бойлере и расходуется по необходимости. При расходе нагретой воды в бойлер поступает холодная, температура в бойлере падает, что приводит к автоматическому включению ТЭНа.

Проточные водонагреватели греют протекающий сквозь них поток воды.

Оба вида имеют свои преимущества и недостатки.

Накопительные водонагреватели занимают много места и имеют ограниченный объем бойлера – как только он израсходуется, вода из крана потечет холодная. Мощность их невысока, и греть протекающий поток воды они неспособны. На повторный нагрев всего объема воды может уходить до нескольких часов.

Зато даже самый маленький накопительный водонагреватель можно приспособить для разбора воды несколькими потребителями – пока не закончится накопленная горячая вода, она будет течь с нужным напором из любого крана в квартире.

Проточные водонагреватели просты в монтаже, компактны и могут быть размещены даже прямо над раковиной. Но для быстрого прогрева требуемого в быту потока воды они должны обладать приличной мощностью, что не всегда допустимо.

Так, для принятия душа требуется поток примерно 10л/мин. Чтобы нагревать на 30 градусов воду, текущую с такой скоростью, нагреватель должен иметь мощность около 20 кВт, что сразу делает невозможным использование подобных нагревателей в большинстве квартир и частных домов. Максимально допустимая мощность в квартирах многоквартирных домов – 7 кВт, и это только в домах с электрическими плитами. В домах с газовыми плитами на квартиру выделяется 3-4 кВт, а в домах старой постройки и того меньше.

Читайте также:  Что называют переменным однофазным током

Кроме того, если в вашей сети водоснабжения давление непостоянно, то температура на выходе проточного водонагревателя будет все время меняться. Давление увеличилось, напор возрос, вода течет холодная. Давление упало — вода обжигающе-горячая. Точно регулировать температуру на выходе умеют немногие модели, поэтому придется часто подкручивать вентиль смесителя.

Объем бака имеет большое значение для накопительных водонагревателей. Чем объем больше, тем больше членов вашей семьи смогут умыться, принять душ или ванну без долгого ожидания прогрева бойлера после предыдущего использования.

Но имейте в виду, что чем больше объем бака, тем больше времени потребуется на его нагрев, так как мощность ТЭНов большинства водонагревателей примерно одинакова и редко превышает 3 кВт.

Внутреннее покрытие бака для горячей воды необходимо для его защиты от коррозии.

Наилучшую защиту обеспечивают баки из нержавеющей стали, но они и стоят дороже остальных. Слабое место баков из «нержавейки» — сварной шов, который чаще всего выполняется металлом, подверженным коррозии.

Эмалированные баки и баки со стеклокерамическим покрытием сходны по эксплуатационным характеристикам и также обеспечивают неплохую защиту – миф о разрушении защитного слоя под воздействием перепадов температуры – не более чем миф (разумеется, если не наливать в замороженный бак кипящую воду).

Другое дело, что качество покрытия может быть разным и стеклокерамика известного производителя – совсем не то же самое, что стеклокерамика безымянного «китайца».

В остальном же эмаль и стеклокерамика серьезно уступают «нержавейке» только в одном – устойчивости к механическим повреждениям. Сам бак нагревателя, как правило, отделен от корпуса слоем мягкой теплоизоляции, которая может защитить бак от повреждений, но при сильных ударах на покрытии могут появиться микротрещины, в которых впоследствии разовьется коррозия. Поэтому при покупке нагревателя с эмалированным баком надо тщательно осматривать корпус на отсутствие вмятин и впоследствии беречь нагреватель от ударов.

Многие производители для защиты бака от коррозии устанавливают в него магниевый анод, взаимодействующий с кислородом воды и защищающий внутреннюю поверхность бака. Этот элемент защитит бак, даже если покрытие будет повреждено, но он требует периодической замены – раза в 1-2 года, независимо от состояния защитного покрытия.

Если вы хотите, чтобы нагреватель проработал долго и без лишних хлопот, обязательно обратите внимание на наличие «сухого» ТЭНа. Особенно, если у вас жесткая вода – в этом случае «сухой» ТЭН просто необходим.

В обычных моделях ТЭН находится прямо внутри бойлера и непосредственно контактирует с нагреваемой водой. При этом на нем оседает накипь, что может довольно быстро привести к выходу нагревателя из строя, к протечке ТЭНа и к тому, что вся накопленная вода окажется на полу.

Чтобы избежать этого, можно производить периодическую очистку ТЭНа от накипи (2 раза в год при жесткой воде, раз в 1-2 года – при нормальной).

Либо приобрести нагреватель с «сухим» ТЭНом – конструкция такого нагревателя не предусматривает контакта ТЭНа с водой, он находится в металлической колбе или трубке. Разумеется, накипь при этом никуда не девается, она оседает на наружной поверхности колбы. Но из-за большей толщины металла и большей площади соприкосновения с водой это не ведет к быстрому прогару, поэтому нагреватели с «сухим» ТЭНом могут проработать в десятки раз дольше, чем их аналоги с «мокрым» ТЭНом.

