Меню

Определить напряжение методом двух узлов

Метод узлового напряжения (двух узлов)

ads

Наиболее простым методом расчета электрической цепи с двумя узлами – является метод узлового напряжения или метод двух узлов.

Важно отличать метод узлового напряжения (метод двух узлов) от метода узловых напряжений.

Содержание

Метод узлового напряжения (двух узлов)

Рисунок 1 – Электрическая цепь с двумя узлами

Рисунок 1 – Электрическая цепь с двумя узлами

Определим разность потенциалов между двумя узлами цепи А и B.

Найдём потенциал точки А, перемещаясь по первой ветви от узла B до А.

Исходя из выражения (1) можно записать:

Выразим ток первой ветви

где r1 и g1 – сопротивление и проводимость первой ветви соответственно.

Аналогично составляются уравнения для оставшихся ветвей.

По первому закону Кирхгофа запишем уравнение для узла B

Подставим в вышеуказанное уравнение выражения токов (2-5).

Раскрыв скобки, находим узловое напряжение U:

Общее выражение узлового напряжения

Исходя из вышеизложенного, узловое напряжение равно отношению алгебраической суммы произведений ЭДС на проводимости соответствующих ветвей к сумме проводимостей всех ветвей. ЭДС направленная к узлу A, записывается со знаком «+», если в противоположную сторону, то со знаком «-».

Давайте рассмотрим применения метода на конкретном примере.

Пример решения задач методом двух узлов (метод узлового напряжения)

Пример. Электрическая цепь постоянного тока представлена на рисунке 2. Определить токи в ветвях методом двух узлов, если ЭДС источников равна E1 = 40 В, E2 = 50 В, E3 = 10 В, а сопротивления r1 = 10 Ом, r2 = 20 Ом, r3 = 15 Ом, r4 = 12 Ом.

Метод узлового напряжения (двух узлов)

Рисунок 2 – Электрическая цепь

Порядок расчёта:

Метод двух узлов

  1. Так как действительные направления токов до расчёта цепи нам неизвестны — произвольно указываем направления токов в ветвях, например, как на Рисунке 3.

Рисунок 3

  1. Определим проводимость ветвей.

  1. Найдем напряжение U. Для этого воспользуемся формулой 6.

В числителе записываем произведения ЭДС на проводимости соответствующих ветвей, причем ЭДС направленная к узлу A, записывается со знаком «+», если в противоположную сторону, то со знаком «-».

В знаменателе указываем сумму проводимостей всех ветвей:

Подставляем раннее найденные значения проводимостей и значения ЭДС указанные в условии задачи:

  1. Определим токи в ветвях. С учетом направления ЭДС

Подставляем численные значения

Токи I3 и I4 получились с отрицательными значениями, следовательно их направление противоположно ранее принятому.

Читайте также:  Способ понижения переменного напряжения

Рисунок 4 – Реальные направления токов.

Рисунок 4 – Реальные направления токов.

Правильность решения можно проверить при помощи баланса мощностей.

Так же для себя правильность решения задачи можно проверить выполнением первого закона Кирхгофа, а именно:

Источник

Метод двух узлов. Решение задач

Одним из распространенных методов расчета электрических цепей является метод двух узлов. Этот метод применяется в случае, когда в цепи всего два узла.

Алгоритм действий таков:

1 — Потенциал одного из узлов принимается равным нулю

2 — Составляется узловое уравнение для другого узла

3 — Определяется напряжение между узлами

4 — По закону Ома, находятся токи в ветвях

1 – Примем потенциал узла 2 равным нулю φ2=0. Тогда напряжение U12 будет направлено из точки с большим потенциалом, к точке с меньшим.

2 — Составим узловое уравнение для узла 1.

где g1,g2,g3 проводимости ветвей Знак ЭДС определяется её направлением, если к узлу, то положительное, если от узла – отрицательное.

3 – Определим напряжение U12 между узлами

А так как φ2=0, то

Для общего случая формула напряжения выглядит следующим образом

4 – Найдем токи в ветвях. Причем если направление ЭДС совпадает с направление напряжения, то берем напряжение со знаком плюс. В противном случае со знаком минус.

Как всегда, лучше всего проверить задачу с помощью баланса мощностей. Напомним, что мощность источников ЭДС должна быть равна мощности приемников.

Таким образом, задача решена методом двух узлов. Спасибо за внимание!

Источник



1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравнений методом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).

Отметим, что метод узловых потенциалов без предварительного преобразования схемы не применим к схемам с взаимной индукцией.

Читайте также:  Межфазное напряжение 380 сколько вольт

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), не имеющих общего узла нужно применять особые способы составления системы уравнений метода узловых потенциалов.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), имеющих общий узел, этот общий узел принимают за опорный узел (заземляют). Тогда потенциалы узлов, соединенных этими идеальными источниками ЭДС без пассивных элементов с опорным узлом, равны ЭДС этих идеальных источников (+E, если идеальный источник ЭДС направлен от опорного узла и –E в противном случае).

Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.

Решение задач методом узловых потенциалов и методом двух узлов

Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов.

Решение. В рассматриваемой схеме четыре узла. Заземлим узел 4 (опорный узел)

φ 3 = φ 4 + E 2 = 200 B .

Необходимо найти потенциалы узлов 1 и 2. Составим систему уравнений по методу узловых потенциалов для узлов 1 и 2.

Рассматривая узел 1, получим

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 − φ 3 ⋅ g 13 = J + E 1 R 1 + R ′ 1

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 = J + E 1 R 1 + R ′ 1 + E 1 ⋅ g 13 .

В правой части этого уравнения оба слагаемых учтены со знаком плюс, так как J и E1 направлены к узлу 1.

Рассматривая узел 2 (правая часть уравнения равна нулю, так как в ветвях, подсоединенных к узлу 2, нет источников энергии), получим

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 − φ 3 ⋅ g 23 = 0

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 = E 2 ⋅ g 23 .

Найдем собственную проводимость первого узла

g 11 = 1 R 6 + 1 R 1 + R ′ 1 + 1 R И Т + 1 R 2 + 1 R 5 = 1 20 + 1 25 + 1 25 + 1 40 = 0,155 С м .

Проводимость ветви с идеальным источником тока равна нулю, так как внутреннее сопротивление идеального источника тока RИТ равно бесконечности.

Собственная проводимость узла 2

g 22 = 1 R 2 + 1 R 3 + 1 R 4 = 1 25 + 1 30 + 1 35 = 0,102 С м .

Взаимные проводимости между узлами

g 13 = 1 R 6 + 1 R 1 + R ′ 1 = 1 20 + 1 25 = 0,09 С м ; g 21 = g 12 = 1 R 2 = 1 25 = 0,04 С м ; g 23 = 1 R 3 = 1 30 = 0,033 С м .

Читайте также:  При регулировке температурных напряжений раскрепление рельса производится

Подставив в уравнения известные величины, получим

Для решения этой системы используем метод определителей. Главный определитель системы

Δ = | 0,155 − 0,04 − 0,04 0,102 | = 0,01421.

Δ 1 = | 39 − 0,04 6,6 0,102 | = 4,242 ; Δ 2 = | 0,155 39 − 0,04 6,6 | = 2,583.

Находим потенциалы узлов

φ 1 = Δ 1 Δ = 4,242 0,01421 = 298,6 В ; φ 2 = Δ 2 Δ = 2,583 0,01421 = 181,8 В .

Определяем токи в ветвях (положительные направления токов в ветвях с ЭДС выбираем по направлению ЭДС, в остальных ветвях произвольно)

I 1 = φ 3 − φ 1 + E 1 R 1 + R ′ 1 = 200 − 298,6 + 150 10 + 15 = 2,056 А .

В числителе этого выражения от потенциала узла 3, из которого вытекает ток I1, вычитается потенциал узла 1, к которому ток подтекает. Если ЭДС ветви совпадает (не совпадает) с выбранным направлением тока, то она учитывается со знаком плюс (минус). В знаменателе выражения учитываются сопротивления ветви.

Аналогично определяем другие токи (направления токов указаны на схеме рис. 1.4.1)

I 1 = φ 3 − φ 1 R 6 = 200 − 298,6 20 = − 4,93 А ; I 2 = φ 1 − φ 2 R 2 = 298,6 − 181,8 25 = 4,67 А ; I 3 = φ 3 − φ 2 R 3 = 200 − 181,8 30 = 0,607 А ; I 4 = φ 2 − φ 4 R 4 = 181,8 − 0 35 = 5,194 А .

Для определения тока в ветви с идеальной ЭДС зададимся направлением тока I7. По первому закону Кирхгофа для узла 3 составим уравнение

− I 7 + I 3 + I 1 + I 6 = 0.

I 7 = I 3 + I 1 + I 6 = 0,607 + 2,056 − 4,98 = − 2,317 A .

Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения.

1 Находим напряжение между двумя узлами по методу двух узлов

U a b = φ a − φ b = E 1 ⋅ g 1 + J g 1 + g 2 + g 3 = 32 ⋅ 1 1 + 18 1 1 + 1 6 + 1 2 = 30 B .

При составлении этого уравнения по методу двух узлов в числителе необходимо брать произведение ЭДС на проводимость своей ветви со знаком плюс, если ЭДС направлена к узлу a, и минус – если направлена от узла a к узлу b.

Аналогичное правило определяет и знаки токов источников тока.

2 Находим токи по закону Ома (по закону Ома для ветви с ЭДС)

I 1 = E 1 + φ b − φ a R 1 = E 1 − U a b R 1 = 32 − 30 1 = 2 А ; I 2 = U a b R 2 = 30 6 = 5 А ; I 3 = U a b R 3 = 30 2 = 15 А .

Правильность решения проверим по первому закону Кирхгофа

I 1 − I 2 + I 3 + J = 0 ; 2 − 5 − 15 + 18 = 0.

Источник