Меню

Номинальный тепловой ток 10а

Автоматические выключатели. Обзор.

Автоматический выключатель (автомат) — это коммутационный аппарат предназначенный для защиты электрической сети от сверхтоков, т.е. от коротких замыканий и перегрузок.

Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

Автоматические выключатели бывают с электромагнитным расцепителем защищающим электрическую цепь от короткого замыкания и комбинированным расцепителем — когда дополнительно с электромагнитным расцепителем применяется тепловой расцепитель защищающий цепь от перегрузки.

Примечание:В соответствии с требованиями ПУЭ бытовые электросети должны быть защищены как от коротких замыканий, так и от перегрузки, поэтому для защиты домашней электропроводки следует применять автоматы именно с комбинированным расцепителем.

Автоматические выключатели делятся на однополюсные (применяются в однофазных сетях), двухполюсные (применяются в однофазных и двухфазных сетях) и трехполюсные (применяются в трехфазных сетях), так же бывают четырехполюсные автоматические выключатели (могут применяться в трехфазных сетях с системой заземления TN-S).

Устройство и принцип работы автоматического выключателя.

На рисунке ниже представлено устройство автоматического выключателя с комбинированным расцепителем, т.е. имеющий и электромагнитный и тепловой расцепитель.

printsip raboty avtomaticheskogo vyklyuchatelya

  • 1 — корпус;
  • 2,3 — нижняя и верхняя винтовые клеммы для подключения провода;
  • 4 — неподвижный контакт;
  • 5 — подвижный контакт;
  • 6 — дугогасительная камера;
  • 7 — гибкий проводник (применяется для соединения подвижных частей автоматического выключателя);
  • 8 — механизм взвода и расцепления
  • 9 — катушка электромагнитного расцепителя;
  • 10 — рычаг управления;
  • 11 — тепловой расцепитель (биметаллическая пластина);
  • 12 — регулировочный винт;

Синими стрелками на рисунке показано направление протекания тока через автоматический выключатель.

Основными элементами автоматического выключателя являются электромагнитный и тепловой расцепители:

Электромагнитный расцепитель обеспечивает защиту электрической цепи от токов короткого замыкания. Он представляет из себя катушку с находящимся в ее центре сердечником который установлен на специальной пружине, ток в нормальном режиме работы проходя по катушке согласно закону электромагнитной индукции создает электромагнитное поле которое притягивает сердечник внутрь катушки, однако силы этого электромагнитного поля не хватает что бы преодолеть сопротивление пружины на которой установлен сердечник.

При коротком замыкании ток в электрической цепи мгновенно возрастает до величины в несколько раз превышающей номинальный ток автоматического выключателя, этот ток короткого замыкания проходя по катушке электромагнитного расцепителя увеличивает электромагнитное поле воздействующее на сердечник до такой величины, что его силы втягивания хватает на то что бы преодолеть сопротивление пружины, перемещаясь внутрь катушки сердечник размыкает подвижный контакт автоматического выключателя обесточивая цепь:

printsip raboty avtomaticheskogo vyklyuchatelya 2

При коротком замыкании (т.е. при мгновенном возрастании тока в несколько раз) электромагнитный расцепитель отключает электрическую цепь за доли секунды.

Тепловой расцепитель обеспечивает защиту электрической цепи от токов перегрузки. Перегрузка может возникнуть при включении в сеть электрооборудования общей мощностью превышающей допустимую нагрузку данной сети, что в свою очередь может привести к перегреву проводов разрушению изоляции электропроводки и выходу ее из строя.

Тепловой расцепитель представляет из себя биметаллическую пластину. Биметаллическая пластина — эта пластина спаянная из двух пластин различных металлов (металл «А» и металл «В» на рисунке ниже) имеющих разный коэффициент расширения при нагреве.

printsip raboty avtomaticheskogo vyklyuchatelya 3

При прохождении по биметаллической пластине тока превышающего номинальный ток автоматического выключателя пластина начинает нагреваться, при этом металл «B» имеет больший коэффициент расширения при нагреве, т.е. при нагреве он расширяется быстрее чем металл «A», что приводит к искривлению биметаллической пластины, искривляясь она воздействует на механизм расцепителя, который размыкает подвижный контакт. В простой схеме это выглядит так:

printsip raboty avtomaticheskogo vyklyuchatelya 4

Время срабатывания теплового расцепителя зависит от величины превышения тока электросети номинального тока автомата, чем больше это превышение тем быстрее сработает расцепитель.

