Меню

Номинальный ток предохранителя выбирается

Номинальные токи предохранителей

Все плавкие предохранители являются коммутационными электрическими элементами, предназначенные для того, чтобы отключать защищаемую цепь с помощью расплавления специальных защитных элементов. Для изготовления плавких элементов применяется свинец, его различные сплавы, а также медь или цинк. Предохранители защищают электрические сети и оборудование при коротких замыканиях и недопустимых длительных перегрузках.

Работа предохранителей

На нормальную работу этих устройств в значительной степени влияют номинальные токи предохранителей. Следует сразу отметить, что все предохранители могут работать в двух основных режимах. Это нормальные условия эксплуатации, а также недопустимые перегрузки и короткие замыкания.

Номинальные токи предохранителей

В первом случае, работа устройства происходит при нормальном функционировании сети. В таких условиях плавкий элемент нагревается до рабочей установленной температуры, когда вся выделяющаяся теплота постепенно уходит в окружающее пространство. В данном случае происходит нагревание не только защитного элемента до определенной температуры, но и прочих частей предохранителя. При нормальной работе, температурное значение не должно превышать допустимых пределов.

Использование плавкого элемента

Плавкий элемент рассчитан на номинальные токи предохранителей, обеспечивающие его длительную работу. По-другому, эта величина известна, как номинальная сила тока плавкого элемента. Она может отличаться от такой же величины, предусмотренной для самого предохранителя. Это связано с тем, что в одном и том же предохранителе могут быть вставлены элементы, рассчитанные на различное значение силы тока. То значение силы тока, которое указано на самом устройстве соответствует максимальному значению тока для элементов, предназначенных к использованию в данной конструкции.

Номинальные токи предохранителей

Номинальная сила обеспечивает равномерное распределение количества теплоты от материала элемента к другим частям предохранителя.

Во втором случае работа предохранителя происходит в условиях возрастания в сети силы тока. Для того, чтобы время плавления вставки было сокращено, защитные элементы изготавливаются в форме пластинок с вырезами, предназначенными для уменьшения их сечения на некоторых участках. В районе вырезов теплоты выделяется больше, чем в широких местах.

Источник

Как правильно подобрать плавкую вставку (предохранитель)|Contact-pro.ru

Выбирайте всегда надежные плавкие вставки (предохранители).

Предохранители были первым типом защиты, который использовался, и им до сих пор находят место во многих технических решениях. Несмотря на то, что они не обладают гибкостью настройки и отключающей способности как у автоматического выключателя, они, тем не менее, являются надежными, высокопроизводительными устройствами с точки зрения их способности отключать очень высокие токи короткого замыкания.

Патрон предохранителя вставлен в защищаемую цепь. В случае перегрузки по току цепь автоматически разрывается за счет плавления токопроводящего элемента предохранителя, который имеет определенный номинал, внутри патрона. Кремнезем в корпусе картриджа поглощает очень высокую энергию за счет плавления и стеклования. В отличие от автоматического выключателя, патрон предохранителя повреждается в результате неисправности и подлежит замене. Патроны предохранителей соответствуют стандарту IEC 60269-1. Они бывают разных форм и размеров. В низковольтных электроустановках в основном используются цилиндрические патроны и патроны лопастного типа с номинальным током 0,5-1250 А.

Патроны предохранителей устанавливаются в разъединители, держатели предохранителей или просто на основания.

Давайте рассмотрим 8 основных характеристик по которым мы без проблем подберем необходимый нам предохранитель

1. Тип предохранителя

Предохранители обозначаются двумя буквами в соответствии с их категорией применения. В установках низкого напряжения в основном используются предохранители типа gG и aM.
Предохранитель gG
Плавкие вставки gG предназначены для общего использования и защищают оборудования от низких и высоких перегрузок и, конечно же, от коротких замыканий. Они отмечены черным цветом.
Предохранители aM
Плавкие вставки aM используются с электродвигателями и защищают от сильных перегрузок и коротких замыканий. Они рассчитаны на противодействие некоторым временным перегрузкам (например запуск двигателя).

