Меню

Напряжение питание микросхем памяти

Микросхемы памяти STMicroelectronics

В процессе создания и эволюции средств вычислительной техники было затрачено немало усилий, чтобы устройство могло не только обрабатывать информацию, но и надежно ее хранить, как в процессе вычислений, так и в виде окончательных результатов.

Электронную память можно разделить на два основных вида — энергозависимый и энергонезависимый. Несмотря на то, что энергозависимая память обладает хорошими характеристиками по скорости чтения/записи, ее содержимое при выключении питания безвозвратно теряется. Оборудование, рассчитанное на запоминание и хранение информации после выключения питания, даже и на долгий срок (иногда годы), содержит энергонезависимую память.

Для целей долгосрочного хранения информации в настоящее время используются в основном два вида энергонезависимой памяти — это EEPROM и FLASH (см. рис. 1). И неизменным лидером в производстве микросхем памяти все это время остается компания STMicroelectronics. Рассмотрим варианты EEPROM и FLASH на примере микросхем, выпускаемых этой компанией.

Рис. 1. Выбор последовательной энергонезависимой памяти

Любая микросхема памяти отвечает требованиям быстродействия, времени хранения информации и стоимости. Помимо этого, на выбор того или иного вида памяти влияют несколько моментов:

Порядок запоминания информации:

  • по одному байту информации в нужный момент;
  • большими блоками информации.

Тип доступа к памяти:

  • через параллельную шину;
  • через последовательную шину.

Дополнительные требования:

  • возможность считывать содержимое памяти одновременно с запоминанием информации;
  • обеспечение только авторизованного доступа;
  • большой объем памяти для хранения только данных по наименьшей цене;
  • возможность выполнять код непосредственно из энергонезависимой памяти (XiP).

Существуют микросхемы, которые обладают наилучшими характеристиками, такими как:

  • выполнение кода на месте,
  • высокая степень разбиения массива памяти с множеством поддерживаемых специальных функций (наличие двух портов, защищенный режим работы);
  • энергонезависимая память, но со скоростью, присущей энергозависимым;
  • с напряжением питания меньше 1,8 В;
  • с неограниченным количеством циклов записи/стирания.

Однако цена такого устройства не будет низкой.

Если основным требованием к устройству является хранение ограниченных объемов информации (калибровочные таблицы сенсоров, серийные номера плат, небольшие объемы данных [несколько номеров телефонов для DECT, некоторые параметры статуса, может быть даже несколько строк кода]), то удачное решение для такого случая — EEPROM-память, которая используется почти везде. При этом, как правило, используются EEPROM с последовательным интерфейсом, потому что с параллельным уже практически не выпускаются. Такая память допускает перепрограммирование одного произвольного байта информации без необходимости предварительного стирания. В номенклатуре ST присутствует широкий выбор EEPROM:

  • объемом от 1 Кбит до 1 Мбит;
  • диапазоны питающих напряжений с низким потреблением от 2,5 до 5,5 В и от 1,8 до 5,5 В;
  • три стандартных последовательных шины I 2 C, SPI, MICROWIRE ® ;
  • 1 миллион циклов записи/стирания как стандартное значение;
  • время хранения данных — больше 40 лет;
  • промышленный и автомобильный температурный диапазон;
  • минимальные посадочные площадки, включая MSOP8, TSSOP8 и уникальный по размерам UFDFPN8 (2×3 мм) корпуса.

На табл. 1 приведена номенклатура выпускаемой памяти EEPROM.

Таблица 1. Микросхемы памяти EEPROM

Наименование Тип
интерфейса
Размер, кб Напряжение
питания, В
Диапазон
температур, °С
Типы
корпусов
М24ххх I 2 C 128…512 1,8…5,5 2,5…5,5 -40…85
-40…125
SO8, MSOP8, TSSOP8
M24Cxxx I 2 C 1…64 1,8…5,5 2,5…5,5 -40…85
-40…125
DIP8, SO8, MSOP8, TSSOP8
M24Mxxx I 2 C 1000 1,8…5,5 -40…85 SO8
M93Cxxx Microwire 1…16 2,5…5,5 4,5…5,5 -40…125 DIP8, SO8, TSSOP8
M93Sxxx Microwire 1…4 2,5…5,5 4,5…5,5 -40…125 SO8
M95xxx SPI 1…512 1,8…5,5 2,5…5,5 -40…85
-40…125
SO8, TSSOP8
M95Mxxx SPI 1000 1,8…5,5 -40…85 SO8