Как правило тепловой расцепитель срабатывает при токах в 1,13-1,45 раз превышающих номинальный ток автоматического выключателя, при этом токе превышающем номинальный в 1,45 раза тепловой расцепитель отключит автомат через 45 мин — 1 час.

Время срабатывания автоматических выключателей определяется по их время-токовым характеристикам (ВТХ)

При любом отключении автоматического выключателя под нагрузкой на подвижном контакте образуется электрическая дуга которая оказывает разрушающее воздействие на сам контакт, причем чем выше отключаемый ток, тем мощнее электрическая дуга и тем большее ее разрушающее воздействие. Для сведения к минимуму ущерба от электрической дуги в автоматическом выключателе она направляется в дугогасительную камеру, которая состоит из отдельных, параллельно установленных пластин, попадая между этих пластин электрическая дуга дробится и затухает.

Маркировка и характеристики автоматических выключателей.

printsip raboty avtomaticheskogo vyklyuchatelya 6

ВА63 — тип и серия автоматического выключателя

Номинальный ток — максимальный ток электрической сети при котором автоматический выключатель способен длительно работать без аварийного отключения цепи.

Стандартные значения номинальных токов автоматических выключателей: 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 35; 40; 50; 63; 80; 100; 125; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300, Ампер.

Номинальное напряжение — максимальное напряжение сети на которое рассчитан автоматический выключатель.

ПКС — предельная отключающая способность автоматического выключателя. Данная цифра показывает максимальный ток короткого замыкания который способен отключить данный автоматический выключатель сохранив при этом свою работоспособность.

В нашем случае ПКС указан 4500 А (Ампер), это значит что при токе короткого замыкания (к.з.) меньшем, либо равном 4500 А автоматический выключатель способен разомкнуть электрическую и остаться в исправном состоянии, в случае если ток к.з. превысит данную цифру возникает возможность оплавления подвижных контактов автомата и их привариванию друг к другу.

Характеристика срабатывания — определяет диапазон срабатывания электромагнитного расцепителя автоматического выключателя.

Например в нашем случае представлен автомат с характеристикой «C» его диапазон срабатывания от 5·Iн до 10·Iн включительно. (Iн— номинальный ток автомата), т.е. от 5*32=160А до 10*32+320, это значит что наш автомат обеспечит мгновенное отключение цепи уже при токах 160 — 320 А.

Характеристики-автоматических-выключателей

Примечание:

  • Стандартными характеристиками срабатывания (предусмотренными ГОСТ Р 50345-2010) являются характеристики «B», «C» и «D»;
  • Область применения указана в таблице согласно установившейся практике, однако она может быть иной в зависимости от индивидуальных параметров конкретных электрических сетей.

Выбор автоматического выключателя

Выбор автомата осуществляется по следующим критериям:

— По количеству полюсов: одно- и двухполюсные применяются для однофазной сети, трех- и четырехполюсные — в трехфазной сети.

— По номинальному напряжению: Номинальное напряжение автоматического выключателя должно быть больше либо равно номинальному напряжению защищаемой им цепи: Uном. АВ Uном. сети

— По номинальному току: Определить необходимый номинальный ток автоматического выключателя можно одним из следующих способов:

  • Калькулятор мощности автоматического выключателя по номинальному току
  • С помощью одной из следующих таблиц:

Подбор автоматического выключателя по мощности:

