Меню

Напряжение диоде называется прямым

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода.

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода « плюс» а на вывод катода « минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода ( Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении ( Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении ( Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения ( Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Читайте также:  Щелочные батарейки напряжением 1 5в

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока ( Iпр), а в нижней части — обратного тока ( Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения ( Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода ( Iпр) в сотни раз больше обратного тока ( Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка « а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка « б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения ( радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения ( Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка « в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

Читайте также:  Эпюра напряжений для сечения трубы

При увеличении приложенного к p-n переходу обратного напряжения ( Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

Источник



Электроника

учебно-справочное пособие

  • Главная
  • Теория
  • Практика
  • Справочники
  • Схемы
  • Arduino
  • Тесты

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

  • Виды полупроводников
  • Устройство полупроводникового диода
  • Условные графические обозначения полупроводниковых диодов
  • Способы включения диода
  • Вольтамперная характеристика диода
  • Основные параметры диодов
  • Классификация диодов
  • Принцип работы полупроводникового диода
  • Выпрямительные диоды

Полупроводники — вещества, которые по своему удельному сопротивлению занимают промежуточное положение между проводниками и диэлектриками. Сопротивление полупроводников сильно зависит от температуры и концентрации примесей. В производстве полупроводниковых приборов наибольшее распространение получили такие материалы, как германий и кремний.

Носителями зарядов в полупроводниках являются свободные электроны (-) и дырки(+). Дырка — место на внешней орбите атома, где ранее находился электрон.

Виды полупроводников

Полупроводники, которые состоят только из атомов германия или кремния, называют чистыми, или собственными.

Полупроводники, в которых свободных электронов значительно больше, чем дырок, называют полупроводниками nтипа. Примеси в таких полупроводниках называют донорами. Основными носителями заряда являются электроны, а неосновными — дырки.

Полупроводники, в которых свободных дырок значительно больше, чем электронов, называют полупроводниками pтипа. Примеси называют акцепторами. Дырки — основные носители, а электроны — неосновные.

Принцип действия большинства полупроводниковых приборов основан на явлениях, происходящих на границе двух полупроводников с различными типами электропроводности —р-n переходе.

Устройство полупроводникового диода

Полупроводниковым диодом называют полупроводниковый прибор с одним электронно-дырочным (р-n) переходом (основная часть) и двумя выводами. Вывод из р-области называется – анодом, из n-области – катодом.

В зависимости от формы и размера p-n-перехода различают плоскостные (рис. 1) и точечные диоды (рис. 3). У точечных диодов форма p — n перехода в виде точки, у плоскостных — в виде плоскости, имеющей значительную площадь. Плоскостные диоды могут пропускать значительные токи, но работают на невысоких частотах. Точечные диоды наоборот могут работать на высоких частотах, но пропускают маленькие токи.

К металлическому основанию плоскостного диода, называемому кристаллодержателем, припаивается пластинка полупроводника n-типа. Сверху в нее вплавляется капля металла, обычно индия. Атомы индия диффундируют (проникают) в полупроводниковую пластинку и образуют у ее поверхности слой р-типа. К кристаллодержателю и индию привариваются проводники, которые служат выводами диода.

Рис. 1 — Устройство плоскостного диода (справа — плоскостной выпрямительный диод Д242Б)
1 — изолятор, 2 — корпус, 3 -вывод анода, 4 — припой, 5 — кристалл,
6 — кристаллодержатель, 7 — внешние выводы

Точечный полупроводниковый диод состоит из пластинки полупроводника n-типа и заостренной пружинки из вольфрама или фосфористой бронзы диаметром 0,1 мм. Через прижатую к полупроводниковой пластинке пружинку пропускают электрический ток большой силы. Металлическая пружинка сваривается с полупроводниковой пластинкой, образуя под острием р-область.

точечный диод2

Рис. 2 — Устройство точечного диода (справа — точечный диод КД522Б)
1 — выводы, 2 — стеклянный баллон, 3 — пластинка полупроводникаи, 4 — металлическая проволочка-пружина

Чем больше площадь р-n-перехода, тем больший ток может через него протекать и тем больше его емкость. Плоскостные полупроводниковые диоды применяются в электрических цепях, в которых протекают большие токи и когда емкостные свойства не оказывают заметного влияния на работу диода. Точечные диоды применяются в цепях с малыми токами и в высокочастотных устройствах.

Для защиты от механических повреждений, попадания на полупроводник света, пыли и влаги его помещают в герметический корпус.

Условные графические обозначения
полупроводниковых диодов

Условные графические обозначения полупроводниковых диодов

Диод полупроводниковый выпрямительный, общее обозначение
Стабилитрон и стабистор
Стабилитрон с двусторонней проводимостью
Варикап
Диод Шоттки
Светодиод
Фотодиод

Способы включения диода

Если к диоду подключить внешний источник напряжения плюсом к аноду (р-области), а минусом к катоду (n-области), такое подключение называется прямым включением (рис. 3), а протекающий через него ток — прямым током.


