Меню

Объясните с точки зрения электронной теории проводимости металлов механизм теплового действия тока

Электронная теория проводимости металлов

В 1900 году немецкий физик П. Друде создал теорию электропроводности металлов. В основе этой теории лежат следующие допущения:

  1. Свободные электроны в металлах ведут себя подобно молекулам идеального газа. Электронный газ подчиняется законам идеального газа.
  2. Движение свободных электронов подчиняется законам Ньютона.
  3. Свободные электроны в процессе хаотического движения сталкиваются только с ионами кристаллической решетки.
  4. При столкновении электронов с ионами электроны передают ионам свою кинетическую энергию полностью.

Согласно данной модели, на отрезке проводника свободные электроны совершают хаотическое тепловое движение. Действующее в проводнике электрическое поле перемещает электроны с небольшой скоростью (скорость дрейфа электронов

0,1 мм/с) вдоль проводника.

Сила тока в проводнике:

где n – концентрация свободных электронов в проводнике

– средняя скорость дрейфа электронов

S – поперечное сечение проводника.

С позиции электронной проводимости металлов удалось объяснить причину нагревания проводников при прохождении электрического тока.


Электронная теория проводимости металлов экспериментально подтверждена в 1913 году российскими физиками Л.И. Мандельштамом и Н.Д. Папалекси и в 1916 году американскими физиками Т. Стюартом и Р. Толменом.

Направление электрического тока в проводнике выбрано в сторону движения положительно заряженных частиц.

направление электрического тока

Отношение заряда, переносимого через поперечное сечение проводника за интервал времени, к этому интервалу времени называется силой тока.

сила тока

В СИ [I] = 1 А (Ампер)

Для поддержания электрического тока в проводнике необходимо электрическое поле. Его действие характеризуется электрическим напряжением.

напряжение электрического тока

В СИ [U] = 1 В (Вольт)

Для поддержания постоянного направленного движения заряженных частиц в проводнике электрическое поле должно совершать работу. Эту работу принято называть работой электрического тока.

Работа сил электрического поля или работа электрического тока на участке цепи сопротивлением R и за время t равна:

работа электрического тока

В СИ [A] = 1 Дж (Джоуль)

При нагревание проводника растет его температура, следовательно, увеличивается внутренняя энергия. С прекращением роста температуры проводника он начинает передавать окружающим телам некоторое количество теплоты, равное работе электрического тока. Таким образом, формула A=IUt определяет количество теплоты, переданное проводником другим телам.

Для последовательного соединения проводников удобнее воспользоваться формулой:

работа тока при последовательном соединении проводников

При параллельном соединении удобно использовать формулу:

работа тока при параллельном соединении проводников

Для характеристики электрических приборов удобнее пользоваться физической величиной, получившей название мощность тока.

Источник

Электронная теория проводимости

Электропроводность твердых тел обусловлена коллективным направленным движением свободных электронов.

К концу XIX века ученые знали связь между электрическим сопротивлением, силой тока и напряжением, которая описывается законом Ома. Благодаря эффекту Холла знали они и то, что носителями электрического тока в металлах являются отрицательно заряженные электроны. Оставалось составить описание электрического сопротивления на атомном уровне. Первую попытку такого рода предпринял в 1900 году немецкий физик Пауль Друде (Paul Drude, 1863–1906).

Смысл электронной теории проводимости сводится к тому, что каждый атом металла отдает валентный электрон из внешней оболочки, и эти свободные электроны растекаются по металлу, образуя некое подобие отрицательно заряженного газа. Атомы металла при этом объединены в трехмерную кристаллическую решетку, которая практически не препятствует перемещению свободных электронов внутри нее (см. Химические связи). Как только к проводнику прикладывается электрическая разность потенциалов (например, посредством замыкания на два его конца двух полюсов аккумуляторной батареи), свободные электроны приходят в упорядоченное движение. Сначала они движутся равноускоренно, но длится это недолго, поскольку очень скоро электроны перестают ускоряться, сталкиваясь с атомами решетки, которые, в свою очередь, от этого начинают колебаться всё с большей амплитудой относительно условной точки покоя, и мы наблюдаем термоэлектрический эффект разогревания проводника.