Поэтому эти картриджи должны использоваться вместе с устройством тепловой защиты для защиты от небольших перегрузок. Они отмечены зеленым цветом.

2. Номинальные токи и напряжения.

Номинальный ток может проходить через предохранитель бесконечно без срабатывания предохранителя или чрезмерного повышения температуры. Номинальное напряжение — это напряжение, при котором этот предохранитель может использоваться. Давайте объясним значение букв, используемых для категорий приложений.
Первая буква указывает на основную операцию:
a (связанный) — предохранитель должен быть связан с другим устройством защиты, потому что он не может устранить повреждения ниже указанного уровня. Он обеспечивает только защиту от короткого замыкания.
g (общий) — он устраняет все повреждения между самым низким током предохранителя (даже если плавление элементов предохранителя занимает 1 час) и отключающей способностью. Обеспечивает защиту от короткого замыкания и перегрузки.
Вторая буква указывает на категорию защищаемого оборудования:
G = Защита кабелей и проводов
M = Защита цепей двигателя
R = Защита полупроводников
S = Защита полупроводников
Tr = Защита трансформаторов
N = Защита проводников в соответствии со стандартами Северной Америки
D = предохранитель с выдержкой времени для защиты цепей двигателя в соответствии с североамериканскими стандартами.

3. Обычные токи неплавкого и плавкого предохранителя (плавкой вставки).

Следует различать два условных тока: неплавкий и плавкий.

Обычный ток неплавкого предохранителя (Inf) — это значение тока, которое патрон предохранителя может выдержать в течение обычного времени без плавления.
Обычный ток предохранителя (If) — это значение тока, при котором патрон предохранителя плавится до истечения условного времени.

В приведенном выше примере (плавкая вставка 100 А gG):

Условное время = 2 часа
Inf = 1,3
In = 1,6

4. Рабочая зона предохранителя

Определенная стандартами рабочая зона используется для определения времени срабатывания предохранителя в зависимости от тока, проходящего через него. Важно знать рабочие характеристики предохранителя, чтобы рассчитать селективность различных защитных устройств, установленных последовательно.

«Для плавкой вставки 100 А, 22 × 58 gG перегрузка 300 А расплавит картридж за 40 с»

5. Отключающая способность предохранителя (плавкой вставки)

Отключающая способность должна быть по крайней мере равной предполагаемому току короткого замыкания, который может возникнуть в точке установки предохранителя. Чем выше отключающая способность, тем лучше предохранитель защищает установку от коротких замыканий высокой интенсивности.
Предохранители HBC (высокая отключающая способность) ограничивают короткое замыкание, которое может достигать более 100 000 А (действующее значение).

6. Ограничение тока предохранителя (плавкой вставки)

Ограничение тока может изменяться в зависимости от условий короткого замыкания (интенсивность, cos ϕ, начальный угол короткого замыкания ψ). Кривые ограничения картриджей представляют собой максимальные ограниченные значения тока, которые могут быть достигнуты в самых неблагоприятных условиях.

Читайте также:  Генератор постоянного тока для судового дизеля

Пример: При предполагаемом коротком замыкании 10000 А (или 10 кА) с учетом максимальной асимметрии тока короткое замыкание может достичь теоретического максимального значения 2,5 × Irms, то есть пикового значения 25 кА.
Цилиндрический патрон предохранителя gG на 100 А ограничивает первую волну тока пиком 8000 А, то есть примерно 30% от предполагаемого максимального значения. Таким образом, деструктивные электродинамические эффекты снижаются в 10 раз ((8 000/25 000) 2) от максимального значения.

Чем выше ожидаемый ток короткого замыкания, тем выше коэффициент ограничения.

Например, при коротком замыкании 100 000 A (среднеквадратичное значение), т. Е. 250 000 A пиковое значение, картридж 100 A gG ограничивает этот ток до 15 000 A пикового значения, т. Е.