Номинальная мощность определяет, как быстро нагреватель будет греть воду. Для накопительного нагревателя – чем больше мощность, тем быстрее прогреется весь бак и из крана снова потечет горячая вода. И если для нагревателя с небольшим баком (15-30 л) разница во времени нагрева у маломощных и мощных нагревателей составляет 10-30 минут, то у объемных нагревателей (80-100 л) разница во времени прогрева уже может составлять несколько часов. Если позволяют проводка и допустимая мощность, имеет смысл вместо одного большого нагревателя на 3 кВт установить два поменьше такой же мощности – это вдвое сократит время ожидания горячей воды, если она вдруг закончилась.

Некоторые нагреватели оборудованы двумя ТЭНами и имеют режим ускоренного нагрева. При поступлении большого объема холодной воды и резкого падения температуры можно включить оба ТЭНа, увеличивая скорость нагрева воды. А в режиме поддержания температуры работает только один ТЭН. Такой режим работы нагревателя снижает нагрузку на сеть. Нагреватели, снабженные автоматикой, способны самостоятельно подключать/отключать второй ТЭН.

Для проточного нагревателя – чем больше мощность, тем больший напор нагретой воды он сможет обеспечить.

Проточный водонагреватель мощностью 3 кВт сможет нагреть «до теплоты» только тоненькую струйку воды – где-то на 1,5 л/мин. Умыться и почистить зубы еще получится, а вот что-то еще – уже нет.

Проточный водонагреватель мощностью 5-7 кВт можно использовать для мытья посуды, но душ будет не очень комфортен – и вода прохладная, и напор слабоват.

В продаже есть проточные нагреватели большей мощности, но, к сожалению, для их установки потребуется отдельная проводка – а иногда и трехфазная. Впрочем, если вы являетесь счастливым обладателем трехфазного питания с большой допустимой мощностью потребления, то установка проточного водонагревателя мощностью 15-20 кВт обеспечит вам горячую воду с нормальным напором в практически неограниченном количестве.

При покупке нагревателя в городскую квартиру – особенно накопительного нагревателя и особенно на нижних этажах – обратите внимание на максимальное допустимое давление воды у выбранного нагревателя. Несмотря на норматив давления в 4 бара, в городских сетях водоснабжения давление может доходить до 7 бар. Следует либо подбирать нагреватель с максимальным допустимым давлением 8-10 бар, либо предусмотреть редуктор давления на его входе.

На максимальную температуру нагрева воды следует обратить внимание, выбирая накопительный нагреватель. Чем выше температура нагрева, тем меньше горячей воды придется смешивать с холодной для достижения теплой. Но в то же время – тем и выше опасность ожога при полностью открытом кране горячей воды.

Водонагреватель – что проточный, что накопительный – несет в себе множество опасностей. Чтобы избежать затопления, поражения электрическим током или ожога горячей водой, обратите внимание на наличие всех элементов безопасности:

Регулятор (ограничитель) температуры нагрева позволяет задать максимальную температуру воды и избежать ожога при неосторожном открытии крана.

Если краном могут пользоваться дети, а максимальная температура нагрева выше 80°С, регулятор необходим – температуру следует выставить не выше 75-80°С.

Защита от перегрева отключает ТЭН при опасности закипания воды. Обычно автоматика нагревателя выключает ТЭН намного раньше, но при её поломке только защита от перегрева спасет проточный нагреватель от повреждения ТЭНа, а накопительный нагреватель – от разрыва бака.

Устройство защитного отключения защищает от утечки электрического тока в нагреваемую воду. Категорически не рекомендуется пользоваться нагревателем, не оснащенным УЗО.

Предохранительный клапан выполняет функцию обратного клапана, не позволяя воде вытечь из накопительного нагревателя, а так же стравливает лишнее давление.

Поскольку забор воды в накопительном нагревателе осуществляется сверху, а на место горячей тут же поступает холодная вода, бак всегда остается заполненным. При отсутствии обратного клапан и прекращении подачи воды, бак может остаться без воды, что приведет к выходу ТЭНа из строя.

Предохранительный клапан (с отводом) защищает бак от излишнего давления в водопроводе. Однако это не панацея: если давление в системе значительно превышает требуемое, то по трубке всегда будет течь довольно сильный поток воды с ощутимым шумом. Приятного в этом мало, поэтому рекомендуется добавить на входе редуктор давления.

Варианты выбора электрических водонагревателей

Если вам нужен нагреватель, чтобы обеспечить одну точку горячей водой, а проводка позволяет подключать электроприборы с потреблением 5-7 кВт, выбирайте среди проточных водонагревателей. Если вы хотите, чтобы нагреватель обеспечивал возможность принятия душа, обратите внимание на опцию насадки для душа.

Если вы живете в городской квартире и не хотите зависеть от сезонных отключений воды, выбирайте среди накопительных нагревателей объемом до 50 л – этого вполне хватит переждать отключение.

Если вы живете на одном из нижних этажей и у вас всегда прекрасный напор воды, при выборе накопительного нагревателя ориентируйтесь на модели с максимальным давлением воды в 8 бар и выше – это защитит бак нагревателя от гидроударов, вполне возможных во время профилактических работ.