На электроны же эти столкновения оказывают затормаживающее воздействие, аналогично тому, как, допустим, человеку тяжело с достаточно большой скоростью передвигаться в плотной людской толпе. В результате скорость электронов устанавливается на некоей усредненной отметке, которая называется скоростью миграции, и скорость эта, на самом деле, отнюдь не высока. Например, в обычной бытовой электропроводке средняя скорость миграции электронов составляет всего несколько миллиметров в секунду, то есть, электроны отнюдь не летят по проводам, а скорее ползут по ним темпами, достойными разве что улитки. Свет же в лампочке зажигается практически моментально лишь потому, что с места все эти медлительные электроны трогаются одновременно, как только вы нажимаете на кнопку выключателя, и электроны в спирали лампочки также приходят в движение сразу же. То есть, нажимая на кнопку выключателя, вы производите в проводах эффект, аналогичный тому, как если бы включили насос, подсоединенный к поливочному шлангу, до отказа заполненному водой, — струя на противоположном от насоса конце хлынет из шланга незамедлительно.

Читайте также:  Как рассчитать сечение кабеля в зависимости от тока

Друде весьма серьезно подошел к описанию свободных электронов. Он предположил, что внутри металла они ведут себя подобно идеальному газу, и применил к ним уравнение состояния идеального газа, достаточно справедливо проведя аналогию между соударениями электронов и тепловыми соударениями молекул идеального газа. Это позволило ему сформулировать формулу электрического сопротивления, как функции среднего времени между соударениями свободных электронов с атомами кристаллической решетки. Подобно многим простым теориям, электронная теория проводимости хорошо описывает некоторые основные явления из области электропроводности, но бессильна описать многие нюансы этого явления. В частности, она не только не объясняет явления сверхпроводимости при сверхнизких температурах (см. Теория сверхпроводимости, но, напротив, предсказывает неограниченный рост электрического сопротивления любого вещества при стремлении его температуры к абсолютному нулю. Поэтому сегодня электропроводящие свойства вещества принято интерпретировать в рамках квантовой механики (см. Уравнение Шрёдингера).

Источник



Электронная проводимость металлов

Структура кристаллической решетки металла

Вещества, обладающие металлической проводимостью, как правило, имеют во внешней электронной оболочке малое количество электронов, которые относительно слабо связаны ядром и внутренними электронными оболочками. Это и определяет особенности металлической кристаллической решетки.

В кристалле металла ионы с внутренними электронными оболочками образуют узлы решетки, как и в любом другом кристалле. А электронные облака внешних валентных электронов перекрывают друг друга так, что они оказываются общими не только для двух ионов (как это бывает в ковалентной связи), а сразу для нескольких ионов. В результате электроны могут свободно перемещаться между всеми этими ионами, попадая в поле действия более далеких ионов, и перемещаясь уже между ними.

То есть, электроны в кристаллической решетке металла движутся не строго по орбитам между соседними атомами (как в ковалентном кристалле), а образуют своего рода «электронный газ», распределенный по всему кристаллу.

строение металлической кристаллической решетки

Рис. 1. строение металлической кристаллической решетки.

Проводимость металлов

Такое строение кристаллической решетки приводит к тому, что электроны очень легко способны перемещаться под действием внешнего электрического поля. То есть, металлы, имеют много свободных легких электронов и обладают большой проводимостью.

Доказательством существования свободных электронов явились опыты, проведенные в 1916г Т. Стюартом и Р.Толменом (позже выяснилось, что такие же опыты ставились и ранее Л. Мандельштамом и Н.Папалекси, но результат их не был опубликован).

Опыт Мандельштама и Папалекси

Рис. 2. Опыт Мандельштама и Папалекси.

Теории проводимости

В 1900г П.Друде, основываясь на положениях молекулярно-кинетической теории, и рассматривая электроны в металле, как идеальный газ, создал классическую электронную теорию проводимости металлов. Первоначально эта теория не учитывала распределение скоростей электронов, учет этого распределения был выполнен в 1904г Х.Лоренцем.

Теория Друде-Лоренца смогла объяснить законы Ома, Джоуля-Ленца, механизм проводимости и зависимости сопротивления от температуры. Однако, со временем стало появляться все больше данных, необъяснимых в рамках классичепской теории. В частности, имелись расхождения по температурному коэффициенту сопротивления, по значениям теплоемкости. И уж совсем необъяснимым было явление сверхпродоимости, открытое в 1911г.

