Меню

Напряжение питания токовой петли

Напряжение питания токовой петли

Фундаментальные основы работы токовой петли 4..20 мА

Фундаментальные основы работы токовой петли 4..20 мА

С 1950-х годов токовая петля используется для передачи данных от измерительных преобразователей в процессе мониторинга и контроля. При низкой стоимости реализации, высокой помехоустойчивости и возможности передачи сигналов на большие расстояния, токовая петля оказалась особенно удобной для работы в промышленных условиях. Этот материал посвящен описанию базовых принципов работы токовой петли, основам проектирования , настройке .

Использование тока для передачи данных от преобразователя

Датчики промышленного исполнения часто используют токовый сигнал для передачи данных в отличие , от большинства других преобразователей , таких ,например, как термопары или тензорезистивные датчики , которые используют напряжение сигнала. Несмотря на то , что преобразователи ,использующие напряжение в качестве параметра передачи информации ,действительно эффективно применяются во многих производственных задачах, существует круг приложений , где использование характеристик тока предпочтительнее. Существенным недостатком при использования напряжения для передачи сигналов в промышленных условиях является ослабление сигнала при его передаче на значительные расстояния вследствие наличия сопротивления проводных линий связи. Можно,конечно, использовать высокий входной импеданс устройств, чтобы обойти потери сигнала. Однако, такие устройства будут весьма чувствительны к шуму, которые индуцируют находящиеся поблизости моторы, приводные ремни или радиовещательные передатчики.

Согласно первому закону Кирхгофа сумма токов, втекающих в узел ,равна сумме токов, вытекающих из узла.
В теории, ток ,протекающий в начале контура ,должен достичь его конца в полном объеме,
как показано на рис.1. 1.

Рис.1. В соответствии с первым законом Кирхгофа ток в начале контура равен току в его конце.

Это основной принцип, на котором работает контур измерения.. Измерение тока в любом месте токовой петли (измерительного контура) дает один и тот же результат. Используя токовые сигналы и приемные устройства для сбора данных с низким входным сопротивлением , в промышленных приложениях возможно получить значительный выигрыш от улучшения помехоустойчивости и увеличения длины линии связи.

Компоненты токовой петли
В состав основных компонентов токовой петли входят источник постоянного тока , первичный преобразователь, устройство сбора данных , и провода, соединяющие их в ряд, как показано на рисунке 2.

Рис.2. Функциональная схема токовой петли.

Источник постоянного тока обеспечивает питание системы. Преобразователь регулирует ток в проводах в диапазоне от 4 до 20 мА, где 4 мА представляет собой «живой» ноль , а 20 мА представляет максимальный сигнал.
0 mA (отсутствие тока ) означает разрыв в цепи. Устройство сбора данных измеряет величину регулируемого тока. Эффективным и точным методом измерения тока является установка прецизионного резистора- шунта на входе измерительного усилителя устройства сбора данных (на рис.2) для преобразования тока в напряжение измерения, чтобы в конечном итоге получить результат ,однозначно отражающий сигнал на выходе преобразователя.

Чтобы помочь лучше понять принцип работы токовой петли , рассмотрим для примера конструкцию системы с преобразователем , имеющую следующие технические характеристики :

Преобразователь используется для измерения давления
Преобразователь расположен в 2000 футов от устройства измерения
Ток ,измеряемый устройством сбора данных, обеспечивает оператора информацией о величине давления, приложенного к преобразователю

Рассмотрение примера начнем с подбора подходящего преобразователя.

Проектирование токовой системы

Первым шаг в проектировании токовой системы является выбор преобразователя. Независимо от типа измеряемой величины (расход, давление, температура, и т.д.) важным фактором в выборе преобразователя является его рабочее напряжение. Только подключение источника питания к преобразователю позволяет регулировать величину тока в линии связи. Значение напряжения источника питания должно находиться в допустимых пределах : больше , чем минимально необходимое ,меньше , чем максимальное значение, которое может привести к повреждению преобразователя.

Для токовой системы, рассматриваемой в примере , выбранный преобразователь измеряет давление и имеет рабочее напряжение от 12 до 30 В. Когда преобразователь выбран, требуется правильно измерить токовый сигнал, чтобы обеспечить точное представление о давлении, подаваемом на датчик.

