Меню

Объединим ветви с токами

Расчёт электрических цепей по методу узловых потенциалов: методика

В дополнение к выводу метода рассмотрим методику расчёта электрических цепей по методу узловых потенциалов.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Последовательность расчёта следующая.

  1. Пронумеровать все узлы и задать произвольное направление токов в схеме.
  2. Стянуть узлы с одинаковым потенциалом. Узлы будут иметь одинаковый потенциал, если между ними находится чистая ветвь с нулевым сопротивлением – закоротка (ветви между узлами 2 − 4 и 3 − 5 на рис. 1). Перерисовывать схему со стянутыми узлами не обязательно, но тогда следует учесть, что потенциалы узлов по концам закоротки будут одинаковыми.


Рис. 1. Пример объединения узлов с одинаковым потенциалом

  1. Выбрать базисный узел (рис. 2) и приравнять его потенциал нулю $ \underline<\varphi>_ <3>= 0 \space \textrm <В>$. В качестве базисного узла можно выбрать любой, за исключением случая, когда имеются особые ветви. Если в схеме есть хотя бы одна особая ветвь, то за базисный узел следует принимать один из концов одной из таких ветвей. При этом потенциал другого конца будет равен ЭДС $ \underline<\varphi>_ <1>= \underline_ <1>$, если источник напряжения направлен в этот узел, и равен минус ЭДС $ \underline<\varphi>_ <6>=- \underline_ <2>$, если источник направлен к базисному узлу.


Рис. 2. Выбор базисного узла

Примечание. Зачастую для обозначения базисного узла используют символ заземления, так как принято считать, что «земля» имеет нулевой потенциал.

  1. Составить уравнения для узлов без особых ветвей, потенциалы которых неизвестны. Уравнения записываются по следующему принципу:
  • потенциал рассматриваемого узла умножается на сумму проводимостей всех примыкающих к нему ветвей;
  • вычитаются потенциалы узлов, находящихся на противоположных концах примыкающих ветвей, умноженные каждый на свою проводимость соединяющей их ветви;
  • приравнивается алгебраической сумме примыкающих к данному узлу источников тока и источников ЭДС, последние умножаются на проводимость ветви, в которой они расположены.
    Под алгебраической суммой подразумевается необходимость учёта направленности источников, если источник направлен в рассматриваемый узел, то он записывается со знаком «+», в противном случае со знаком «-».

В случае, если имеется более одной особой ветви, и они не имеют общие узлы, то уравнения для узлов, в состав которых входит особая ветвь, не примыкающая к базисному узлу, записываются следующим образом:

  • потенциал рассматриваемого узла умножается на сумму проводимостей всех примыкающих к нему ветвей и проводимостей ветвей, примыкающих к узлу противоположного конца особой ветви;
  • вычитаются потенциалы узлов, находящихся на противоположных концах примыкающих ветвей к узлам особой ветви, умноженные каждый на свою проводимость примыкающей ветви;
  • приравнивается алгебраической сумме примыкающих к узлам особой ветви источников тока и источников ЭДС, последние умножаются на проводимость ветви, в которой они расположены, за исключением источника ЭДС особой ветви, который умножается на сумму проводимости ветвей, примыкающих к узлу противоположного конца особой ветви.
  • При составлении уравнения проводимость особой ветви не учитывается ( 1 /=∞). Следует также учитывать, что направление ЭДС особой ветви и соответственно её знак учитываются относительно рассматриваемого узла.
  1. Рассчитать токи в ветвях по закону Ома как алгебраическую сумму разности потенциалов и ЭДС в ветви с искомым током, делённую на сопротивление этой ветви. Вычитаемым будет тот потенциал, в который направлен ток, а знак ЭДС выбирается в зависимости от направления: в случае сонаправленности с током ЭДС берётся со знаком «+», в противном случае со знаком «-». Ток в закоротке следует искать по первому закону Кирхгофа, составленному для одного из узлов рассматриваемой ветви в исходной схеме, после расчета всех остальных токов в схеме.
  2. Правильность расчёта по методу узловых потенциалов проще всего проверить по первому закону Кирхгофа для уникальных узлов без особых ветвей, подставив полученные значения токов. Под уникальными узлами подразумеваются те узлы, при рассмотрении которых имеется хотя бы одна ветвь, не примыкающая к другим из рассмотренных узлов.