Если проводка не позволяет подключать мощные приборы, но и возиться с подключением и разводкой накопительного нагревателя у вас нет возможности или желания, выбирайте среди маломощных проточных нагревателей – напор, конечно, будет слабым, но это лучше, чем ничего.

Если вы опасаетесь протечек, выбирайте нагреватель с «сухим» ТЭНом и максимальным давлением воды в 8 бар и выше. Наличие магниевого анода на выбранной модели обеспечит дополнительную защиту, но имейте в виду, что его нужно периодически менять.

Если вы живете за городом и вам нужен водонагреватель для обеспечения горячей водой семьи в 2-3 человека, выбирайте среди накопительных нагревателей объемом 50 – 100 л. Для семьи в 4-5 человек объем бака потребуется побольше – 100 – 150 л.

Если же у вас нет никаких ограничений по проводке и потребляемой мощности, можете установить мощный проточный нагреватель и забыть об отсутствии в кране горячей воды.

Источник

Мощность тока нагрев нагревателя

Расчет проволочного нагревателя для печи

расчет проволочного нагревателя

Компания Электронагрев производит нагреватели в основе которых используются проволочные или ленточные (нихромовые/фехралевые) греющие элементы. Сегодня мы производим нагреватели проволочного типа для высокотемпературных печей сопротивления. К устройству нагрева при этом предъявляется следующие требования:

низкий коэффициент сопротивления;

высокое удельное сопротивление;

устойчивость к перепадам температур.

Наиболее часто для печей сопротивления применяют нихромовые сплавы по составу Х20Н80, Х20Н80-Н и пр, фехралевые сплавы Х23Ю5Т, Х23Ю5 и пр. Нихромовые и фехралевые нагреватели имеют технологические и производственные отличия по применению, монтажу и эксплуатации.

Просчитать параметры проволочного нагревателя для термопечей можно по нескольким примерам, в основе которых лежат разные задачи и уже имеющиеся характеристики печной установки и фазы тока. Изначально, приступим к самой примитивной задаче, вычислению таких характеристик как диаметр и длина спирально проволочного нагревателя для печи, для которой уже определена рабочая мощность.

Пример расчета необходимых параметров нихромового нагревателя проволочного типа с маркировкой Х20Н80 по предоставленным параметрам:

Мощность нагрева Р = 1200 Вт;

Сетевое напряжение питания U = 230 В;

Температурная подача нагревательного элемента — 500 °C.

1. Для начала нужно вычислить силу тока проходящую или расчетную по формуле:

I=P/U=1200/230=5.2 А,

2. После этого нужно рассчитать сопротивление нагревателя:

R=U/I=230/5.2=44 Ом.

После расчета силы тока высчитываем необходимый диаметр проволоки. Для нагревательного элемента, по которому проходит сила тока более 6 Ампер, полагаясь на табличные данные, проволока должна иметь диаметр сечения 0,55 мм. Поэтому, по рассчитанным нами параметров силы тока в 5.2 А и рабочей температуры в 800°C греющая проволока должна иметь диаметр не менее 0,6 мм, а поперечное сечение ее составлять площадь 0,283 м.кв.

Основное правило расчета диаметра проволочного нагревателя – это подбор проволоки, которая имеет силу тока не меньше расчетной по заданной формуле. Но также стоит помнить, что для минимального расходования нагревающего материала необходимо выбрать проволочный элемент с ближайшими данными по силе проходящего тока.

Далее делаем вычисления по длине нагревательного элемента:

И, соответственно, высчитаем длину самого проволочного нагревателя:

l = R • S / ρ = 44 • 0,283 / 1,11 = 9.43 м.

В предоставленном примере расчета функцию нагревательного элемента выполняет проволока из сплава нихрома диаметром 0,6 мм. По ГОСТу 12766.1-90 значение удельного электросопротивления нихромовой проволоки маркой Х20Н80 имеет следующие показатели:

1,1 Ом • мм2 / м (ρ = 1,1 Ом • мм2/ м).

Результатом вычислений выявляет, что требуемая длина нихромовой проволоки составляет 9.43 м при диаметре — 0,6 мм.

Следующие расчет параметров считается более усложненным. На этом этапе мы уже учитываем дополнительные технические особенности нагревателей. Расчет будет проводиться на примере электропечи. В качестве исходных данных возьмем внутренние параметры печной установки.

1. Первое, что необходимо сделать — посчитать объем камеры внутри печи. В данном случае возьмем h = 520 мм, d = 420 мм и l = 420 мм (высота, ширина и глубина соответственно). Таким образом, получаем объем V = h • d • l = 520• 420 • 420 = 92 • 10 6 мм

2. Далее необходимо определить мощность, которую должна выдавать печь. Мощность определяется эмпирическим правилом. Электрическая печь объемом 30 – 100 литров обладает удельной мощностью 100 Вт/л. Мощность нагревателя для такой установки должна высчитываться по следующей формуле: P = 100 • 92 = 9200 Вт = 9.2 КВт.

Стоит отметить, что при мощности 5-10 кВт нагреватели стандартно производят однофазными. При больших мощностях, чтобы обеспечить равномерную загрузку сети нагреватели создают трехфазными.

3. Затем нужно найти силу тока, проходящего через нагреватель по формуле I = P / U.