Ограничение до 6% от предполагаемого максимального тока и ограничение до 0,36% от предполагаемого максимума. электродинамические эффекты.
Важность ограничения мощности
Короткое замыкание опасно как с точки зрения электродинамических, так и тепловых эффектов:
Деструктивные электродинамические эффекты зависят от квадрата пикового тока, достигаемого во время короткого замыкания, и вызывают механическое повреждение изоляции проводников.
Деструктивные тепловые эффекты зависят от тепловой энергии, рассеиваемой во время короткого замыкания, и могут вызвать ожог изоляции проводов. Патроны с предохранителями максимально ограничивают оба этих эффекта.

7. Термическое напряжение предохранителя (плавкой вставки)

Короткое замыкание вызывает выделение значительного количества энергии. Патрон предохранителя ограничивает эту энергию до гораздо более низкого значения, обычно известного как ограниченное тепловое напряжение, выражаемое в A2s.
Почему необходимо ограничивать тепловую нагрузку?
Если энергия, выделяемая при коротком замыкании, не ограничена, это может быстро привести к полному или частичному разрушению оборудования. Термическое напряжение определяется двумя основными параметрами:
Cos ϕ: чем ниже, тем больше энергия
Напряжение: чем выше напряжение, тем больше энергия
Патроны с предохранителями значительно ограничивают эту энергию.

Например, для среднеквадратичного асимметричного короткого замыкания 10 кА при 230 В cos ϕ = 0,1 могло бы развиться, если бы картриджа не было, на нескольких волнах тока. Только для первой волны термическое напряжение может достигать 4 000 000 А2. При тех же условиях неисправности картридж на 100 А gG ограничит тепловое напряжение до 78 000 А2, то есть 1,95% от значения только на первой волне ожидаемого тока.

Разница между термическими напряжениями перед дуговым и дуговым разрядом
Предохранитель прерывает короткое замыкание в два этапа: до дуги и затем до дуги. Скажем пару слов о каждом этапе:
Термическое напряжение перед дуговым разрядом соответствует минимальной энергии, необходимой для того, чтобы плавкий элемент картриджа начал плавиться. Важно знать это тепловое напряжение, чтобы определить селективность при коротком замыкании между несколькими последовательно включенными системами защиты.
Термическое напряжение дуги соответствует энергии, ограниченной между концом предварительного дугового разряда и полным разрывом.
Сумма термических напряжений дугового разряда и предварительного дугового разряда дает общее термическое напряжение.

8. Селективность-избирательность предохранителя (плавкой вставки)

Ток обычно проходит через несколько устройств защиты последовательно. Эти устройства рассчитываются и распределяются в соответствии с различными защищаемыми цепями. Избирательность есть, когда работает только устройство, защищающее неисправную цепь.
пример

Только картридж на 25 А сработал при неисправности линии, которую он защищает. Если бы картридж на 100 А или даже картридж на 400 А также работал (неправильная селективность), вся установка вышла бы из строя.

Источник



Плавкие предохранители. Выбор, расчет предохранителя.

Плавкие предохранители

При возникновении эксплуатационных (технологических) перегрузок и аварийных режимов, являющихся следствием нарушений работы схемы, по электрическим цепям аварийного контура протекают токи, превосходящие номинальные значения, на которые рассчитано электрооборудование.

В результате воздействия аварийных токов и перегрева токопроводов нарушается электрическая изоляция, обгорают и плавятся контактные поверхности соединительных шин и электрических аппаратов. Электродинамические удары при переходных процессах вызывают повреждение шин, изоляторов и обмоток реакторов.

Для ограничения амплитуды аварийных токов и длительности их протекания применяются специальные устройства и системы защиты электрооборудования.

Примечание. Устройства защиты должны отключить аварийную цепь раньше, чем могут выйти из строя отдельные ее элементы.

При больших перегрузках или коротких замыканиях устройства защиты должны сразу отключить всю электроустановку или часть ее с максимальным быстродействием для обеспечения дальнейшей работоспособности или, если авария является следствием выхода из строя одного из элементов цепи, предотвратить выход из строя другого электрооборудования.

В случае небольших перегрузок, не опасных для оборудования в течение определенного времени, система защиты может воздействовать на предупреждающую сигнализацию для сведения обслуживающего персонала или на систему автоматического регулирования для снижения тока.