Вид подключения Однофазное Однофазное вводный Трехфазное треугольником Трехфазное звездой
Полюсность автомата Однополюсный автомат Двухполюсный автомат Трехполюсный автомат Четырехполюсный автомат
Напряжение питания 220 Вольт 220 Вольт 380 Вольт 220 Вольт
Автомат 1А 0.2 кВт 0.2 кВт 1.1 кВт 0.7 кВт
Автомат 2А 0.4 кВт 0.4 кВт 2.3 кВт 1.3 кВт
Автомат 3А 0.7 кВт 0.7 кВт 3.4 кВт 2.0 кВт
Автомат 6А 1.3 кВт 1.3 кВт 6.8 кВт 4.0 кВт
Автомат 10А 2.2 кВт 2.2 кВт 11.4 кВт 6.6 кВт
Автомат 16А 3.5 кВт 3.5 кВт 18.2 кВт 10.6 кВт
Автомат 20А 4.4 кВт 4.4 кВт 22.8 кВт 13.2 кВт
Автомат 25А 5.5 кВт 5.5 кВт 28.5 кВт 16.5 кВт
Автомат 32А 7.0 кВт 7.0 кВт 36.5 кВт 21.1 кВт
Автомат 40А 8.8 кВт 8.8 кВт 45.6 кВт 26.4 кВт
Автомат 50А 11 кВт 11 кВт 57 кВт 33 кВт
Автомат 63А 13.9 кВт 13.9 кВт 71.8 кВт 41.6 кВт

Подбор автоматического выключателя по сечению жил кабеля:

Сечение кабеля, кв.мм Номинальный ток автомата, А Мощность 1-фазной нагрузки при 220В, кВт Мощность 3-фазной нагрузки при 380В, кВт
Медь Алюминий
1 2.5 6 1.3 3.2
1.5 2.5 10 2.2 5.3
1.5 2.5 16 3.5 8.4
2.5 4 20 4.4 10.5
4 6 25 5.5 13.2
6 10 32 7 16.8
10 16 40 8.8 21.1
10 16 50 11 26.3
16 25 63 13.9 33.2

— Выбираем характеристику срабатывания: зачастую характеристику срабатывания автоматического выключателя выбирают исходя из назначения защищаемой им сети (согласно таблице характеристик срабатывания выше) однако автомат выбранный таким образом может не обеспечить своевременное отключение цепи при коротком замыкании, характеристику срабатывания необходимо определять по методике приведенной здесь.

Источник

Двухполюсные тепловые токовые реле ТРН-10, ТРН-25 с температурной компенсацией и токами от 0,5 до 25 А, технические характеристики, электрические параметры, описание

shadow

  • Информация
  • Сертификаты
  • Вопрос-ответ
  • Справочники
  • Информация
  • Сертификаты
  • Вопрос-ответ
  • Справочники

Двухполюсные тепловые токовые реле ТРН-10, ТРН-25 с температурной компенсацией и токами от 0,5 до 25 А, технические характеристики, электрические параметры, описание

Двухполюсные тепловые токовые реле ТРН-10 УХЛ4, ТРН-25 УХЛ4 с температурной компенсацией, с номинальными токами тепловых элементов от 0,5 до 25 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей с короткозамкнутым ротором, работающих от сети с номинальным напряжением до 500 В при частоте 50-60 Гц. Реле могут применяться в сетях постоянного тока с номинальным напряжением до 440 В. От коротких замыканий реле не защищают и сами нуждаются в такой защите.

ТРН-10

Условия эксплуатации:

— высота над уровнем моря до 1000 м (допускается работа на высоте до 2000 м при номинальном напряжении не более 380 В при температуре окружающего воздуха от +1 до +40 °С;

— относительная влажность воздуха при температуре +20 °С не более 80% и не более 50% при температуре +40 °С;

— частота вибрации и мест крепления 25 Гц при ускорении не более 0,7 г.

Реле выпускаются только в открытом исполнении и не рассчитаны для работы во взрывоопасной среде, а также в среде, содержащей значительное количество пыли, агрессивные газы и пары в концентрациях, разрушающих металлы и изоляцию. Реле устанавливают в местах, защищенных от прямого попадания воды, масла, металлической пыли и т. п., а также на открытом воздухе в оболочках, не подвергающихся воздействию солнечной радиации.