Читайте также:  Пароль для обновления тока бока

Все эти расхождения имеют квантовый характер, и поэтому объясняются в рамках более совершенной квантовой теории проводимости твердых тел (зонной теории проводимости).

Зонная теория проводимости

Рис. 3. Зонная теория проводимости.

Что мы узнали?

Высокая проводимость металлов обуславливается особенностями кристаллической решетки, в которой электронные облака соседних атомов сильно перекрываются друг с другом, поэтому электроны могут легко перемещаться между атомами, обеспечивая низкое электрическое сопротивление. Первоначально была разработана классическая теория проводимости Друде-Лоренца. В настоящее время она сменилась зонной теорией проводимости.

Источник

Объясните с точки зрения электронной теории проводимости металлов механизм теплового действия тока

Вы будете перенаправлены на Автор24

Существует классификация веществ в зависимости от их проводимости. Так, к проводникам относят вещества, удельная проводимость которых лежит в диапазоне $<10>^6-<10>^8\frac<См><м>$, к диэлектрикам вещества с удельной проводимостью меньше $<10>^<-6>\frac<См><м>$ . Полупроводники лежат внутри этого диапазона, их проводимость может быть от $<10>^<-4>\ до$ $<10>^4\frac<См><м>$. Такая классификация весьма условна и неточна. Так, у полупроводника с ростом температуры проводимость растет и при комнатной температуре может быть такой же, как и у проводника. При температурах около абсолютного нуля полупроводники являются диэлектриками. К проводникам относят, прежде всего, металлы.

Механизм электропроводности в металлах

Задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано с переносом вещества, атомы и молекулы металлов не принимают участия в переносе тока.

Готовые работы на аналогичную тему

Атомы металла, находящегося в твёрдом (или жидком) состоянии, расщепляются на несколько электронов и положительный ион. Ионы находятся в узлах кристаллической решетки и совершают колебания около положения равновесия. Они составляют «твердый скелет» металлического тела. Электроны же пребывают в свободном беспорядочном движении в промежутках между ионами и составляют так называемый «электронный газ». При отсутствии внешнего электрического поля электроны совершают хаотичное, тепловое движение. Внешнее поле ведет к упорядочению движения электронов, то есть возникновению электрического тока. Электроны в процессе движения сталкиваются с ионами кристаллической решетки, передают ионам избыток кинетической энергии, которую они получили при взаимодействии с полем. Это приводит к интенсификации колебаний ионов, то есть нагреванию металла.

Все металлы не только хорошие проводники электрического тока, но и имеют высокую теплопроводность. С точки зрения представления о механизме тока в металлах, это совпадение объясняется не просто случайностью, а является следствием одной общей причины — наличием в металлах свободных электронов. В металлах теплопередача происходит не только посредством столкновения атомов, но и свободными, легко подвижными электронами, которые переносят дополнительную энергию в веществе.

Прямое доказательство того, что носителями тока в металлах являются электроны дали опыты Р.Ч. Толмена. Он измерил силу электрического тока, который появляется в металле, когда металлическому телу сообщают ускорение. Возникновение тока вызывается отставанием электронов от движения кристаллической решетки вещества.

То, что в проводниках существуют свободные электроны, объясняют тем, что при образовании кристаллической решетки от атомов металла отделяются валентные (самые слабо связанные) электроны, которые становятся общей собственностью всего вещества.

Механизм электропроводности полупроводников

Особый интерес представляют электронные полупроводники. В таких полупроводниках носителями тока являются, как и в металлах, электроны. Различие в проводимости металлов и полупроводников связано с очень большой разницей в концентрации носителей тока. В полупроводниках концентрация электронов в свободном состоянии в тысячи раз меньше, чем в металлах. В полупроводнике постоянно идут два противоположных процесса: процесс освобождения электронов, при этом используется внутренняя или световая энергия; процесс воссоединения с ионом, который потерял свой электрон. Равновесие между свободными и связанными электронами динамическое. Для того чтобы в полупроводнике перевести электрон из связанного состояния в свободное, необходимо сообщить ему дополнительную энергию. В металлах даже при низких температурах количество свободных электронов велико. Силы межмолекулярного взаимодействия в металлах достаточно для освобождения части электронов.