Выбор устройства сбора данных для измерения тока

Важным аспектом, на который следует обратить внимание при построении токовой системы, является предотвращение появления токового контура в цепи заземления. Общим приемом в таких случаях является изоляция. Использовав изоляцию, вы можете избежать влияния контура заземления , возникновение которого поясняет рис.3.

Рис.3. Контур заземления

Заземляющие контуры образуются при двух подключенных терминалов в цепи в разных местах потенциалов. Эта разница приводит к появлению дополнительного тока в линии связи, что может привести к появлению ошибок при измерениях.
Под изоляцией устройства сбора данных понимается электрическое отделение земли источника сигнала от земли входного усилителя измерительного устройства, как показано на рисунке 4.

Поскольку ток не может течь через барьер изоляции, точки заземления усилителя и источника сигнала имеют один и тот же потенциал. Таким образом исключается возможность непреднамеренно создать контур заземления.

Рис.4. Синфазное напряжение и напряжение сигнала в схеме с изоляцией

Изоляция также предотвращает от повреждения устройство сбора данных при наличии больших синфазных напряжений. Синфазным называют напряжение одинаковой полярности ,которое присутствует на обоих входах инструментального усилителя. Например, на рис.4. и положительный (+) ,и отрицательный (-) входы усилителя имеют +14 V синфазного напряжения. Многие устройства сбора данных имеют максимальный входной диапазон ±10 В. Если устройство сбора данных не имеет изоляции и синфазное напряжение выходит за максимальный входной диапазон, вы можете повредить устройство. Хотя нормальное (сигнальное ) напряжение на входе усилителя на рис.4 составляет только +2 В, добавка +14 в может дать в результате напряжение +16 В
(Сигнальное напряжение – это напряжение между « + » и « — » усилителя, рабочее напряжение есть сумма нормального и синфазного напряжения ),что представляет опасный уровень напряжения для устройств сбора с меньшим рабочим напряжением.

Читайте также:  При увеличении нагрузки увеличивается напряжение

При изоляции общая точка усилителя электрически отделена от нуля заземления. В схеме на рисунке 4 потенциал в общей точке усилителя «приподнят» на уровень +14 V. Такой прием приводит к тому, величина входного напряжения падает с 16 до 2 В.Теперь сбора данных, устройства больше не на риск перенапряжения ущерб. (Обратите внимание, что изоляторы имеют максимальную синфазного напряжения они могут отвергнуть.)

После того как устройство сбора данных изолировано и защищено, последним шагом при комплектовании токовой петли является выбор соответствующего источника питания .

Выбор источника питания

Определить, какой источник питания наилучшим образом отвечает вашим требованиям, весьма просто. При работе в токовой петле , блок питания должен выдавать напряжение, равное или большее, чем сумма падений напряжений на всех элементах системы.

Устройство сбора данных в нашем примере использует прецизионной шунт для измерения тока.
Необходимо рассчитать падение напряжения на этом резисторе. Типовой шунтирующий резистор имеет сопротивление 249 Ω. Основные расчеты при диапазоне тока в токовой петле 4 .. 20 мА
показывают следующее:

I*R=U
0,004A*249Ω= 0,996 V
0,02A*249Ω= 4,98 V

С шунта сопротивлением 249 Ω мы можем снять напряжение в диапазоне от 1 до 5 В, увязав величину напряжения на входе устройства сбора данных с величиной выходного сигнала преобразователя давления.
Как уже упоминалось ,преобразователь давления требует минимального рабочего напряжения 12 В при максимальным 30 В. Добавив падение напряжения на прецизионном шунтирующем резисторе к рабочему напряжению преобразователя , получаем следующее:

На первый взгляд , хватит напряжения 17В.Необходимо ,однако, учесть дополнительную нагрузку на блок питания , которую создают провода , имеющее электрическое сопротивление.
В случаях , когда датчик находится далеко от измерительных приборов, вы должны учитывать фактор сопротивления проводов при расчетах токовой петли. Медные провода имеют сопротивление постоянному току, , которое прямо пропорционально их длине. С датчиком давления из рассматриваемого примера вам необходимо учесть 2000 футов длины линии связи при определении рабочего напряжения источника питания. Погонное сопротивление одножильного медного кабеля 2.62 Ω/100 футов . Учет этого сопротивления дает следующее :