Технические характеристики:

Мощность, потребляемая одним полюсом:

Ток уставки регулируют поворотом эксцентрика (плавно), а также сменой нагревателей (ступенчато), т. е. изменением номинального тока теплового элемента. Для каждого типа реле ТРН-10, ТРН-25 предусмотрен комплект сменных нагревателей. Нагреватели реле указанных типов различаются фиксатором, установочными размерами и формой мест крепления — все это обеспечивает свободную установку нагревателей только в реле того типа, для которого они предназначены.

Реле имеют регулировку тока несрабатывания в пределах — минус 25% плюс 25% от величины номинального тока несрабатывания. При нулевом положении регулятора он является номинальным током теплового элемента (Iн). Каждое деление шкалы регулятора соответствует 5% величины номинального тока несрабатывания.

Благодаря наличию в реле температурной компенсации ток уставки практически не зависит от температуры воздуха в месте установки реле и может изменяться в пределах ±3% от номинального тока уставки на каждые 10 °С изменения температуры окружающего воздуха от +20 °С.

Реле не срабатывают при длительном обтекании обоих полюсов током уставки и срабатывают в течение 20 мин после увеличения тока: на 20% — у реле, нагреватели которых установлены заводом-изготовителем; на 25% — у реле, если нагреватели установлены потребителем. При обтекании реле шестикратным током несрабатывания с холодного состояния при температуре среды плюс 20 °С реле срабатывает в пределах — от 6 до 25 с. Величины номинальных токов несрабатывания приведены в таблице 1.

Таблица 1.

Реле имеют только ручной возврат. При срабатывании реле возврат можно осуществлять через 2 минуты.

Реле имеют один размыкающий контакт, допускающий отключение и длительное протекание токов, указанных в таблице 2.

Источник

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Тепловое реле

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

Время-токовая характеристика теплового реле

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Тепловое реле Schneider Electric

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Устройство теплового реле

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Устройство реле ТРН

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

Реле РТЛ

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

Реле РТТ

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

Реле РТИ

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

Реле ТРН

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

Магнитный пускатель с тепловым реле

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Подключение теплвого реле к магнитному пускателю

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Пускатель с тепловым реле на DIN-рейке

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Схема подключения теплового реле

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

ТРН10

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Монтажная схема

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

Тепловое реле РТИ

На реле РТИ эти контакты размещены на передней панели:

NO – нормально-открытый – на индикацию;

NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Паспортные данные двигателя

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

РТЛ-1007, с токовым диапазоном 1.5-2.6 А;

РТЛ-1008, токовый диапазон 2,4-4 А;

РТИ-1307, токовый диапазон 1,6. 2,5 А;

РТИ-1308, токовый диапазон 2,5. 4 А;

ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн — номинальный ток нагрузки электродвигателя, Iнэ — номинальный ток нагревательного элемента теплового реле, с — коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

где Т — температура окружающей среды, °С.

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Схема проверочного стенда

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Источник



Что такое номинальный ток в электротехнике

Толковый словарь русского языка академика Ожегова объясняет значение слова «номинальный», как обозначенный, называющийся, но не исполняющий своих обязанностей, назначения, то есть фиктивный.

Это определение довольно точно поясняет электротехнические термины номинального напряжения, тока и мощности. Они вроде бы есть, назначены и определены, но на самом деле служат только как ориентиры для электриков. Действительные численные выражения этих параметров в реальности отличаются от назначенных величин.

К примеру, всем нам хорошо знакома переменная однофазная сеть с напряжением 220 вольт, которое считается номинальным. На самом деле его величина по ГОСТ может достигать только до верхнего предела 252 вольта. Так действует государственный стандарт.

Такая же картина просматривается и с номинальным током.

Принцип определения номинального тока

За основу выбора его величины взят максимально возможный тепловой нагрев электрических проводников, включая их изоляцию, которые должны неограниченно долгое время надежно работать под нагрузкой.