Чтобы развязать данную производственную задачу можно использовать один из двух способов подключения:

К бытовой однофазной сети — U = 230 В;

К промышленной сети трехфазного тока — U = 230 В (между нулевым проводом и фазой) или

U = 380 В (между любыми двумя фазами тока).

Однофазная сеть (бытовая).

I = P / U = 9200/230 = 40 А — вычисляем ситу тока, который проходит через нагреватель.

Далее нам нужно узнать сопротивление нагревателя действующего в печи сопротивления.

R = U / I = 230/40= 5.75 Ом.

схема подключения 1

Промышленная сеть трехфазного тока

В данной сети нагрузка тока в равномерном порядке распределяется на все имеющиеся фазы, а именно 9.2 / 3 = 3.1 кВт на каждую фазу. Исходя из этого, мы понимаем, что в наличии у нас должно быть три нагревателя. Затем следует выбрать способ, по которому произведем подключение. Существует два метода подключения нагревателей в решении данной задачи: «ЗВЕЗДА» или «ТРЕУГОЛЬНИК».

При подключении по типу “ЗВЕЗДА” нагреватель подключается между фазой и нулем. Напряжение на выводах подключеня нагревателя будет U = 230 В.

Ток, проходящий через нагреватель –

I = P / U = 3100 / 230 = 13.5 А.

Сопротивление одного нагревателя —

R = U / I = 230 / 13.5 = 17.04 Ом.

схема подключения 2

При подключении типа “ТРЕУГОЛЬНИК” нагреватель подключается между двумя фазами. Напряжение на концах нагревающего элемента будет составлять U = 380 В.

Ток, проходящий через нагреватель —

I = P / U = 3100 / 380 = 8.16 А.

Расчет сопротивления одного из трех нагревателей —

R = U / I = 380/ 8.16 = 46.6 Ом.

схема подключения 3

Вычислив сопротивление необходимо подобрать диаметр и длину проволоки. Но, перед тем как приступить к решению этой задачи придется найти значения удельной поверхностной мощности нагревателя, т.е. мощности, которая выделяется с единицы площади.

На величину поверхностной мощности устройства производящего нагрев влияют несколько факторов:

Изначальная температура объекта обогревания;

Параметры нагревательного устройства.

Для каждого материала зависимо от требуемой термической обработки существует свое определенное допустимое значение поверхностной мощности. Эти значения можно определить с помощью специальных таблиц или графиков.

Для печей с подачей высоких температур (более 700 – 800°С) допустимая поверхностная мощность, Вт/м2, равна βдоп = βэф • α, где βэф – поверхностная мощность нагревателей в зависимости от температуры тепловоспринимающей среды [Вт / м2], α – коэффициент эффективности излучения.

βэф выбирается с помощью специальной таблицы.

Если печь низкотемпературная (температура менее 200 – 300°С), то допустимую поверхностную мощность можно считать равной (4 — 6) • 104 Вт/м 2 .

Предположим, что температура нагревателя 900 °С, и хотим нагреть заготовку до температуры 800°С. Тогда с помощью таблиц подбираем βэф = 2.65 Вт/см2, α = 0,2, βдоп = βэф • α = 2.65 • 0,2 = 0.53 Вт/см2=0.53 • 10 4 Вт/м2.

После определения допустимой поверхностной мощности нагревателя необходимо найти его диаметр (для проволочных нагревателей) или ширину и толщину (для ленточных нагревателей), а также длину. Диаметр проволоки можно определить по следующей формуле:

Читайте также:  Как создать кратковременную индукционный ток в катушке к2 рис 125

расчет 1

Длину проволоки можно определить по следующей формуле:

расчет 2

Полагаясь на уже имеющиеся данные можно с легкость определить подключения к сети однофазного и трехфазного тока. Можно сразу обозначить, что для «Звезды» требуется проволока с большим диаметром, чем для «Треугольника», чтобы обеспечить мощность в 9.2 кВт. При этом длина проволоки при подключении по типу «Звезда» должна быть меньшей, чем для типа «Треугольник», а требуемая масса наоборот больше.

Для эксплуатации рассчитанной нихромовой проволоки из нее нужно создать спираль. Диаметры спирали нагревателя принимаются равными:

D = (7 ÷ 10) ⋅ d — для сплавов из никеля и хрома.

D = (4÷6) ⋅d — для хромоалюминиевых сплавов.

Для устранения перегревов, спираль нужно растянуть так, чтобы расстояние между витками было в полтора раза больше, чем имеющийся диаметр самого нагревательного элемента. Также стоит помнить, что кроме проволоки, в качестве нагревателей можно использовать и ленту. Кроме выбора размера проволоки, стоит учитывать материал нагревателя, тип, расположение.

Источник

Расчет мощности и габаритов электрического нагревателя

Расчет электрических и геометрических параметров электронагревателя определяется, принимая во внимание множество нюансов. Для корректного расчета мощности электронагревателя необходимо знать теплофизические свойства нагреваемой среды, такие как плотность и теплоемкость, вязкость и теплопроводность. Однако, для общего понимания процесса расчета нагревательного оборудования, в данной статье мы приведем несколько формул и объясним основные принципы расчета нагревателей.