Если основным требованием является хранение увеличенных объемов информации (большое количество строк кода, большое количество данных), то решение для такого случая — обычная FLASH-память (FLASH NOR). FLASH NOR с параллельным доступом распространена больше, однако последовательная FLASH NOR становится все более популярной в приложениях, где нет специфических требований параллельного доступа (см. рис. 2). Например, производители персональных компьютеров уже выбрали последовательную FLASH NOR, как основную. Эта тенденция распространения последовательной энергонезависимой памяти (EEPROM и FLASH) прослеживается во всех существующих приложениях (так же, как и во многих новых приложениях, например, в цифровой бытовой электронике).

Читайте также:  Регулятор напряжения классика 2107

Рис. 2. Параллельная и последовательная архитектура памяти

Почему последовательный интерфейс?

  • уменьшается стоимость контроллера, меньше выводов;
  • уменьшается занимаемое место на печатной плате, размер корпуса;
  • уменьшается стоимость памяти (в среднем);
  • увеличивается гибкость по плотности памяти (не нужно менять плату, если нужен больший объем памяти, достаточно установить на то же посадочное место кристалл памяти большего объема);
  • содержимое загружается для выполнения в ОЗУ (хранение кода программы).

Основные направления развития последовательной памяти таковы:

  • переход на продукты с высокой плотностью;
  • необходимость в высокоскоростной последовательной передаче данных;
  • миниатюрный, с малым количеством выводов недорогой корпус.

В табл. 2 представлены доступные типы и семейства памяти NOR FLASH.

Таблица 2. Микросхемы памяти NOR FLASH

Название ядра
микросхемы
Интерфейс Размер, Мб Напряжение
питания, В
Темпера-
турный
диапазон,
°С
Тип
корпуса
M29DWxxx Параллельный 32…128 2,7…3,6 -40…85 TFBGA48, TSOP48
M29Fxxx Параллельный 1…32 4,5…5,5 -40…85 PLCC32, TSOP32, SO44
M29Wxxx Параллельный 1…128 2,7…3,6 -40…85 TFBGA48, TSOP48
M28Wxxx Параллельный 16…64 2,7…3,6 -40…85 TFBGA48, TSOP48
M58LWxxx Параллельный 32…64 2,7…3,6 -40…85 TFBGA64, TSOP56
M25Pxxx Последовательный 0,5…128 2,7…3,6 -40…85 SO8, TSSOP8, SO16, VFQFPN8
M25PExxx Последовательный 1…16 2,7…3,6 -40…85 SO8, VFQFPN8
M45Pexxx Последовательный 1…16 2,7…3,6 -40…85 SO8, VFQFPN8

Если основным требованием является хранение все увеличивающихся объемов информации, которая в основном представляет собой данные, то для такого случая лучше выбрать FLASH NAND. Эта память предназначена именно для хранения данных. Хранить программный код в такой памяти слишком опасно из-за возможных ошибок при считывании. Такую память обслуживают специальным образом: производят коррекцию ошибок, маркируют негодные области памяти, распределяют нагрузку по страницам в количествах циклов записи/стирания. Как правило, все эти функции возлагаются на ПО управляющего процессора.

Преимущество этого типа памяти — относительная дешевизна в пересчете на объем доступной памяти. ST производит FLASH NAND объемом от 128 Мбит до 8 Гбит и больше, с различными размерами страниц: 528 байт/264 слова и 2112 байт/1056 слов, с независящим от плотности памяти посадочным местом, питанием 1,8 В и 3 В и в разнообразных корпусах.

NAND FLASH используется также и в картах памяти SD, Compact Flash, MMC, которые также выпускает ST.

Отдельно можно отметить особый тип памяти, который выпускается ST — так называемая NVRAM.

NVRAM — это устройства энергонезависимого (благодаря встроенной литиевой батарее) статического ОЗУ — устройство ZEROPOWER co всеми присущими ему свойствами такими, как скорость записи и неограниченный ресурс (семейство М48Z). Батарея соединяется с корпусом микросхемы посредством технологии SNAPHAT ® — инновационного и дешевого решения для поверхностного монтажа продуктов компании ST.