Пример решения. В качестве примера рассмотрим схему с двумя особыми ветвями и источником тока (рис. 3). Количество уравнений составляемых для нахождения узловых потенциалов равно

6 (всего узлов) – 1 (базисный узел) – 2 (узла особых ветвей) = 3.

Произвольно обозначим узлы и токи на схеме. Один из узлов одной из особой ветви (1-4 и 3-6) примем за базисный, к примеру узел 4, в таком случае $ \underline<\varphi>_ <4>= 0 $, а $ \underline<\varphi>_ <1>= \underline_ <1>$.


Рис. 3. Пример расчёта электрической схемы

В ветви 3-6 необходимо найти потенциал только одного из узлов (рассчитаем для узла 6), так как второй (потенциал узла 3) будет отличаться на значение ЭДС, т.е. $ \underline<\varphi>_ <3>= \underline<\varphi>_<6>— \underline_ <2>$. Далее необходимо составить уравнения для нахождения оставшихся потенциалов в узлах 2, 5 и 6. Следует отметить, что ёмкость ветви с источником тока не повлияет на расчёты, поскольку проводимость этой ветви бесконечно большая, а ток задаётся самим источником.

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- \underline<\varphi>_ <4>\cdot \underline_<7>— \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline<\varphi>_ <1>\cdot \underline_<2>— \underline<\varphi>_ <5>\cdot \underline_<5>— \underline<\varphi>_ <3>\cdot \underline_ <3>= 0 \\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_<3>— \underline<\varphi>_ <1>\cdot \underline_ <1>= \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Подставим известные значения потенциалов, сократив количество неизвестных:

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- 0 \cdot \underline_<7>— \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline_ <1>\cdot \underline_<2>— \underline<\varphi>_ <5>\cdot \underline_<5>— (\underline<\varphi>_<6>— \underline_<2>) \cdot \underline_ <3>= 0 \\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_<3>— \underline_ <1>\cdot \underline_ <1>= \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Перенесём все свободные составляющие в правую часть равенств и получим конечную систему уравнений с тремя неизвестными узловыми потенциалами:

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline<\varphi>_ <5>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <3>= \underline_ <1>\cdot \underline_<2>— \underline_ <2>\cdot \underline_ <3>\\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_ <3>= \underline_ <1>\cdot \underline_ <1>+ \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Для решения системы уравнений с неизвестными узловыми потенциалами, можно воспользоваться Matlab. Для этого представим систему уравнений в матричной форме:

$$ \begin \underline_ <7>+ \underline_ <5>+ \underline_ <8>& -\underline_ <5>& -\underline_ <8>\\ -\underline_ <5>& \underline_ <2>+ \underline_ <5>+ \underline_ <3>& -\underline_ <3>\\ -\underline_ <8>& -\underline_ <3>& \underline_ <8>+ \underline_ <3>+ \underline_ <1>\end \cdot \begin \underline<\varphi>_ <5>\\ \underline<\varphi>_ <2>\\ \underline<\varphi>_ <6>\end = \\ = \begin 0 \\ \underline_ <1>\cdot \underline_<2>— \underline_ <2>\cdot \underline_ <3>\\ \underline_ <1>\cdot \underline_ <1>+ \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Запишем скрипт в Matlab для нахождения неизвестных:

Примечание. Для решения в численном виде необходимо заменить символьное задание переменных реальными значениями проводимостей, ЭДС и тока источника.