РАСЧЕТ ТРЕБУЕМОЙ МОЩНОСТИ

В зависимости от типа нагрева (статический или динамический), формулы расчета мощности несколько отличаются.

Расчет мощности нагревателя для нагрева жидкости в резервуаре достаточно точно может быть произведен по следующей формуле:

P= ((V* ρ * Сp* (Т2-T1)/(3600* t)) +К, где

P – мощность электрического нагревателя, кВт;

V – нагреваемый объем в литрах;

ρ – плотность жидкости, кг/м3;

Сp – удельная теплоемкость жидкости, кДж/ кг °С;

Т1 – начальная температура жидкости, °С

Т2 — требуемая температура жидкости, °С

t – требуемое время нагрева, ч;

К – коэффициент запаса (%). Величина коэффициента определяется температурой окружающей среды и толщиной теплоизоляции резервуара. Значения коэффициента принимаются в диапазоне 5….25%.

По данной формуле можно достаточно точно рассчитать требуемую мощность для нагрева жидкости в резервуаре. Если же необходимо рассчитать мощность прочного подогревателя жидкости или газа , то данная формула примет следующий вид:

P= ((V* ρ * Сp* (Т2-T1)/(3600) +К, где

P – мощность электрического нагревателя, кВт;

V – нагреваемый объем нм3/ час;

ρ – плотность нагреваемой среды, кг/м3;

Сp – удельная теплоемкость нагреваемой среды, кДж/ кг °С;

Т1 – температура на входе в подогреватель, °С

Т2 — требуемая температура на выходе из подогревателя, °С

К – коэффициент запаса (%). Величина коэффициента определяется температурой окружающей среды и толщиной теплоизоляции сосуда. Значения коэффициента принимаются в диапазоне 5….25%.

В качестве примера произведем расчет мощности проточного подогревателя для нагрева воздуха с расходом 3000 нм3/час от +5ºС до +40ºС при рабочем давлении 1 атм., тогда:

P = 3000 x 1,24 x 1,05 x (40-5)/ 3600 = 37, 98 кВт

Данной мощности 38 кВт будет достаточно только при идеальных условиях. Под идеальными условиями подразумевается отсутствие теплопотерь, падения напряжений, а также абсолютная точность при изготовлении никель-хромовой спирали нагревательных элементов. К сожалению, на практике идеальных условий не бывает, поэтому в случае стабильного напряжения и расположения подогревателя в отапливаемом помещении, будет достаточно принять запас 10% — тогда требуемая мощность подогревателя составит 42 кВт. Если же напряжение питания нестабильно и оборудование располагается на улице при температуре до -50ºС, то рекомендуется принять запас по мощности не менее 25% — тогда мощность подогревателя должна быть порядка 48 кВт. Если пренебречь запасом мощности и принять только мощность, необходимую на процесс нагрева, то есть вероятность, что подогреватель не сможет выйти на рабочий режим и осуществить подогрев воздуха до +40ºС.

РАСЧЕТ ГАБАРИТОВ ОБОРУДОВАНИЯ

Габариты нагревателя определяются исходя из количества нагревательных элементов и погружной длины. Данные параметры зависят от расхода, требуемой температуры нагреваемой среды и от мощности нагервателя. Количество ТЭН и погружная длина подбирается исходя из допустимой удельной мощности. Чем выше температура нагреваемой среды, тем ниже должна быть удельная мощность нагревательных элементов, во избежание перегрева и выхода оборудования из строя. Также, при расчете габаритов нагревателя нужно учитывать, что в случае нагрева до температур выше +100ºС между монтажным фланцем обязательно нужно предусматривать холодную хону от 100 до 400 мм, во избежание перегрева клеммной коробки. Величина холодной зоны определяется температурой нагреваемой среды.

УДЕЛЬНАЯ МОЩНОСТЬ ТЭН

Определяющим параметром, влияющим на габариты изделия является удельная мощность нагревательных элементов, которая измеряется в Вт/см2 т.е. сколько Вт энергии выделяется с 1 см2 поверхности нагревательных элементов. От данного параметра зависят окончательные размеры оборудования — чем удельная мощность выше, тем габаритные размеры подогревателя будут меньше. Но нужно понимать, что нельзя бесконечно увеличивать удельную мощность чтобы сделать нагреватель меньше, тем самым уменьшив его стоимость. Слишком высокая удельная мощность ведет к увеличенной температуре на поверхности нагревательных элементов и сокращению срока службы изделия. Удельная мощность также зависит от диаметра нагревательных элементов. Так при одинаковой мощности и длине, у нагревательного элемента ø16 мм удельная мощность будет меньше, чем у нагревательного элемента ø10 мм.