При номинальном токе поддерживается тепловой баланс между:

нагревом проводников от температурного воздействия электрических зарядов, описанным действием закона Джоуля—Ленца;

охлаждением за счет отвода части тепла в окружающую среду.

Тепловой баланс проводника с током

При этом тепло Q1 не должно оказывать влияние на механические и прочностные характеристики металла, а Q2 — на изменение химических и диэлектрических свойств слоя изоляции.

Даже при небольшом превышении номинального значения тока через какой-то промежуток времени потребуется снимать напряжение с электрооборудования для охлаждения металла токовода и изоляции. В противном случае их электротехнические свойства нарушатся и возникнет пробой диэлектрического слоя или деформация металла.

Любое электрическое оборудование (включая источники тока, его потребители, соединительные провода и системы, защитные устройства) рассчитывается, проектируется и изготавливается под работу при определенном номинальном токе.

Его величина указывается не только в технической заводской документации, но и на корпусе или шильдиках электрооборудования.

Примеры обозначения номинального тока на корпусе электрических приборов

На приведенной фотографии четко видны величины номинального тока 2,5 и 10 ампер, которые выполнены методом штамповки при изготовлении электрической вилки.

С целью стандартизации оборудования ГОСТом 6827-76 введен в действие целый ряд значений номинальных токов, при которых должны работать практически все электроустановки.

Ряд номинальных токов электрооборудования

Как подбирается защитное устройство по номинальному току

Поскольку номинальный ток определяет возможность длительной работы электрооборудования без каких-либо повреждений, то все защитные устройства по току настраиваются на срабатывание по его превышению.

На практике довольно часто встречаются ситуации, когда на непродолжительный период в схеме питания возникает перегрузка по различным причинам. При этом температура металла проводника и слоя изоляции не успевают достичь того предела, когда возникает нарушение их электротехнических свойств.

Значение синусоиды номинального тока и выбор параметров защит

По этим причинам зона перегруза выделена в отдельную область, которая ограничивается не только величиной, но и продолжительностью действия. При достижении критических температурных значений слоя изоляции и металла проводника напряжения с электроустановки должно сниматься для ее охлаждения.

Эти функции выполняют защиты от перегруза, работающие по термическому принципу:

Они воспринимают тепловую нагрузку и настраиваются на ее отключение с определенной выдержкой времени. Уставка защит, выполняющих «мгновенную» отсечку нагрузки, лежит чуть выше тока перегрузки. Термин «мгновенная» на самом деле определяет действие за минимально возможный промежуток времени. Для современных самых быстрых токовых защит отсечка выполняется за время, чуть меньшее 0,02 секунды.

Рабочий ток в обычном режиме питания чаще всего по своей величине меньше номинального.

В приведенном примере разобран случай для схем переменного тока. В цепях постоянного напряжения принципиального отличия соотношений между рабочим, номинальным током и выбором уставок для работы защит нет.

Как настроен автоматический выключатель для работы по номинальному току

В защитах промышленных устройств и бытовых электросетей наибольшее распространение получили автоматические выключатели, которые совмещают в своей конструкции:

тепловые расцепители, работающие с выдержкой времени;

токовую отсечку, очень быстро отключающую аварийный режим.

При этом автоматические выключатели изготавливаются на номинальное напряжение и ток. По их величине выбирают защитные устройства для работы в конкретных условиях определенной схемы.

Для этого стандартами определены 4 типа времятоковых характеристик для разных конструкций автоматов. Они обозначаются латинскими буквами А, В, С, D и созданы для гарантированного отключения аварий с кратностью тока номинального режима от 1,3 до 14.

Автоматический выключатель по времятоковой характеристике с учетом температуры окружающей его среды подбирается под определенный вид нагрузки, например:

схемы со смешанными нагрузками и умеренными пусковыми токами;

цепи с большой перегрузочной способностью.

Принцип формирования времятоковой характеристики автоматического выключателя

Времятоковая характеристика может состоять из трех зон действия, как показано на картинке, или двух (без средней).

