Меню

Напряженность напряжение связь между

Связь между напряженностью и потенциалом электростатического поля

Рассмотрим две точки имеющие координаты (x, y, z) и (x + Δx, y ,z) и между которыми перемещается единичный заряд. Работа, которую необходимо совершить против сил электростатического поля, для переноса заряда из одной точки в другую, численно будет равна разности потенциалов в этих точках:

Согласно формуле (4 приведенной по ссылке) на том же отрезке работа по перемещению единичного заряда (q / = 1) можно выразить формулой:

Где Е х – проекция вектора напряженности на координатную ось Х.

Приравняв правые части уравнений получим:

По аналогии и для других координат:

К эквипотенциальным поверхностям вектор напряженности Е электростатического поля нормален. В случае если вместо направляющих координат x, y, z взять нормаль n к эквипотенциальным поверхностям, то составляющие вектора Е х, E y, E z можно будет заменить на Е, тогда:

Величина dφ/dn называется градиентом потенциала, имеет обозначение grad φ и характеризует быстроту изменения потенциала в направлении силовой линии. Исходя из этого, предыдущее выражение можно записать как:

Вектор напряженности Е численно равен градиенту потенциала, но направлен в сторону падения потенциала – в противоположную сторону.

Давайте определим напряженность электростатического поля между двумя бесконечными заряженными пластинами, расстояние между которыми равно d, а их потенциалы постоянны и равны φ 1 и φ 2. Поскольку заряды на пластинах распределены равномерно, электростатическое поле между пластинами одновременно (напряженность поля Е одинакова во всех точках между пластинами). Силовые линии перпендикулярны пластинам, а эквипотенциальные поверхности параллельны им. Применив к данному случаю уравнение (2) получим:

Где φ 1 — φ 2 = U – разность потенциалов между пластинами, которую часто называют напряжением.

Напряжение (разность потенциалов) – важная характеристика электростатического поля, так как при любых расчетах важно знать не абсолютные значения потенциалов в каких – либо двух точках поля, а разность потенциалов между ними. Когда говорят о потенциале в определенной точке поля, подразумевают разность потенциалов между данной точкой и другой, потенциал которой условно могут считать равным нулю (например, потенциал Земли принимают равным нулю).

Читайте также:  Что такое регулятор напряжения машин

Разность потенциалов и потенциал (электрическое напряжение U) в системе СИ принято измерять в вольтах:

Разность потенциалов между двумя точками будет равна 1 В, если для перемещения заряда 1 Кл между ними совершается работа 1 Дж.

В системе СГС аналогичная единица обозначается как 1 СГС U. Соотношение между этими единицами: 1 СГС U = 300 В.

Из формулы 3 следует, что напряженность электрического поля в системе СГС измеряется в единицах СГС Е, а в системе СИ в вольтах на метр (В/м), что соответствует Н/Кл.

Пример

К пластинам плоского конденсатора приложено напряжение 600 В. Поверхностная плоскость зарядов на пластинах σ = 3,20·10 -4 Кл/м 2 . Необходимо определить расстояние между пластинами.

Решение

Напряженность поля конденсатора равна:

Где d – расстояние между пластинами, U – напряжение на них.

Выразим напряженность поля через поверхностную плоскость σ заряда на пластинах конденсатора:

Где ε = 1 (так как диэлектрик воздух), ε 0 – электрическая постоянная.

Приравняв правые части приведенных уравнений получим:

Источник



Связь между напряжением и напряжённостью. Эквипотенциальные поверхности

Урок 48. Физика 10 класс ФГОС

Конспект урока «Связь между напряжением и напряжённостью. Эквипотенциальные поверхности»

В 1839 году немецкий учёный Карл Фридрих Гаусс предложил изображать электростатические поля с помощью эквипотенциальных поверхностей.

Эквипотенциальной называется воображаемая поверхность, в каждой точке которой потенциал одинаков.

Из определения эквипотенциальной поверхности следует, что разность потенциалов между двумя любыми её точками равна нулю.

Давайте с вами вспомним, что разностью потенциалов называют скалярную физическую величину, численно равную отношению работы сил поля по перемещению заряда между данными точками поля к величине этого заряда:

Из этого определения следует, что при переносе заряда вдоль эквипотенциальной поверхности работа полем не совершается (то есть она равна нулю).

Читайте также:  Стабилизатор напряжения нагрузочная способность

Однако мы с вами знаем, что в общем случае работа сил электростатического поля пропорциональна переносимому заряду, модулю напряжённости поля, модулю перемещению и косинусу угла между направлением вектора электрической силы и вектора перемещения:

Но в записанной формуле значения заряда, модуля напряжённости и модуля перемещения всегда отличны от нуля. Поэтому должно равняться нулю значение косинуса угла альфа. А это значит, что угол альфа должен быть равен 90 о . Отсюда следует, что линии напряжённости электростатического поля всегда перпендикулярны эквипотенциальным поверхностям.

Так, например, эквипотенциальные поверхности однородного электростатического поля представляют собой плоскости, перпендикулярные линиям напряжённости. А эквипотенциальные поверхности точечного заряда — это сферы, в центре которых расположен заряд.

Зная картину эквипотенциальных поверхностей, можно определить напряжённость поля в любой его точке. Например, пусть заряд перемещается с одной эквипотенциальной поверхности на другую, расстояние между которыми по нормали равно d.

Мы уже знаем, что в этом случае работа, совершаемая электростатическим полем по перемещению заряда прямо пропорциональна величине этого заряда, напряжённости поля и модулю перемещения заряда:

С другой стороны, работа поля по перемещению заряда из одной его точки в другую пропорциональна значению переносимого заряда и разности потенциалов начальной и конечной точек:

Давайте почленно разделим первое уравнение для работы на второе:

А из полученного выражения выразим модуль напряжённости поля:

Полученная нами формула выражает связь между напряжённостью и разностью потенциалов (или напряжением) однородного электростатического поля. На её основании и вводится единица напряжённости в СИ — вольт на метр (В/м).

1 В/м — это модуль напряжённости такого однородного электростатического поля, в котором напряжение между двумя точками, лежащими на одной силовой линии на расстоянии 1 м, составляет 1 В.

Читайте также:  Автотрансформатор напряжения 220 вольт

В заключении отметим, что при изучении электростатического поля мы очень часто сравнивали его с гравитационным полем Земли.

В таблице представлены соответствия между механическими и электрическими величинами этих полей. Обсудите их со своим соседом (или соседкой) по парте.

А теперь, для закрепления материала, решим с вами несколько несложных задач. Задача 1. Напряжённость однородного электростатического поля, образованного двумя эквипотенциальными поверхностями, равна 10 кВ/м. Определите расстояние между этими поверхностями, если потенциал одной из них равен 200 В, а второй — – 150 В.

Задача 2. Между двумя разноимённо заряженными параллельными пластинами, находящимися на расстоянии 1 см друг от друга, покоится отрицательно заряженная капелька масла, плотность которого 900 кг/м 3 . Определите модуль заряда капельки, если её радиус равен 8 нм, а напряжение между пластинами составляет 650 В.

Источник