Сопротивление одной жилы длиной 2000 футов составит 2000*2,62/100= 52,4 м.
Падение напряжения на одной жиле составит0,02* 52,4= 1,048 В.
Чтобы замкнуть цепь ,необходимы два провода ,тогда длина линии связи удваивается , и
полное падение напряжения составит 2,096 В. В итоге около 2.1 В благодаря тому ,что расстояние от преобразователя до вторичного прибора составляет 2000 футов. Просуммировав падения напряжения на всех элементах контура , получим :
2,096 В + 12 В+ 5 В=19,096 В

Если вы использовали 17 V для питания рассматриваемой схемы , то напряжение, подаваемое на преобразователь давления будет ниже минимального рабочего напряжения за счет падения на сопротивлении проводов и шунтирующем резисторе . Выбор типового источник питания 24 В удовлетворит требованиям по питанию для преобразователя. Дополнительно имеется запас напряжения для того, чтобы разместить датчик давления на большем расстоянии.

С выбором правильно подобранных преобразователя , устройства сбора данных, длины кабелей и источника питания разработка простой токовой петли завершена. Для более сложных приложений вы можете включить дополнительные каналы измерений в систему.

Источник



Основы токовой петли 4-20 мА

В эпоху современных стандартов цифровой связи, таких как Bluetooth или Ethernet, гораздо более старые решения все еще можно найти в промышленных системах, включая Токовая петля 4-20 мА. Этот интерфейс, проверенный на протяжении многих лет, все еще воспринимается как привлекательный, в том числе из-за его надежности и относительно низкой стоимости внедрения.

Основы токовой петли 4-20 мА

Токовая петля 4-20 мА — это простой аналоговый интерфейс связи, который позволяет передавать и считывать один измерительный сигнал. В течение многих лет он был одним из самых распространенных стандартов в системах промышленного контроля и управления, известных и используемых в течение нескольких десятилетий. Любая электроника, имеющая контакт с промышленными системами, вероятно, рано или поздно встретит это решение, поэтому вам следует изучить основную информацию по этому вопросу и ознакомиться с принципом ее работы. domino qiu qiu 99

Основы работы токовой петли

Рис. 1. Пример простой токовой петли, состоящей из источника напряжения и трех нагрузок

Для токовой петли 4-20 мА электрическим значением, которое передает информацию, является величина электрического тока, который присутствует. Пример простой токовой петли показан на рисунке 1. Он состоит из источника напряжения и трех нагрузок переменного сопротивления.

Все элементы соединены последовательно, поэтому каждый из них течет с одинаковым током, что является наиболее важной особенностью токовой петли. Благодаря этому, в отличие от сигналов напряжения, можно отправлять информацию на значительные расстояния, не беспокоясь о потерях и помехах, связанных с высоким сопротивлением кабелей передачи.

Читайте также:  Расчет стабилизатора напряжения стабилитрон

Измеренная величина преобразуется в текущее значение, предполагается, что текущее значение 4 мА означает 0%, а 20 мА — 100% диапазона измерения. Благодаря смещению нулевого значения сигнала, была получена не только возможность легкого обнаружения ошибок в системе (значение 0 мА на приемнике может обнаружить обрыв в цепи, а значительное превышение 20 мА позволяет идентифицировать короткое замыкание), но и питание компонентов системы непосредственно от сигнальной линии, если только сумма израсходованных через них тока питания не будет превышать примерно 3,5 мА.

Как упомянуто, одна токовая петля может использоваться для поддержки только одного измерительного сигнала, то есть для контроля одной величины. Цикл состоит из определенных типов элементов, которые будут описаны ниже.

Датчик. Необходимым элементом в каждом измерительном тракте является датчик, то есть система, которая преобразует измеренную физическую величину в электрическую, такую как сопротивление или напряжение. Датчики могут быть изготовлены разными способами и с использованием различных технологий, в зависимости от измеряемого размера. Типичные значения, отслеживаемые в промышленных системах с использованием токовой петли, включают температуру, влажность, давление, расход, смещение или, например, уровень жидкости в резервуаре.

Преобразователь / передатчик. Роль преобразователя заключается в преобразовании выходного сигнала датчика в сигнал тока, совместимый со стандартом токовой петли 4-20 мА . Например, если датчик измеряет уровень жидкости в резервуаре высотой два метра, передатчик должен будет преобразовать сигнал датчика при нулевой (минимальной) высоте в силу тока 4 мА, при половине высоты (1 м) до 12 мА и при максимуме ( 2 м) при 20 мА.