Обозначение номинального тока можно найти на корпусе автомата. На картинке показан выключатель на котором обозначена величина 100 ампер.

Это означает, что он сработает (отключится) не от номинального тока (100 А), а от его превышения. Допустим, если отсечка автомата настроена на кратность 3,5, то ток величиной 100х3,5=350 ампер и более будет ею остановлен без выдержки времени.

Когда же тепловой расцепитель настроен на кратность 1,25, то при достижении значения 100х1,25=125 ампер отключение произойдет через какое-то время, например, один час. При этом схема этот период будет работать с перегрузом.

Следует учитывать, что на время отключения автомата влияют и другие факторы, связанные с поддержанием температурного режима защиты:

условия окружающей среды;

степень заполнения распределительного щитка аппаратурой;

возможности нагрева или охлаждения от посторонних источников.

Как подбирается электропроводка и автоматический выключатель по номинальному току

Для определения основных электротехнических параметров защит и проводов в обязательном порядке учитывается приложенная к ним нагрузка. Для этого проводят ее расчет по номинальной мощности подключенных в работу приборов с учетом коэффициента их занятости.

Например, к розеточной группе, расположенной на кухне, подключены в работу посудомоечная машина, мультиварка, электродуховка и микроволновая печь которые потребляют суммарную мощность в обычном режиме 5660 ватт (с учетом периодичности включений).

Номинальное напряжение бытовой сети 220 вольт. Определим ток нагрузки, который будет проходить через провода и защитные устройства делением мощности на напряжение. I=5660/220=25,7 А.

Далее смотрим таблицу ряда номинальных токов для электрооборудования. В ней автоматического выключателя на такой ток нет. Но, производители выпускают автоматы на 25 ампер. Его величина ближе всего соответствует нашим задачам. Поэтому его и выбираем за основу защитного устройства для электропроводки потребителей розеточной группы.

После этого нам необходимо определиться с материалом проводов и поперечным сечением. Возьмем за основу медь, поскольку алюминиевая проводка даже в бытовых целях уже не пользуется популярностью из-за своих эксплуатационных характеристик.

В справочниках электриков приводятся таблицы подбора проводов из разных материалов по токовой нагрузке. Возьмем наш случай с учетом того, что проводка выполняется отдельным кабелем с полиэтиленовой изоляцией, спрятанным в штробу стен. Температурные пределы примем соответствующими комнатным условиям.

Таблица нам представит сведения, что минимально допустимое поперечное сечение стандартного медного провода для нашего случая — 4 мм квадратных. Меньше брать нельзя, но лучше его увеличить.

Иногда возникает задача подбора номинала защит под уже работающую проводку. В этом случае вполне оправданно определить электроизмерительным инструментом ток нагрузки сети потребителей и сравнить его с тем, который рассчитан вышеприведенным теоретическим методом.

Таким способом термин «номинальный ток» помогает электрикам ориентироваться в технических характеристиках электрооборудования.

Источник

Номинальный ток.

Максимально возможный тепловой нагрев электрических проводников (включая их изоляцию), которые под нагрузкой должны надежно работать на протяжении неограниченно долгого времени, взят за основу выбора величины номинального тока.

Поддерживается тепловой баланс при номинальном токе:

— от температурного воздействия электрических зарядов нагревом проводников;

— охлаждением за счет отвода в окружающую среду части тепла.

Номинальный ток.

При этом влияние на прочностные и механические характеристики металла, не должно оказывать тепло Q1, а на измерение диэлектрических и химических свойств слоя изоляции — Q2.

Через какой-то промежуток времени, даже если номинальный ток немного превысит норму, для охлаждения изоляции и токовода потребуется снимать напряжение с электрооборудования. В противном же случае произойдет нарушение электротехнических свойств и возникнет деформация металла или пробой диэлектрического слоя.

Под работу при определенном значении номинального тока проектируется, рассчитывается и изготавливается любой вид электрического оборудования.

Не только в заводской технической документации указывается его величина, но также на корпусе либо шильдиках электрооборудования.