Кроме этого ST выпускает по той же технологии устройства TIMEKEEPER, которые имеют емкость памяти от 1 кбит до 4 Мбит и включают в себя еще и энергонезависимые часы реального времени (семейство М48Т). Имеются также функционально насыщенные TIMEKEEPER Supervisors, предлагающие такие полезные функции как RTC, POR/LVD, Power-Fail Warning, Battery Monitor, Battery Switchover и Write Protection.

С полным перечнем предлагаемых ST микросхем памяти можно ознакомиться на сайте: http://www.st.com/stonline/products/families/memories/memory/index.htm.

Получение технической информации, заказ образцов, поставка —
e-mail:
memory.vesti@compel.ru

Читайте также:  Литий ионный аккумулятор выводы напряжений

Датчик движения широкого применения

Компания STMicroelectronics расширила линейку датчиков движения новым двухосевым линейным акселерометром с цифровым выходом. Микромощный миниатюрный датчик LIS202DL, обладающий интеллектуальными функциями, предназначен для широкого использования, как в бытовой технике, так и для индустриальных применений.

Интеллектуальными возможностями акселерометр обладает благодаря встроенной в датчик интегральной схеме и фильтру высокой частоты, позволяющим реагировать и различать воздействие — одинарное или двойное прикосновение, определять движение (перемещение, поднятие). LIS202DL позволяет, например, отключить некстати звонящий в кармане телефон, не доставая его — одним касанием руки.

Подстраиваемые высокочастотные фильтры могут быть настроены на мониторинг вибрации или на активирование необходимых функций устройства через движение. Возможность реализации заданных функций по внешнему воздействию не зависит от того, в каком положении будет находиться исследуемый объект в момент измерений.

Датчик ST со встроенной функцией определения движения можно использовать для прекращения подачи энергии в устройство, которое может включаться или выключаться после передвижения (например, пульт ДУ).

Цифровой выход, реализованный в виде стандартных интерфейсов SPI/I 2 C (можно выбирать), делает датчик эффективным в использовании и легко интегрируемым в систему.

LIS202DL помещен в миниатюрный пластиковый корпус размерами 5х3х0,9 мм, который можно разместить практически в любом месте, ограниченном малыми размерами.

Источник



МИКРОСХЕМЫ ПАМЯТИ

Всем привет! Сегодняшняя статья полностью посвящена микросхемам памяти. В связи с огромными по распространению и по темпам развития разных цифровых устройств и гаджетов, этот тип микросхем получил огромную распространенность во всем мире. Практически в каждом цифровом электронном гаджете, будь то ноутбук, планшет, видеокамера, их всех связывает память. Не будем сильно углубляться во все эти термины и крутые словечки, просто поговорим про два основных типа памяти, это ОЗУ и ПЗУ.

Эти оба вида микросхем памяти используются в электронике всегда вместе, ПЗУ (постоянное запоминающее устройство) место для энергонезависимого хранения данных, по другому EEPROM. ОЗУ (оперативное запоминающее устройство) — почти тоже самое, только данные хранятся там до момента отключения питания, после повторного отключения питания — на микросхемах ОЗУ теряется вся информация, в то время как на микросхемах ПЗУ информация может храниться очень долго, и при отключении питания информация не удаляется.

Первый вид микросхем (EEPROM, ПЗУ)

Твердотельный накопитель данных, используется для постоянного хранения данных, с возможностью многократной перезаписи информации, многократного считывания и долговременного её хранения, как с питанием, так и без. В быту — ПЗУ используется во всевозможных накопителях, флеш-картах, в SSD жестких дисках, даже в наших любимых микроконтроллерах как область хранения «прошивки». Микроконтроллеры — это по сути ПЗУ и микропроцессор, исполняющий команды файла прошивки, всё это в одном корпусе, на одном кристалле. Если бы вместо ПЗУ использовали ОЗУ, вам бы после каждого выключения пришлось бы прошивать и загружать данные (а это одно и тоже), и если наоборот — ПЗУ вместо ОЗУ, пользования такой памятью будь её хоть 32 Гб хватило бы её вам минут на 5, не более, своего рода ОЗУ это буфер обмена, между устройством отдающим информацию и устройством принимающим её.