Удельная мощность нагревательного элемента рассчитывается по следующей формуле:

W = P/n х 3.14 х Ø х L, где

W — удельная мощность (Вт/см2);

P — мощность нагревательного элемента, Вт;

n — количество нагревательных элементов в подогревателе, шт.;

Ø — диаметр нагревательного элемента, см;

L — развернутая рабочая длина нагревательного элемента, см;

В качестве примера, возьмём вышеописанный подогреватель воздуха, мощностью 42 кВт. Предположим, что он состоит из 12 U-образных нагревательных элементов диаметром 10 мм с погружной длинной 2000 мм, из которых 200 мм холодной (ненагреваемой) длины. Рассчитаем удельную мощность нагревательных элементов:

W = 42000/ 12 x 3,14 x 1 х 360 = 3, 09 Вт/ см2

В случае невысоких температур нагрева, можно принять удельную мощность нагревательных элементов по следующей таблице:

нагрев воздуха до температуры +100 и более градусов, нагрев мазута и битума, дизельного топлива, нефти, нагрев термального масла до +300 С

подогрев антифриза с концентрацией более 50%, подогрев термального масла, подогрев воздуха до +80. 90 С, подогрев природного газа

Читайте также:  Что называют переменным однофазным током

подогрев щелочных растворов, подогрев антифриза с концентрацией до 50%

подогрев воды, проточный подогрев антифриза с концентрацией до 30%

нагрев воды в проточном режиме в больших объемах, электрические парогенераторы.

Указанные в таблице значения являются ориентировочными, более точным является подбор удельной мощности по температуре нагревательных элементов.

ТЕМПЕРАТУРА НА ПОВЕРХНОСТИ НАГРЕВАТЕЛЬНЫХ ЭЛЕМЕНТОВ

Температура на поверхности нагревательных элементов зависит от удельной мощности и расхода нагреваемой среды, но также на нее влияют теплофизические свойства нагреваемой среды и температура на выходе из подогревателя. Если использовать один и тот же проточный нагреватель для нагрева воды и воздуха, то в первом случае температура нагревательных элементов будет меньше т.к. жидкости обладают большей теплоемкостью и лучше снимают тепло с нагревательных элементов. Точный расчет температуры нагревательных элементов производится с помощью специального софта, который учитывает все геометрические параметры нагревателя, количество нагревательных элементов, удельную мощность, тип нагреваемой среды, требуемую температуру и давление. Вручную рассчитать температуру нагревательных элементов без знания углубленного курса теплофизики практически невозможно. Существуют методики определения температуры ТЭН для статического нагрева жидкости, температура ТЭН в данном случае имеет некую зависимость от удельной мощности и температуры нагреваемой среды, но данные методики не являются точными и имеют определенную погрешность. Определив необходимую удельную мощность и рассчитав температуру нагревательных элементов, мы можем понять какие габариты будут у нашего изделия и рассчитать его стоимость.

Если Вы не имеете опыта расчетов подобного оборудования — настоятельно рекомендуем Вам обратиться в наш технический отдел т.к. при неправильном выборе параметров для общепромышленного оборудования Вы рискуете стабильностью его работы и процесса нагрева. Если же речь идет о расчетах взрывозащищенного оборудования, то данные расчеты могут быть выполнены только специалистами т.к. помимо нестабильной работы, при неправильном определении параметров нагревателя есть риск спровоцировать взрывоопасную ситуацию на объекте. Специалисты компании ООО «СИСТЕМЫ ПОДОГРЕВА» имеют специализированное ПО и огромный опыт в данной области. Расчет и подбор оборудования может быть осуществлены в течение 1- 2 рабочих дней.

Источник



Расчет параметров нагревателей из нихрома и фехрали

Расчет длины проволоки для спирали

Требуемая мощность нагревателя
Вт

Напряжение питания
В

Выберете материал
Нихром Константан Хромаль Фехраль

Выберете диаметр проволоки из стандартных промышленных размеров.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.5 2.0 2.2 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 10.0 мм

Сечение проволоки мм 2

Сопротивление проволоки Ом

Длина проволоки м

Ток, потребляемый нагревателем А

Полученные результаты не учитывают рост электрического сопротивления проводника с ростом его температуры. Поэтому фактическая мощность (как и потребляемый ток от сети) всегда несколько ниже расчетных величин.

Расчет веса и длины

Пересчитать Длину в вес Вес в длину Вид продукции Проволока Лента Сплав Фехрали (Х23Ю5Т, GS SY, Х15Ю5) Нихромы (Х15Н60 Х20Н80, GS 40) Диаметр, мм. Толщина, мм. Ширина, мм. Длина, м. Вес, кг. Масса, кг. 11.3040 Рассчитать

Нихром и фехраль являются самыми распространенными материалами для создания резистивного нагревателя. Нихром (в частности, нихром 80) изготавливается из смеси никеля и хрома. Фехраль или другое название Кантал представляет собой сплав железо-хром-алюминий (FeCrAl).

Краткий анализ

Fechral – сплавы группы железо-хром-алюминий (FeCrAl), используемые в широком диапазоне сопротивлений и при высоких температурах. Сплавы известны своей способностью выдерживать высокие температуры (до 1400 ° C (2550 ° F)), и имеющие промежуточное электрическое сопротивление (1,20 — 1,30 Ом · м).

Типичные области применения сплавов FeCrAl — это электрические нагревательные элементы в высокотемпературных печах для термообработки, керамической, стекольной, сталелитейной и электронной промышленности.