Рис. 3 — Прямое включение диода

Если источник внешнего напряжения переключить плюсом к катоду и минусом к аноду, такое включение диода называют обратным включением(рис. 4), а протекающий через него ток — обратным током. При большом значении обратного напряжения происходит пробой р-n-перехода.


Рис. 4 — Обратное включение диода

Пробой может быть тепловым или электрическим. При тепловом пробое разрушается кристалл и свойства р-n-перехода теряются. Электрический пробой, не перешедший в тепловой, является обратимым, т. е. свойства р-n-перехода восстанавливаются при снятии обратного напряжения.

Вольтамперная характеристика диода

График, приведенный на рис. 7, называется вольтамперной характеристикой (ВАХ) диода. Из ВАХ диода видно, что сила протекающего через него тока зависит от полярности приложенного напряжения. При прямом напряжении ток большой (мА, А), а при обратном напряжении — в сотни и даже тысячи раз меньше (мкА, мА).

Читайте также:  Инвертор напряжения для подсветки

Рис. 5 — Типовые вольт-амперные характеристики германиевого и кремниевого полупроводниковых
диодов, масштаб по оси тока и напряжения меняется при переходе через начало координат

Левая часть характеристики называется обратной ветвью характеристики, правая часть — прямой ветвью.

Основные параметры диодов

К этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

В большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы 1 будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Основные характеристики выпрямительных диодов

Обозначение Описание
Iпр.max Максимально допустимый постоянный прямой ток
Iобр Постоянный обратный ток
Uпр Постоянное прямое напряжение
Uобр.max Максимально допустимое обратное напряжение
Pmax Максимально допустимая мощность, рассеиваемая на диоде
Pср Средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях;
Iпр.ср.max Максимально допустимый средний прямой ток
Iвп.ср.max Максимально допустимый средний выпрямленный ток
Uобр Постоянное напряжение , приложенное к диоду в обратном направлении
Iпр.ср Прямой ток, усредненный за период
Iобр.ср Обратный ток, усредненный за период
Rдиф Дифференциальное сопротивление — отношение приращения напряжения на диоде к вызвавшему его малому приращению тока
Uпр.ср Среднее прямое напряжение диода при заданном среднем значении прямого тока

Классификация диодов

Принцип работы полупроводникового диода

В основу работы диода положено свойство p-n-перехода хорошо пропускать ток в одном направлении и плохо в другом. Диод состоит из одного p-n-перехода и проводит ток в одном направлении только тогда, когда величина напряжения, приложенного к диоду, больше величины потенциального барьера. Для германиевого диода минимальное внешнее напряжение равно 0,3 В, а для кремниевого — 0,7 В.

Если монокристалл полупроводникового материала с одного конца легировать примесями типа р, а с другого — примесями типа n, то между областями с различным типом проводимости образуется р-n-переход. Некоторые дырки из области р диффундируют в область n. В результате область р получает небольшой отрицательный заряд. Аналогичным образом электроны из области n диффундируют в область р, и область n оказывается заряженной положительно. В тонком слое между областями n и р элек­троны и дырки рекомбинируют, и так как этот слой в результате имеет очень мало свободных носителей заряда, его называют обедненным слоем. Этот слой действует как потенциальный барьер, препятствующий дальнейшей диффузии носителей зарядов, и переход находится в состоянии динамического равновесия (рис. 6, а).

Если внешнее напряжение приложено к выводам диода таким образом, что анод (А) имеет положительный потенциал по отношению к катоду (К), то будет наблюдаться уменьшение толщины обедненного слоя. Потенциальный барьер при этом снижается, что способствует протеканию тока через переход. С увеличением внешнего напряжения ток через переход возрастает по экспоненциальному закону до тех пор, пока внешнее напряжение не станет равным величине потенциального барьера, т. е. результирующее напряжение на переходе станет равным нулю. Дальнейшее возрастание тока через переход ограничивается только сопротивлением полупроводникового материала. Если полярность внешнего напря­жения изменить на обратную, то величина потенциального барьера возрастет, и основные носители не смогут преодолеть потенциальный барьер. В этих условиях, однако, через переход будет протекать незначительный ток, называемый обратным током. При возрастании внешнего обратного напряжения этот ток остается постоянным, пока напряжение не достигнет точки пробоя. В этой точке при постоянном напряжении ток быстро возрастает (рис. 6, б).

Рис. 6 — Полупроводниковый переход с потенциальным барьером:
а — образованным диффузией носителей зарядов;
б — вольт-амперная характеристика полупроводникового диода,
Масштаб по оси тока меняется при переходе через начало координат

Таким образом, при смещении перехода в прямом направлении через него будет протекать достаточно большой ток, а при обратном смещении, меньшем пробивного, ток, протекающий через переход, крайне мал. Иными словами, такое устройство действует, как выпрямитель.

Выпрямительные диоды

Основное предназначение выпрямительных диодов – преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д.

В качестве основы р-n перехода используются кристаллы кремния или германия. Кремниевые диоды применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Мощность выпрямительных диодов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

    Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты.

Рис. 7 — Выпрямительные диоды малой мощности

Рис. 8 — Выпрямительный диод средней мощности

Рис. 9 — Выпрямительные диоды высокой мощности

Источник