Определение постоянной времени. Переходные процессы в R-L-C-цепи.
Переходные процессы в цепи с одним накопителем
энергии и произвольным числом резисторов
Как отмечалось в предыдущей лекции, линейная цепь охвачена единым переходным процессом. Поэтому в рассматриваемых цепях с одним накопителем энергии (катушкой индуктивности или конденсатором) – цепях первого порядка – постоянная времени будет одной и той же для всех свободных составляющих напряжений и токов ветвей схемы, параметры которых входят в характеристическое уравнение.
Общий подход к расчету переходных процессов в таких цепях основан на применении теоремы об активном двухполюснике: ветвь, содержащую накопитель, выделяют из цепи, а оставшуюся часть схемы рассматривают как активный двухполюсник А (эквивалентный генератор) (см. рис.1, а) со схемой замещения на рис. 1,б.
Совершенно очевидно, что постоянная времени здесь для цепей с индуктивным элементом определяется, как:
и с емкостным, как:
где — входное сопротивление цепи по отношению к зажимам 1-2 подключения ветви, содержащей накопитель энергии.
Например, для напряжения на конденсаторе в цепи на рис. 2 можно записать
где в соответствии с вышесказанным
Переходные процессы при подключении последовательной
R-L-C-цепи к источнику напряжения
Рассмотрим два случая:
Согласно изложенной в предыдущей лекции методике расчета переходных процессов классическим методом для напряжения на конденсаторе в цепи на рис. 3 можно записать
. | (1) |
Тогда для первого случая принужденная составляющая этого напряжения
. | (2) |
Характеристическое уравнение цепи
решая которое, получаем
В зависимости от соотношения параметров цепи возможны три типа корней и соответственно три варианта выражения для свободной составляющей:
1. или , где — критическое сопротивление контура, меньше которого свободный процесс носит колебательный характер.
В этом случае
. | (3) |
2. — предельный случай апериодического режима.
В этом случае и
. | (4) |
3. — периодический (колебательный) характер переходного процесса.
В этом случае и
, | (5) |
где — коэффициент затухания; — угловая частота собственных колебаний; — период собственных колебаний.
Для апериодического характера переходного процесса после подстановки (2) и (3) в соотношение (1) можно записать
Для нахождения постоянных интегрирования, учитывая, что в общем случае и в соответствии с первым законом коммутации , запишем для t=0 два уравнения:
решая которые, получим
Тогда ток в цепи
и напряжение на катушке индуктивности
На рис. 4 представлены качественные кривые , и , соответствующие апериодическому переходному процессу при .
Для критического режима на основании (2) и (4) можно записать
Для колебательного переходного процесса в соответствии с (2) и (5) имеем
Для нахождения постоянных интегрирования запишем
На рис. 5представлены качественные кривые и , соответствующие колебательному переходному процессу при .
При подключении R-L-C-цепи к источнику синусоидального напряжения для нахождения принужденных составляющих тока в цепи и напряжения на конденсаторе следует воспользоваться символическим методом расчета, в соответствии с которым
Здесь также возможны три режима:
1. ; | 2. | 3. |
Наибольший интерес представляет третий режим, связанный с появлением во время переходного процесса собственных колебаний с частотой . При этом возможны, в зависимости от соотношения частот собственных колебаний и напряжения источника, три характерные варианта: 1 — ; 2 — ; 3 — , — которые представлены на рис. 6,а…6,в соответственно.
Литература
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.
Контрольные вопросы
- Как можно определить постоянную времени в цепи с одним накопителем энергии по осциллограмме тока или напряжения в какой-либо ветви?
- Определить, какой процесс: заряд или разряд конденсатора в цепи на рис. 2 – будет происходить быстрее?
Определить ток в ветви с конденсатором в цепи на рис. 8, если ; ; ; .
Источник
Переходные процессы в RC- и RL- цепях
Переходными, в электрической цепи, принято называть процессы возникающие в результате различных воздействий (например: включений или отключений цепи от источника питания, обрывах или коротких замыканиях, импульсных возмущающих воздействий и так далее) и переводящих её из одного стационарного (установившегося) состояния в новое (другое) стационарное состояние.
Рассмотрим переходный процесс в RC-цепи (рисунок 1), в состав которой входят резистор R, конденсатор С, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.