Обычно передатчик контролирует сигнал в контуре через переменное значение сопротивления. В зависимости от реализации, передатчик может питаться напрямую от токовой петли или от внешнего источника питания. Различия между этими решениями будут описаны ниже.

Источник питания. Необходимым элементом петли является источник постоянного напряжения. В измерениях используются разные значения напряжения (например, 9, 12, 24 В), хотя наиболее распространенным является напряжение 24 В. Значение напряжения связано с концепцией бюджета контура, который будет обсуждаться позже в тексте. Недооценка бюджета из-за слишком низкого напряжения питания может привести к неисправности системы.

Физически токовая петля состоит из проводов, соединяющих отдельные элементы. Соединительные кабели также вносят некоторое сопротивление в схему, но это обычно опускается из-за низкого значения по сравнению с другими элементами измерительного тракта. Он отличается в случае соединений на значительных расстояниях, порядка нескольких сотен метров. Тогда сопротивление проводов должно быть включено в расчет.

Приемник. Устройство должно быть помещено в цикл для получения и считывания результата измерения, а также для представления его в удобочитаемой форме. Основным элементом приемника является система измерения тока (миллиамперметр), обычно работающая по принципу измерения напряжения, подаваемого на измерительный резистор с известным сопротивлением (обычно 250 Ом). Приемник может быть оснащен многими дополнительными элементами, например, дисплеем или исполнительными механизмами, а также может быть интегрирован с более обширной системой управления и контроля.

Зная сопротивление записывающего устройства (350 Ом) и приемника (250 Ом), вы можете использовать закон Ома для расчета падения напряжения на этих элементах. Это будет 5,75 В (0,023 × 250) для приемника и 8,05 В для рекордера (0,023 × 350 соответственно). Предположим, что минимальное напряжение питания передатчика составляет 8 В, а сопротивление проводов составляет 10,7 Ом (около 40 м при сечении 0,445 мм²), поэтому максимальное падение напряжения на них составляет 0,25 В.

Чтобы получить значение бюджета контура, вычтите все полученные значения падения напряжения из напряжения питания. Для приведенного примера (таблица 1) результат составил 1,95 В, что позволяет утверждать, что токовая петля должна работать должным образом в таких условиях.

Преимущества и недостатки петли 4-20 мА

Наиболее важные преимущества петли 4-20 мА:

  • Токовая петля 4-20 мА является широко принятым отраслевым стандартом, благодаря которому на рынке можно найти множество устройств, адаптированных к этим требованиям. Это проверенное решение, отличающееся высокой надежностью.

  • Обеспечивает простоту подключения и настройки.
  • Требуется использование минимального количества проводов, что значительно снижает стоимость установки системы.
  • Токовый сигнал намного лучше, чем сигнал напряжения для передачи на большие расстояния, потому что он устойчив к помехам из-за падения напряжения на проводах.
  • Токовая петля позволяет легко диагностировать повреждения системы, такие как короткое замыкание, поскольку каждый измерительный элемент имеет свою собственную петлю, а нулевое значение сигнала было смещено на 4 миллиампера.

Основным недостатком этого решения является тот факт, что за один цикл может быть отправлен только один измерительный сигнал. Хотя это облегчает диагностику неисправностей, оно требует создания нескольких путей измерения, если вам нужно считывать результаты измерений с нескольких датчиков.

Большое количество проводов может привести к проблемам из-за отсутствия надлежащей изоляции между ними, например, случайных контуров заземления. В то же время, наряду с количеством расположенных рядом петель, возрастают требования к качеству взаимной изоляции проводов.

Читайте также:  Что такое максимальное прямое напряжение диода что это

Пример токовой петли с передатчиком, питаемым от внешнего источника питания (4 провода)

Как уже упоминалось, отдельные элементы измерительного тракта могут использовать внешний источник питания или питаться напрямую от тока, протекающего в контуре. Устройства второго типа называются петлевыми или двухпроводными, поскольку для них требуется только два соединительных кабеля: положительный (+) и отрицательный (-).

Устройства с питанием от контура должны иметь низкое энергопотребление, поэтому они обычно имеют простую конструкцию, включая отсутствие дисплеев или механических переключателей, они также имеют довольно ограниченный набор функций. В результате они также дешевле, чем устройства, которые требуют дополнительного источника питания.

Основным преимуществом использования петлевого питания является простота монтажа системы, особенно в труднодоступных или удаленных местах. Нет необходимости в дополнительных кабелях, вся система также может получать питание от одного источника, например, от батареи или солнечного элемента. Обычно только передатчик подключен напрямую к источнику, который в контуре выполняет функцию источника тока.