Номинальный ток.

Величины номинального тока 2,5 и 10 ампер четко видны на показанной картинке, которые при изготовлении электрической вилки выполнены методом штамповки.

Целый ряд значений номинальных токов введен в действие ГОСТом 6827-76 с целью стандартизации оборудования, при этих значениях осуществлять работу должны практически все электроустановки.

Номинальный ток.

Выбор защитного устройства по номинальному току.

Поскольку возможность длительной работы электрооборудования без любого рода повреждений определяет номинальный ток, то по нему настраиваются на срабатывание по его превышению все защитные устройства.

Очень часто на практике можно встретить ситуации, когда в схеме питания возникает перегрузка на непродолжительное время по различным причинам.

Температура слоя изоляции и металла проводника при этом не успевает достигнуть того предела, когда произойдет нарушение их электротехнических свойств.

Номинальный ток.

Выделена зона перегруза по этим причинам в отдельную область, которая не только величиной ограничивается, но также продолжительностью действия. Когда будут достигнуты критические температурные значения металла проводника и слоя изоляции, для охлаждения электроустановки с нее должно сниматься напряжение.

Защиты от перегруза, которые работают по термическому принципу выполняют эти функции:

Эти устройства воспринимают тепловую нагрузку и с определенной выдержкой времени настраиваются на ее отключение. Чуть выше тока перегрузки лежит уставка защит, выполняющих «мгновенную» отсечку нагрузки. На самом деле понятие «мгновенная» определяет действие за минимально возможный промежуток времени, за время чуть меньшее чем 0,02 секунды, выполняется отсечка защит для самых быстрых современных токовых защит.

Чаще всего в обычном режиме питания рабочий ток меньше номинального по своей величине.

В приведенном примере случай разобран для схем переменного тока. Для работы защит нет принципиального отличия соотношений между номинальным, рабочим током и выбором уставок в цепях постоянного напряжения.

Настройка автоматического выключателя для работы по номинальному току.

Наибольшее распространение в защитах бытовых электросетей и промышленных устройств получили автоматические выключатели, совмещающие в своей конструкции:

— работающие с выдержкой времени тепловые расцепители;

— отключающую очень быстро аварийный режим токовую отсечку.

Изготавливаются при этом автоматические выключатели на номинальный ток и напряжение, для работы в конкретных условиях определенной схемы по их величине выбираются защитные устройства.

Чтобы это выполнить определяются стандартами для разных конструкций автоматов 4 типа времятоковых характеристик. Обозначаются они латинскими буквами А, В, С, D и для гарантированного отключения аварий созданы с кратностью тока номинального режима от 1,3 до 14.

По времятоковой характеристике автоматический выключатель подбирается под определенный тип нагрузки, с учетом температуры окружающей его среды, например:

— цепи, имеющие большую перегрузочную способность;

— схемы с умеренными пусковыми токами и смешанными нагрузками.

Номинальный ток.

Из трех зон может состоять время токовая характеристика, показывается на рисунке, или же из двух зон (без средней).

На корпусе автомата можно увидеть обозначение номинального тока. На рисунке показывается выключатель, обозначена на котором величина 100 ампер. Означает это, что произойдет его срабатывание (отключение) не от номинального тока (100 А), а от его превышения.

Если предположить, что отсечка автомата настроена на кратность 3,5, то номинальный ток величиной 100х3,5=350 ампер и больше будет без выдержки времени ею остановлен.

Когда же на кратность 1,25 настроен тепловой расцепитель, то отключение произойдет через какое-то время (например, один час) при достижении значения 100х1,25=125 ампер, а схема будет этот период работать с перегрузом.

Необходимо учитывать, что другие факторы, связанные с поддержанием температурного режима защиты, также влияют на время отключения автомата (условия окружающей среды; от посторонних источников возможности нагрева или охлаждения; степень заполнения аппаратурой распределительного щитка).

Источник

Читайте также:  Сила тока в нагревательном элементе электрического чайника равна 4а при напряжении 120 в найдите