Читайте также:  Расчет цепи постоянного тока при соединении конденсаторов

Сравнительно немногочисленные свободные электроны полупроводника, оторвались от атомов, при этом атомы стали ионами. Каждый ион окружен большим количеством атомов, которые не заряжены. Нейтральные атомы могут отдать свой электрон иону, превращаясь в ион, а ион становится нейтральным. Так, обмен электронами ведет к изменению местоположения положительных ионов в полупроводнике, то есть положительный заряд перемещается. До тех пор пока на полупроводник внешнего поля нет в среднем каждому электрону, который смещается в одном направлении, соответствует перемещение электрона в противоположном направлении. Аналогичный процесс идет с положительным зарядом. При наложении внешнего поля процессы получают преимущественное направление: свободные электроны движутся в направлении противоположном полю, положительные места — по полю. Возникает ток одного направления (по полю), проводимость вызывается этими двумя процессами. Место, где вместо нейтрального атома имеется положительный ион, называют дыркой. Надо отметить, что фактически всегда имеет место только движение электронов, но движение связанных электронов от атомов к ионам ведет к результату, при котором будто бы движутся дырки, которые имеют положительный заряд.

Механизм электропроводности полупроводников описывает зонная теория. Она базируется на анализе энергетического спектра электронов. Электронный спектр разбивается на зоны, разделенные запрещенными промежутками. В том случае, если в верхней зоне имеющей электроны, ими заполнены не все квантовые состояния, то есть в пределах зоны имеется возможность перераспределения энергии и импульсов электронов, то данное вещество является проводником электрического тока. Движение электронов в зоне проводимости подчиняются квантовым законам.

Классическая электронная теория металлов

Интерпретация разных свойств вещества с точки зрения движения и существования электронов является содержанием электронной теории. В классической теории металлов считают, что движение электрона описывают законы Ньютоновой механики. В этой теории считают, что взаимодействие электронов между собой несущественно, а взаимодействие ионов и электронов осуществляется только как соударения. Это значит, что электроны проводимости рассматривают как электронный газ, который подобен идеальному одноатомному газу. Такой газ хорошо изучен и его свойства описаны. В частности он подчиняется закону равномерного распределения энергии по степеням свободы. В соответствии с этим законом средняя кинетическая энергия теплового движения, которая приходится на каждую степень свободы, равна $\frac<1><2>kT$, где $k=1,38\cdot <10>^<-23>\frac<Дж><К>$, $T$ — термодинамическая температура. Средняя энергия теплового движения одного электрона равна:

где $\left\langle v^2_T\right\rangle $- среднее значение квадрата скорости теплового движения.

Классическая электронная теория качественно объясняет многие законы электрического тока.

Задание: Чему равна концентрация свободных электронов, если от каждого атома отщепился один электрон.

Если от каждого атома отщепился один электрон, концентрация свободных электронов равна числу атомов в единице объема ($n$):

где $\rho $ — плотность металла, $\mu $ — молярная масса вещества, $N_=6\cdot <10>^<23>моль^<-1>$ — число Авогадро. Для металлов значения $\frac<\rho ><\mu >$ для металлов равны: калий$:\ \frac<<\rho >_1><<\mu >_1>$=$2\cdot <10>^4\frac<моль><м^3>$, бериллий:$\ \frac<<\rho >_2><<\mu >_2>$=$2\cdot <10>^5\frac<моль><м^3>$.

Тогда концентрация свободных электронов проводимости будут иметь значения порядка:

Задание: Чему равна подвижность электронов в калии? Удельная проводимость металлов равна $\sigma =<10>^6\frac<См><м>.$

Подвижностью электронов ($b$) является отношение скорости дрейфа ($v_d$) к напряженности электрического поля (E):

можно записать в виде:

где $n$ — концентрация электронов проводимости, $q_e=1,6\cdot <10>^<-19>Кл$ — заряд электрона, $\sigma $ — удельная проводимость. Используя (2.1) и (2.3) выразим подвижность:

Используем результат первого примера, концентрация свободных электронов в калии равна $n=<10>^<28>м^<-3>$. Проведем вычисления:

Источник