Некоторые устройства, предназначенные для токовой петли, используют внешний источник питания. Этим типам систем больше не нужно рассматривать энергосбережение как ограничительное, поэтому они обычно характеризуются более высокой степенью сложности и большей функциональностью, например дисплеи с графическим пользовательским интерфейсом или дополнительными интерфейсами связи для соединения с другими системами. Существует два типа устройств этого типа — с полностью (4-проводной) и частично (3-проводной) изолированной системой электропитания.

Устройства с полностью изолированным источником питания иногда называют четырехпроводными, потому что они имеют четыре провода — два для сигнальных линий и питания. Эти типы систем потребляют энергию от внешнего источника, поэтому они вызывают только минимальное падение напряжения в токовой петле.

Они могут питаться как от постоянного, так и от переменного тока напрямую от электрической сети. При такой конфигурации токовая петля обычно гальванически изолирована от системы электропитания, и между двумя цепями отсутствует постоянный ток.

Благодаря внешнему источнику питания устройства этого типа могут реализовывать гораздо более сложные и энергозатратные функции. Настройка пути измерения с использованием таких устройств также может быть проще, потому что это не требует знаний, связанных с вычислением энергетического баланса цикла.

Несомненным недостатком этого решения является необходимость предоставления дополнительного источника питания для отдельных элементов контура. Кроме того, 4-жильные провода обычно дороже, и при установке требуется больше соединительных кабелей.

3-проводные устройства в основном аналогичны 4-проводным, за исключением отсутствия изоляции источника питания. В этом типе решения сигнальные цепи и цепи питания имеют общее заземление, то есть также общий путь возврата тока.

По сравнению с упомянутыми 4-х проводными системами 3-х проводные устройства имеют меньшую стоимость из-за отсутствия встроенной изоляции, их также легче установить (меньше соединительных проводов). На них может подаваться только постоянное напряжение, поэтому их невозможно подключить непосредственно к электроустановке. Они также требуют более тщательной сборки и прокладки кабеля, потому что в случае неправильной конфигурации контура результат измерения будет зависеть от тока источника питания.

Вывод

Токовая петля 4-20 мА по-прежнему является одним из самых популярных стандартов в промышленных измерительных системах. Он отлично подходит для связи на больших расстояниях, поскольку он не чувствителен к помехам, связанным с падением напряжения на соединительных кабелях, по крайней мере, до тех пор, пока не будет сохранен положительный энергетический баланс контура. Характеризуется также простотой сборки и эксплуатации.

Элементы измерительного тракта могут питаться непосредственно от контура (через передаваемый сигнал тока) или от внешнего источника питания. Устройства с питанием от контура должны иметь низкое энергопотребление, поэтому они обычно более просты по конструкции и имеют меньше дополнительных функциональных возможностей.

На данном ресурсе размещаются новости альтернативной и возобновляемой энергетики в мире. Освещаются основные события более чем в 200-х странах мира, в том числе в России, Украине и других странах советского пространства.

Возобновляемая энергетика – совокупность способов использования неисчерпаемых природных ресурсов для получения электроэнергии или других форм энергии. Большинство возобновляемых источников являются альтернативными, то есть они не связаны с использованием топливных полезных ископаемых.

Больше всего на сайте рассматривается новости ветряной и солнечной энергии, как наиболее развитые и перспективные способы использования возобновляемой энергии в мире. Также освящаются события гидроэнергетики, геотермальной энергетики, энергии океана, рассматриваются новые способы получения возобновляемой энергии.

Но затрагиваются и тесно связанные вопросы: развитие электромобилей, предотвращение загрязнение планеты, перенаселение Земли. Атомной энергетике уделено особое внимание, как наиболее спорному способу получения электроэнергии. Одни считают её полностью безопасным способом генерации энергии, другие – агитируют за прекращение работы АЭС. Наиболее важные статьи, описывающие общее состояние отрасли, структурированы в разделы, которые находятся в левом меню сайта.

Авторы сайта убеждены в том, что альтернативные и возобновляемые источники энергии станут решением двух главных проблем человечества. Во-первых, они станут источниками энергии будущего, когда топливные полезные ископаемые будут исчерпаны. Во-вторых, остановят выбросы углекислого газа и глобальное потепление.

Источник