Виды защиты и требования к ней

Поскольку основным фактором, приводящим к выходу из строя электрооборудования, является тепловое действие аварийного тока, то по принципу построения защитные устройства делятся на токовые и тепловые.

Токовые защитные устройства контролируют значения или отношения значений протекающих через оборудование токов.

Независимо от параметров установки и типа применяемых защитных аппаратов и систем выделяют следующие общие требования к защите.

Быстродействие — обеспечение минимально возможного времени срабатывания защиты, не превышающего допустимого.

Селективность. Аварийное отключение должно производиться только в той цепи, где возникла причина аварии. А другие участки силовой цепи должны оставаться в работе.

Электродинамическая стойкость. Максимальный ток, ограниченный защитными устройствами, не должен превышать допустимого для данной электроустановки значения по электродинамической стойкости.

Уровень перенапряжений. Отключение аварийного тока не должно вызывать перенапряжений, опасных для полупроводниковых приборов. Надежность. Устройства защиты не должны выходить из строя при отключении аварийных токов. Они обеспечивают возможность быстрого

восстановления электрической цепи при устранении неисправности.

Помехоустойчивость. При появлении помех в сети и в цепях управления устройства защиты не должно ложно срабатывать.

Чувствительность. Защита должна срабатывать при всех повреждениях и токах, опасных для элеменов схемы, независимо от места и характера аварии.

Плавкие предохранители

Определение. Плавкие предохранители — это аппараты, защищающие установки от перегрузок и токов короткого замыкания.

Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство (это не обязательный атрибут, а вспомогательный, без него предохранитель все равно работать будет), гасящее дугу, возникающую после плавления вставки.

Читайте также:  Прибор сразу отключающий линию если сила тока оказывается больше допустимой нормы

К предохранителям предъявляются следующие требования:

— времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта;

— время срабатывания предохранителя при коротком замыкании должно быть минимальным, особенно при защите полупроводниковых приборов;

— характеристики предохранителя должны быть стабильными;

— в связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность;

— замена сгоревшего предохранителя или плавкой вставки не должна занимать много времени.

Выбор предохранителей

для защиты асинхронных электродвигателей

Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.

Правило. Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Все электродвигатели разбиты на две группы: по времени; по частоте пуска.

Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3–5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.

К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч.

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по формуле:

где Iпд — пусковой ток двигателя; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6–2.

Примечание. Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она со временем может перегореть и при нормальной работе двигателя.

Вставка, выбранная в соответствии с приведенной выше формулой, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.

Сгорание вставок при пуске может повлечь работу двигателя на двух фазах и его повреждение.

Примечание. Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи питания каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей

Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током, и самозапуск двигателей. Если он допустим по условиям техники безопасности, технологического процесса и т. п.

При расчете уровня защиты необходимо точно определить, какие двигатели:

— отключаются при понижении или полном исчезновении напряжения;

— повторно включаются при появлении напряжения.

Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по формуле:

где ∑Iпд — сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей

Плавкие вставки предохранителей выбираются по следующему соотношению:

Iном. вст.Iкр/К,

где Iкр = Iпуск + Iдлит — максимальный кратковременный ток линии; Iпускпусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения; Iдлитдлительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) — это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5–7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению IвсIпд/К будет иметь номинальный ток в 2–3 раза больше номинального тока двигателя. Выдерживая этот ток неограниченное время, она не может защитить двигатель от перегрузки.

Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.

Примечание. Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также возможность повреждения контактов пускателя.

Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя. Он разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя.

Это условие обеспечивается, если время отключения тока короткого замыкания предохранителем не превышает 0,15–0,2 с. Для этого ток короткого замыкания должен быть в 10–15 раз больше номинального тока вставки предохранителя, защищающего электродвигатель.

Обеспечение селективности срабатывания плавких предохранителей

Избирательность (селективность) защиты плавкими предохранителями обеспечивается подбором плавких вставок таким образом, чтобы при возникновении короткого замыкания, например, на ответвлении к электроприемнику, срабатывал ближайший плавкий предохранитель, защищающий этот электроприемник, но не срабатывал предохранитель, защищающий головной участок сети.