В результате получим вектор-столбец $ \underline<\boldsymbol<\varphi>> $ из трёх элементов, состоящий из искомых узловых потенциалов, при этом токи в ветвях через потенциалы узлов:

Для проверки правильности расчёта можно воспользоваться уравнениями по первому закону Кирхгофа: если суммы токов в узлах 2 и 5 равны нулям, значит расчёт выполнен верно:

$$ \underline_ <5>+ \underline_<3>— \underline_ <2>= 0, $$

$$ \underline_ <5>+ \underline_<7>— \underline_ <8>= 0. $$

Итак, метод узловых потенциалов позволяет рассчитывать меньшее количество сложных уравнений для расчёта электрической цепи в сравнении с другими методами при меньшем числе узлов в сравнении с количеством контуров.

Рекомендуемые записи

Наряду с решением электрических схем по законам Кирхгофа и методом контурных токов используется метод узловых…

При исследовании электрических цепей и моделировании часто пользуются векторными диаграммами токов и напряжений. Под векторной…

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Ветвь

Ветвь – это участок электрической цепи от одного узла до другого узла. Ветвь обычно содержит один или несколько последовательно соединенных элементов цепи: сопротивления, источники ЭДС или источники тока.

Ветвь — это участок электрической цепи (схемы), по которому течет один и тот же ток. На электрических схемах ветвью называется участок между двух узлов.

Под последовательным соединением элементов цепи будем понимать соединение, при котором через все эти элементы протекает один и тот же электрический ток. При этом общее эквивалентное сопротивление ветви на постоянном токе складывается алгебраически, а на переменном токе — геометрически. Если в ветви присутствует идеальный источник тока, то сопротивление такой ветви равно бесконечности. Сопротивление ветви, содержащей только идеальные источники ЭДС, равно нулю.

На рисунке видно, как элементы подключены последовательно.

Последовательное соединение сопротивлений

На следующем рисунке видны места, где количество подключенных элементов в одной точке больше двух. Это и есть узел.

Ветвь электрической цепи

На рисунке ветвями являются участки R2, R3, R4, R5 и R7, R8, R9, R10. Эти две ветви подключены между узлами. R1 и R6 можно назвать, как часть ветви, т.к. неизвестно что к ним еще подключено с других концов.

Источник



Расчет цепей с параллельным соединением ветвей

ads

Расчет электрической цепи, рассмотренный в предыдущей статье, можно распространить на цепи, содержащие произвольное число приемников, соединенных параллельно.

1

На рис. 14.14, а параллельно соединены те же элементы цепи, которые были рассмотрены при последовательном соединении (см. рис. 14.7, а). Предположим, что для этой цепи известны напряжение u = Umsinωt . и параметры элементов цепи R, L, С. Требуется найти токи в цепи и мощность.

Векторная диаграмма для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Для мгновенных величин в соответствии с первым законом Кирхгофа уравнение токов

2

Представляя ток в каждой ветви суммой активной и реактивной составляющих, получим

3

Для действующих токов нужно написать векторное уравнение

4

Численные значения векторов токов определяются произведением напряжения и проводимости соответствующей ветви.

На рис. 14.14, б построена векторная диаграмма, соответствующая этому уравнению. За исходный вектор принят, как обычно при расчете цепей с параллельным соединением ветвей, вектор напряжения U, а затем нанесены векторы тока в каждой ветви, причем направления их относительно вектора напряжения выбраны в соответствии с характером проводимости ветвей. Начальной точкой при построении диаграммы токов выбрана точка, совпадающая с началом вектора напряжения. Из этой точки проведен вектор l1a активного тока ветви I (по фазе совпадает c напряжением), а из конца его проведен вектор I1p реактивного тока той же ветви (опережает напряжение на 90°). Эти два вектора являются составляющими вектора I1 тока первой ветви. Далее в том же порядке отложены векторы токов других ветвей. Следует обратить внимание на то, что проводимость ветви 3-3 активная, поэтому реактивная составляющая тока в этой ветви равна нулю. В ветвях 4-4 и 5-5 проводимости реактивные, поэтому в составе этих токов нет активных составляющих.