Второй вид микросхем памяти

(ОЗУ, он же RAM) — твердотельный накопитель данных, ОЗУ — оперативная память, куда загружаются временно файлы для работы ОС(всегда служебные процессы активны и занимают часть ОЗУ) и то с чем работает ОС, будь то игра, видео, Ваша любимая песня или ещё что-то, по такому принципу работает и DVD плеер, загружая информацию с оптического диска в ОЗУ и потом бесшумно её считывает процессор, не замечали как когда-то DVD плеер стоит бесшумно, а картинка со звуком спокойно себе воспроизводится? — такой подход используется для того что-бы не возникало ошибок при считывании, данные считываются, и сравнивается контрольная сумма. По такому принципу работает и HDD диск компьютера и другие устройства, которые считывают данные с оптических дисков и т. п.

Читайте также:  Как выбрать стабилитрон по напряжению стабилизации

Рассмотрим это подробнее, на примере планшета

  1. Контроллер питания, с его назначением всё понятно, питать всё это чудо.
  2. Процессор. Связывает всё воедино, выполняет все системные функции, управляется интерфейсом ПО, пользователь же управляет операционной системой, ОС уже процессором. В компьютерах и ноутбуках связующую роль между «железом» и ПО выполняет микросхема BIOS (базовая система ввода-вывода данных. (Мой ник не с проста выбирался! =))
  3. Микросхема постоянной памяти, ПЗУ разделенная на две части системно, в одной части находится служебная информация, и операционная система. А в другой её части находиться память доступна непосредственно пользователю.
  4. Микросхемы RAM, всё понятно, оперативная память, «хватает» файлы на «лету», требования от этой памяти — высокая скорость обмена данными и максимально быстрая их перезапись. Вот и по этому «оперативная» — должна работать оперативненько))).

Как видим, ничего нет на самом деле сложного, сложное только их изготовление, хотя последнее время на рынке памяти очень большая конкуренция. Несомненным гигантом в её производстве является три корпорации, южнокорейская корпорация SAMSUNG и Hynix(Hyundai Electronics), и Американская Kingston. Но так же их выпускают и другие корпорации, к примеру Intel, MEDIATEK, Quanta и многие другие, даже встречаются иногда «но нэйм» микросхемы, и кто их сделал — останется загадкой.

Накопитель — это по сути ячейка с огромным количеством транзисторов, в которых сохраняется значение «1» или «0», двоичная система если по простому, есть на транзисторе заряд — это «1», нет заряда — «0» в инверсии получится наоборот.

Далее разговор только о ПЗУ, флэш и прочем EEPROM

Если микросхема типа MMC/SD — то это самая обычная «флешка» SD интерфейса и она уже включает в себя контроллер и память, по сути просто флешка, которая имеет разный корпус. в интернете есть пример удачной замены микросхемы Hynix H26M52002CKR на обычную microSD карточку на мобильном телефоне Nokia 808.

Мне стало очень интересно всё это, и в тот же миг был спаян вот такой незамысловатый переходничек-кардридер.

переходничек-кардридер самодельный

Подключается к любому совместимому компьютеру.

Для компьютера переходничек-кардридер самодельный

Как же подсоединять всё это дело? Во-первых нужно узнать распиновку кардридера:

узнать распиновку кардридера

узнать распиновку кардридера 2

узнать распиновку кардридера 3

узнать распиновку кардридера 4

Распиновку интересующих карт памяти и картридеров можно посмотреть в интернете. А вот где посмотреть распиновку BGA и TSOP микросхем?

Всё там же, в интернете, точнее в даташите, скачанном под определенную микросхему, в даташите, кстати, есть все, начиная от напряжения питания, и до типа микросхем.

в даташите под определенную микросхему

Внимательно смотрите на тип вашей микросхемы — если MMC/SD и вообще SD совместный, то всё должно получиться, а вот если просто NAND память — то нужно городить контроллер, такой как на USB флешках и на SD/microSD(SDHC) уже стоит.

Кстати, готовый контроллер можно использовать всё из тех же USB флешек.

Удачи всем в интересных опытах, будьте внимательны и не сожгите что-нибудь! О результатах прошу писать Вас на конференцию. Автор материала — BIOS.

Источник