Выбор плавких предохранителей по условию селективности следует производить, пользуясь типовыми время-токовыми характеристиками t=f(I) предохранителей с учетом возможного разброса реальных характеристик по данным завода-изготовителя.

При защите сетей предохранителями типов ПН, НПН и НПР с типовыми характеристиками (рис. 20 и рис. 21) селективность действия защиты будет выполняться, если между номинальным током плавкой вставки, защищающей головной участок сети Iг, и номинальным током плавкой вставки на ответвлении к потребителю Io выдерживаются определенные соотношения.

Например, при небольших токах перегрузки плавкой вставки (около 180–250 %) селективность будет выдерживаться, если Iг больше Io хотя бы на одну ступень стандартной шкалы номинальных токов плавких вставок.

Рис. 20. Защитные (времятоковые) характеристики плавких предохранителей типа ПН-2

Читайте также:  Как возникает ток в асинхронном двигателе

Рис. 21. Защитные (времятоковые) характеристики плавких предохранителей типа НПР и НПН

При коротком замыкании селективность защиты предохранителями типа НПН будет обеспечиваться, если будут выдерживаться следующие соотношения:

где Iк — ток короткого замыкания ответвления, А; Iг — номинальный ток плавкой вставки плавкого предохранителя головного участка сети, А; Iо — номинальный ток плавкой вставки на ответвлении, А.

Соотношения между номинальными токами плавких вставок Iг и Iо для предохранителей типа ПН2, обеспечивающие надежную селективность, приведены в табл. 2.

Таблица 2 Номинальные токи последовательно включенных плавких вставок предохранителей ПН2, обеспечивающих надежную селективность

Номинальный ток меньшей плавкой вставки , а

Номинальный ток большей плавкой вставки , а, при отношении /Io

Источник

Условия выбора плавких предохранителей

Условия выбора плавких предохранителей

В наше время все большей популярностью пользуются автоматические выключатели (АВ) как иностранных так и отечественных производителей, это в первую очередь связано с тем, что у АВ отсутствуют недостатки предохранителей. Но не смотря на все свои недостатки, предохранители все еще активно используются, так как это наиболее дешевый вариант защиты присоединения.

Например у нас на предприятии, если заказчик не возражает, для защиты двигателей мощностью до 100 кВт, применяются разъединитель-предохранитель, учитывая что короткое замыкание не такое частое явление, предохранитель – это очень хорошее решения для защиты присоединения.

В связи с этим, в этой статье я расскажу как нужно правильно выбирать предохранители с плавкими вставками в соответствии с ПУЭ и другой справочной литературой, чтобы Ваши предохранители срабатывали только при ненормальных режимах работы электроприемников.

При выборе предохранителя, должны выполняться условия:

  • номинальное напряжение предохранителя должно соответствовать напряжению сети:

Uном = Uном.сети (1)

  • номинальный ток отключения предохранителя должен быть не меньше максимального тока к.з. в месте установки:

Iном.откл > Iмакс.кз (2)

Условия выбора плавких вставок:

  • ток плавкой вставки должен быть больше максимального тока защищаемого присоединения:

Iн.вс. > Iраб.макс. (3)

  • при защите одиночного асинхронного двигателя, выбирается ток плавкой вставки с учетом пуска двигателя:

Iн.вс. > Iпуск.дв/k (4)

k – коэффициент, принимается равным 2,5 согласно [Л1. с. 124,125], что соответствует ПУЭ пункт 5.3.56, для электродвигателей с короткозамкнутым ротором при небольшой частоте включений и легких условиях пуска (tп=2-2,5 сек.).

Обычно данный коэффициент принимается для двигателей вентиляторов, насосов, главных приводов металлорежущих станков и механизмов с аналогичным режимом работы.

Для двигателей с тяжелыми условия пуска (tп > 10-20 сек.), например для двигателей мешалок, дробилок, центрифуг, шаровых мельниц и т.п. А также для двигателей с большой частотой включений, т.е. для двигателей кранов и других механизмов повторно-кратковременного режима, коэффициент k принимается равным 1,6 – 2.

Для двигателей с фазным ротором коэффициент k принимается равным 0,8 – 1.