Среди достоинств фехрали можно отметить следующие:

высокая рабочая температура;
Ферритные сплавы FeCrAl можно использовать в среднем до 1400 °C, в то время как аустенитные сплавы NiCr имеют максимальную рабочую температуру до 1250 °C.

высокое удельное сопротивление;
Удельное сопротивление сплавов FeCrAl выше, чем сплавов NiCr. Это дает возможность выбирать материалы с большим поперечным сечением, тем самым продлевая срок службы элементов. Значительная экономия веса может быть получена, особенно при использовании тонкой проволоки — чем выше удельное сопротивление, тем меньше материалов используется. Кроме того, на удельное сопротивление сплавов FeCrAl меньше влияет холодная обработка и термообработка по сравнению со сплавами NiCr.

более долгая жизнеспособность;
Сплавы FeCrAl могут использоваться от 2 до 4 раз дольше, чем сплавы NiCr, эксплуатируемые при той же температуре в атмосфере.

более высокая поверхностная нагрузка;
Более высокая рабочая температура и более длительный срок службы сплавов FeCrAl гарантируют способность выдерживать высокие поверхностные нагрузки.

небольшой вес и невысокая стоимость;
Вес сплавов FeCrAl ниже, чем сплавов NiCr. Благодаря тому, что сплавы FeCrAl не содержат никель, его цена ниже, чем на сплавы NiCr. В результате в большом количестве применений может быть достигнута значительная экономия веса и стоимости элементов.

отличные окислительные свойства;
Оксид алюминия (Al2O3), образующийся на поверхности сплавов FeCrAl, имеет лучшие адгезионные свойства и, следовательно, менее загрязняется.

стойкость к сере;
Сплавы FeCrAl могут противостоять коррозии в атмосфере и материалах, загрязненных серой или ее соединениями. В таких условиях сплавы NiCr подвержены сильной эрозии.

Нихром (NiCr) — группа сплавов с содержанием Ni 55-78%, Cr 15-23% в зависимости от марки и добавками Mn, Si, Fe и Al. Сплавы известны своей способностью выдерживать высокие температуры (до 1250 ° C (2280 ° F), и имеют промежуточное электрическое сопротивление (1,05–1,40 Ом * м). Сплавы NiCr обладают отличнойустойчивостью к высокотемпературному окислению, коррозии и имеют хорошую износостойкость.

Благодаря своей стойкости к окислению и стабильности при высоких температурах нихром широко используется в электронагревательных установках, таких как электрические печи, печи для обжига и сушки, его используют в производстве различных нагревательных устройств.

Среди достоинств нихрома можно отметить следующие:

идеальная стабильность формы при высоких температурах;
Сплавы NiCr устойчивы к деформации и сохраняют очень хорошую стабильность формы при высоких температурах благодаря тому факту, что они имеют более высокий предел прочности при нагревании и ползучести, чем сплавы FeCrAl.

немагнитные свойства;
Сплав NiCr — немагнитный материал, который можно использовать при низких температурах. Между тем сплав FeCrAl немагнитен при температурах выше 600 °C.

Читайте также:  Исследование однофазной цепи синусоидального тока при параллельном соединении

хорошая пластичность после длительного использования;
Сплавы NiCr остаются пластичными после длительного использования. Это свойство делает нагревательные элементы более прочными.

высокая излучательная способность;
Сплавы NiCr имеют более высокий коэффициент излучения, чем сплавы FeCrAl в полностью окисленном состоянии. При одинаковой поверхностной нагрузке температура элементов сплава NiCr ниже, чем сплавов FeCrAl.

устойчивость к коррозии;
Как правило, сплавы NiCr имеют лучшую коррозионную стойкость при комнатной температуре, чем неокисленные сплавы FeCrAl (за исключением серной среды и контролируемой атмосферы).

Расчеты нагревательных элементов. Калькуляторы вычисления длины спирали и пересчета веса материалов в длину и наоборот

Расчёт сопротивления

В первую очередь стоит определить длину проволоки. За основу для расчета берется мощность и сопротивление. К примеру, нужно изготовить нагревательный элемент для устройства, мощность которого составлять должна 10Вт, а напряжение 12Вольт. Для примера вычислений возьмем нихромовую проволоку, диаметр сечения которой составляет 0,1 мм.

Без учетов нагрева можно применить элементарную формулу расчета:

Р=U∙І → І = Р/ U = 10 / 12 = 0,83 А

R= U/ І = 12 / 0,83 = 14,5 Ом.

На основе имеющихся данных площади сечения проволоки (S) и удельного сопротивления нихромового сплава (ρ) длина проволоки вычисляется довольно просто:

Для определения удельного сопротивления проволоки из нихрома с конкретным диаметром можно использовать формулы или готовую таблицу. Нихром, диаметр которого составляет 0,1 мм будет обладать сопротивлением 14,4 Ом и иметь площадь сечения 0,008 мм.кв — внеся эти данные в таблицу мы определим, что длина такой проволоки должна составлять 10 см.