Расчетные формулы для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Из векторной диаграммы видно, что все активные составляющие векторов тока направлены одинаково — параллельно вектору напряжения, поэтому векторное сложение их можно заменить арифметическими найти активную составляющую общего тока: Iа = I1a + I2a + I3a.

Реактивные составляющие векторов токов перпендикулярны вектору напряжения, причем индуктивные токи направлены в одну сторону, а емкостные — в другую. Поэтому реактивная составляющая общего тока в цепи определяется их алгебраической суммой, в которой индуктивные токи считаются положительными, а емкостные — отрицательными: Ip = — I1p + I2p — I4p + I5p.

Векторы активного, реактивного и полного тока всей цепи образуют прямоугольный треугольник, из которого следует

5

Подставив величины токов в ветвях, выраженные через напряжение и соответствующие проводимости, получим

6

7

где ∑Gnобщая активная проводимость, равная арифметической сумме активных проводимостей всех ветвей; ∑Bn общая реактивная
проводимость, равная алгебраической сумме реактивных проводимостей всех ветвей (в этой сумме индуктивные проводимости считаются положительными, а емкостные — отрицательными); Y — полная проводимость цепи;

Таким образом получена знакомая уже формула (14.12), связывающая напряжение, ток и проводимость цепи [ср. (14.12) и (14.8)].

Следует обратить внимание на возможные ошибки при определении полной проводимости цепи по известным проводимостям отдельных ветвей: нельзя складывать арифметически проводимости ветвей, если токи в них не совпадают по фазе.

Полную проводимость цепи в общем случае определяют как гипотенузу прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активная и реактивная проводимости всей цепи:

8

От треугольника токов можно перейти также к треугольнику мощностей и для определения мощности получить известные уже формулы

9

Активную мощность цепи можно представить как арифметическую сумму активных мощностей ветвей.

10

Реактивная мощность цепи равна алгебраической сумме мощностей ветвей. В этом случае индуктивная мощность берется положительной, а емкостная — отрицательной:

Расчет цепи без определения проводимостей ветвей

Расчет электрической цепи при параллельном соединении ветвей можно выполнить без предварительного определения активных и реактивных проводимостей, т. е. представляя элементы цепи в схеме замещения их активными и реактивными сопротивлениями (рис. 14.15, а).

Определяют токи в ветвях по формуле (14.4);

11

где Z1, Z2 и т. д. — полные сопротивления ветвей.

Полное сопротивление ветви, в которую входят несколько элементов, соединенных последовательно, определяют по формуле (14.5).

12

Для построения векторной диаграммы токов (рис. 14.15, б) можно определить активную и реактивную составляющие тока каждой ветви по формулам

13

и т. д. для всех ветвей.

В этом случае отпадает необходимость определения углов ф1 ф2 и построения их на чертеже.

Ток в неразветвленной части цепи

14

Общий ток и мощность цепи определяются далее в том же порядке, какой был показан ранее (см. формулы (14.10), (14.15), (14.16)].

Источник

Помощь студентам в учёбе

Помощь студентам в учёбе

Я, Людмила Анатольевна Фирмаль, бывший преподаватель математического факультета Дальневосточного государственного физико-технического института со стажем работы более 17 лет. На данный момент занимаюсь онлайн обучением и помощью по любыми предметам. У меня своя команда грамотных, сильных бывших преподавателей ВУЗов. Мы справимся с любой поставленной перед нами работой технического и гуманитарного плана. И не важно: она по объёму на две формулы или огромная сложно структурированная на 125 страниц! Нам по силам всё, поэтому не стесняйтесь, присылайте.

Срок выполнения разный: возможно онлайн (сразу пишите и сразу помогаю), а если у Вас что-то сложное – то от двух до пяти дней.