При выборе тока плавкой вставке по условию (4), следует учитывать, что с течением времени защитные свойства вставки ухудшаются, из-за этого есть вероятность ложных сгораний плавкой вставке при пусках двигателей. В результате двигатель может вообще не запуститься, либо работать на 2-х фазах, что приводит к перегреву двигателя.

И если не предусмотрена защита от перегрузки, двигатель может выйти из строя.

Решением данной проблемы, является выбор большего тока плавкой вставки, чем по условию (4), если это допустимо по чувствительности к токам КЗ.

При защите сборки, ток плавкой вставки выбирают по трем условиям:

  • по наибольшему длительному току:

Выбор тока плавкой встаки по наибольшему длительному току

  • при полной нагрузке сборки и пуске наиболее мощного двигателя:

Выбор тока плавкой встаки при полной нагрузке сборки и пуске наиболее мощного двигателя

  • при самозапуске двигателей:

Выбор тока плавкой встаки при полной нагрузке сборки и пуске наиболее мощного двигателя

где:
k – коэффициент, учитывающий условия пуска двигателя;

сумма пусковых токов самозапускающих двигателей— сумма пусковых токов самозапускающих двигателей;

сумма максимальных рабочих токов электроприемников— сумма максимальных рабочих токов электроприемников, кроме двигателя с наибольшим пусковым током Iпуск.макс.;

Для проверки надежного срабатывания предохранителя в конце защищаемой линии, нужно выполнить на кратность тока кз и учитывать время отключения.

В справочной литературе, Вы можете встретить такое утверждение, что для надежного и быстрого перегорания плавкой вставки, требуется чтобы при КЗ в конце защищаемой линии обеспечивалась необходимая кратность тока короткого замыкания, т.е отношение тока короткого замыкания Iкз к номинальному току плавкой вставки Iн.вс.

Данное условие было взято, еще со старого ПУЭ образца 1986 г пункт 1.7.79 ( для невзрывоопасной среды: kкз = Iкз/Iн.вс (kкз >3), данный пункт в ПУЭ 7-издания был изменен, и теперь нужно учитывать время отключения в системе TN, согласно таблицы 1.7.1.

ПУЭ 7 издание таблица 1.7.1

Для взрывоопасной среды, согласно ПУЭ 7-издание пункт 7.3.139, должно выполнятся условие кратности тока кз: kкз = Iкз/Iн.вс (kкз >4). Данный пункт остался без изменения, если сравнивать с ПУЭ 1986 г, что весьма странно, если учитывать что изменился пункт 1.7.79.

При проверке Iкз/Iн.вс

Если Вам неизвестны значения пусковых токов двигателя, то в порядке исключений, можно выбрать номинальные токи плавких вставок для двигателей мощность до 100 кВт и частотой пусков не более 10-15 в час следующим образом [Л2. с. 15]:

  • при Uн.сети = 500 В Iн.вс = 4,5*Рн;
  • при Uн.сети = 380 В Iн.вс = 6*Рн;
  • при Uн.сети = 220 В Iн.вс = 10,5*Рн.

После того как Вы выбрали предохранитель, нужно выполнить проверку селективности (избирательности) последовательно включенных между собой предохранителей с учетом защитных характеристик.

Это означает, что при коротком замыкании должна перегореть только та плавка вставка и того предохранителя, который находиться ближе всего к месту повреждения. Как показывает практика, для обеспечения селективности между двумя последовательно включенными предохранителями. Нужно чтобы предохранители между собой отличались на две ступени по шкале номинальных токов. При этом вставки, должны иметь одинаковые защитные характеристики, поэтому нужно выбирать предохранители одного типа.

Вот в принципе и все, что Вам нужно знать про выбор плавких предохранителей, если данной информации Вам не достаточно, рекомендую ознакомится с литературой, которую я использовал при написании данной статьи. В следующей статье, я приведу примеры выбора плавких предохранителей для различных электроприемников.

1. А.В. Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. Энергоатомиздат, Ленинградское отделение, 1988 г. Выпуск 617.
2. Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.
3. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.

Источник