Для расчета того, сколько витков спирали нужно сделать из проволоки полученной длины, нужно воспользоваться такими формулами:

Вычисление длины одного витка, равного:

Длина витка =π∙( диаметр намотки + 0,5 ∙ диаметр сечения проволоки)

Количество витков = длина проволоки / длина витка

Исходя из этого, проводим следующее соотношение, если диаметр витков проволоки будет 2 мм, то

Количество витков = 100/( 3,14*(2+0,05))=15,5 витков

В теории все складно и хорошо. Но, что покажет практика? Сможет ли нихромовая проволока такого диаметра выдерживать подобную нагрузку. Расчеты в таблицах представленных ниже предоставляют данные максимального тока, который допустим для конкретных показателей диаметра нихромовой нити при определенной температурной нагрузке.

Другими словами, следует высчитать температурный показатель, выше которого не должна прогреваться спираль и подобрать в значениях таблицы подходящее сечение для расчетного тока.

Следует отметить, что для электронагревателей, предназначенных для работы в жидкой среде сила тока должна браться с большим расчетом на 1,5 раза. Для устройств предназначенных для работы в замкнутом пространстве следует ток уменьшить.

Температурный расчет

Данный расчет является более сложным и более точным, чем предыдущий. В нем учитывается величина сопротивления материала в холодном состоянии. Ведь логически должно быть понятно, что при изменении температуры меняться должно и сопротивление. Также важно учитывать еще и в каких условиях работает нагревательный прибор. При небольших температурах, например в случае использования обычных обогревателей, первую методику расчета можно легко использовать, для печей высокого сопротивления, где температурная подача сверхвысокая, такой метод уже будет не актуален.

Чтобы показать пример расчета спирали на основе второго метода возьмем греющий элемент, предназначенный для работы в муфельной печи. В первую очередь определяем объем рабочей камеры и исходя из этого высчитываем мощность необходимую при нагреве. Для муфельной печи подбор происходит на основе следующего правила:

Для печных установок, камера которых имеет объем менее 50 л., расчет проводим исходя из 1 литр на 100 Вт

Для оборудования с рабочей камерой более 100 л., но меньше 500 л. Мощность рассчитывается 50-70 Вт на 1 литр

В качестве примера берем печную установку объемом 50 л. Мощность такой печки составляет 50*100= 5000 Вт

Определим силу тока (І) и сопротивление (R) для сети 220В

І = 5000/220 = 22,7 А

R = 220/22,7 = 9,7 Ом

При подключении спирального нагревателя способом «звезда», мощность делим на три фазы.

Мощность на фазу = 5кВт / 3 = 1,66 кВт

Такой тип подключения в трехфазную сеть предполагает подачу к каждой фазе 220В, то есть ток и сопротивление будут соответствовать следующему расчету:

І = 1660/220 = 7,54 А

R = 220/7,54 = 29,1 Ом

При соединении нагревательного элемента в условиях напряжения 380 В использоваться будет схема подключения «треугольник». Расчет будет проведен по формуле учитывающей линейное напряжение 380В.

І = 1660/380 = 4,36 А

R = 380/4,36 = 87,1 Ом

Диаметр определяется при учете удельной поверхностной мощности нагревательного элемента. Рассчитаем длину нагревательной спирали, беря за основу удельные сопротивления из таблиц.

Поверхностная мощность = βэф*α(коэффициент эффективности)

Из проведенной работы можно свободно сделать вывод, что для муфельной печки, которая должна прогреваться до 1000 градусов Цельсия необходимо взять спираль, рассчитанную на подачу температуры в 1100 градусов Цельсия. На основе табличных данных выбираем соответствующие показатели и получаем:

Поверхностная мощность (Вдоп)=4,3∙0,2=0,86Вт/см2=8600 Вт/м2

Удельное сопротивление проволоки при необходимой термической нагрузке (Rt) подбирается из таблицы

При использовании нихромового сплава маркой Х80Н20, Rt составляет 1,025. Исходя из этого, Рт=1,13*106*1,025=1,15*106 Ом на мм

Для подключения греющего элемента по типу звезда: диаметр составляет 1,23 мм, длина = 42 м

Проверяем значения по формуле L=R/(p*k)

Получаем в итоге 29,1/(0,82*1,033)= 34 м

Как видно, при использовании формулы, где температура не учитывается, конечные данные имеют значительные отличия от полученных показателей. Правильно выберите длину одной спирали для соединения звезды равной 42 м, тогда для 3-х спиралей понадобится 126 метров нихромовой проволоки диаметром 1,3.

Выводы

При помощи калькуляторов и формул удастся быстро произвести расчет длины греющей проволоки. Определить диаметр на основе необходимой мощности и температурной выработки греющей спираль также не затруднительно. Но, даже при помощи второго более сложного способа расчета невозможно учесть различные факторы, которые могут возникнуть при непосредственной эксплуатации нагревателя и внести свои коррективы в его работу. Практика показывает обратное. После проведения полных расчетов все же придется подгонять полученные результаты под конкретные условия работы нагревателя.

Провести полный и высокоточный расчет всех параметров нихромовой и фехралевой спирали вам помогут специалисты «Технонагрев». Наши технологи обладают большим опытом и навыками при проектировке и изготовлении нагревателей любой сложности. То, что для вас может показаться нерешаемой задачей для нас окажется работой на несколько минут.

Источник