Для качественного оформления работы обязательно нужны методические указания и, желательно, лекции. Также я провожу онлайн-занятия и занятия в аудитории для студентов, чтобы дать им более качественные знания.

У меня конфиденциальность и безопасность высокого уровня. Никто не увидит Ваше задание, кроме меня и моих преподавателей, потому что WhatsApp и Gmail — это закрытые от индексирования системы , в отличие от других онлайн-сервисов (бирж и агрегаторов), в которые Вы загружаете своё задание, и поисковые системы Yandex и Google индексируют всё содержимое файлов, и любой пользователь сможет найти историю Вашего заказа, а значит, преподаватели смогут узнать всю историю заказа. Когда Вы заказываете у меня — Вы получаете максимальную конфиденциальность и безопасность.

Моё видео:

Помощь студентам в учёбе

Как вы работаете?

Вам нужно написать сообщение в WhatsApp (Контакты ➞ тут) . После этого я оценю Ваш заказ и укажу срок выполнения. Если условия Вас устроят, Вы оплатите, и преподаватель, который ответственен за заказ, начнёт выполнение и в согласованный срок или, возможно, раньше срока Вы получите файл заказа в личные сообщения.

Сколько может стоить заказ?

Стоимость заказа зависит от задания и требований Вашего учебного заведения. На цену влияют: сложность, количество заданий и срок выполнения. Поэтому для оценки стоимости заказа максимально качественно сфотографируйте или пришлите файл задания, при необходимости загружайте поясняющие фотографии лекций, файлы методичек, указывайте свой вариант.

Какой срок выполнения заказа?

Минимальный срок выполнения заказа составляет 2-4 дня, но помните, срочные задания оцениваются дороже.

Как оплатить заказ?

Сначала пришлите задание, я оценю, после вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Какие гарантии и вы исправляете ошибки?

В течение 1 года с момента получения Вами заказа действует гарантия. В течении 1 года я и моя команда исправим любые ошибки в заказе.

Помощь студентам в учёбе

Помощь студентам в учёбе

Качественно сфотографируйте задание, или если у вас файлы, то прикрепите методички, лекции, примеры решения, и в сообщении напишите дополнительные пояснения, для того, чтобы я сразу поняла, что требуется и не уточняла у вас. Присланное качественное задание моментально изучается и оценивается.

Помощь студентам в учёбе

Помощь студентам в учёбе

Теперь напишите мне в Whatsapp или почту (Контакты ➞ тут) и прикрепите задания, методички и лекции с примерами решения, и укажите сроки выполнения. Я и моя команда изучим внимательно задание и сообщим цену.

Помощь студентам в учёбе

Помощь студентам в учёбе

Если цена Вас устроит, то я вышлю Вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Помощь студентам в учёбе

Помощь студентам в учёбе

Мы приступим к выполнению, соблюдая указанные сроки и требования. 80% заказов сдаются раньше срока.

Помощь студентам в учёбе

Помощь студентам в учёбе

После выполнения отправлю Вам заказ в чат, если у Вас будут вопросы по заказу – подробно объясню. Гарантия 1 год. В течении 1 года я и моя команда исправим любые ошибки в заказе.

Помощь студентам в учёбе






of your page —>

Можете смело обращаться к нам, мы вас не подведем. Ошибки бывают у всех, мы готовы дорабатывать бесплатно и в сжатые сроки, а если у вас появятся вопросы, готовы на них ответить.

В заключение хочу сказать: если Вы выберете меня для помощи на учебно-образовательном пути, у вас останутся только приятные впечатления от работы и от полученного результата!

Жду ваших заказов!

С уважением

Помощь студентам в учёбе
Помощь студентам в учёбе
Помощь студентам в учёбе

Помощь студентам в учёбе

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

Помощь студентам в учёбе

Помощь студентам в учёбеf9219603113@gmail.com


Помощь студентам в учёбе

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Читайте также:  Методы увеличении силы тока