Рисунок 1. Схема RC-цепи.
Если установить ключ К в положение ”1” (рисунок 1), то начнётся процесс заряда конденсатора С через резистор R (рисунок 2,a). Для образовавшейся цепи будет справедливо соотношение :
Так как на конденсаторе напряжение скачком изменяться не может, то в момент (t=0) подключения цепи к источнику питания всё напряжение источника окажется на резисторе R, то есть uR = U, uc = 0.
В начальный момент времени заряда конденсатора, ток в RC-цепи будет иметь наибольшее значение: i=U/R. Конденсатор начнёт заряжаться, напряжение на нём “постепенно” повышается, что, в свою очередь, приведёт к уменьшению падения напряжения на резисторе uR = U — uC, а следовательно и уменьшению тока в RC-цепи, вплоть до его ”полного” прекращения. Напряжение на конденсаторе, во время заряда, нарастает по экспоненциальной зависимости согласно формуле:
где t – любой момент времени, τ – постоянная времени заряда конденсатора в секундах:
Значения напряжения на резисторе и общего тока RC-цепи уменьшаются также по экспоненциальному закону:
Рисунок 2. Переходные процессы в RC-цепи. (а – при подключении к источнику; б –при замыкании цепи)
Из приведенных выше математических выражений, а также изображений на рис.2,а можно сделать вывод что, величина τ характеризует скорость заряда конденсатора или скорость затухания переходного процеесса. Через время t= τ , после подключения RC-цепи к источнику постоянного напряжения, напряжение на конденсаторе достигнет значения , а напряжение на резисторе уменьшится до значения
. Процесс заряда конденсатора будет продолжаться до тех пор, пока напряжения на его выводах не достигнет значения равного напряжению источника питания U. Когда заряд конденсатора закончится — ток в RC-цепи становится равным нулю. Теоретически, для “полного” заряда конденсатора, потребуется бесконечно большое время.
Поэтому, принято считать, что процесс заряда конденсатора заканчивается, когда напряжение на нём достигает значений 90,95 или 99% величины напряжения источника питания U=E.
В подавляющем большинстве случаев, как на практике, так и в теоретических расчётах, время t в течение которого конденсатор считается полностью заряженным, принимают равным 3τ. Также это можно отнести ко всем электрическим цепям, где токи меняются по экспоненциальному закону.
Если установить ключ К в положение ”2” (рисунок 1) то начнётся новый переходный процесс — разряд конденсатора С через резистор R (рисунок 2,a). В этом случае предварительно заряженный конденсатор становится фактическим источником напряжения, т.к. источник внешнего напряжения E=U перестаёт действовать и для любого момента времени становится действительным соотношение uC + uR = 0, то есть uC = -uR.
Ток в начальный момент ( t=0) разряда конденсатора будет иметь максимальное значение:
Но по мере разряда конденсатора (превращения накопленной в его электрическом поле энергии в тепловую на резисторе R ) напряжение на нём будет уменьшаться и, как следствие, будут уменьшаться по экспоненциальному закону ток в цепи и напряжение на резисторе:
Через некоторое время, например t=3τ (см. приведенную выше табл.), на конденсаторе останется примерно 5% напряжения от начального значения, что условно можно считать окончанием переходного процесса и возвратом схемы в исходное состояние когда: uC = 0, uR = 0, i = 0.
Теперь рассмотрим переходной процесс в RL-цепи (рис.3), в состав которой входят резистор R, катушка индуктивности L, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.
Рисунок 3. Схема RL-цепи.
При подключении к источнику E=U, переводом ключа “K” в положение 1, ток в RL-цепи не сразу достигнет значения i=U/R, а будет нарастать по экспоненциальному закону (см.рис.4,а). Это связано с тем, что кроме источника E=U, в цепи с индуктивностью L начинает действовать ЭДС самоиндукции eL, препятствующая нарастанию тока. В момент включения, когда t=0, ЭДС самоиндукции максимальна и принимает значение eL = -U, при этом все напряжения выделяются на катушке индуктивности L : , так как при t=0 ток в цепи i=0, следовательно iR = 0. С течением времени напряжение на катушке uL уменьшается, а ток i и напряжение на резисторе uR экспоненциально возрастают:
где τ – постоянная времени RL-цепи,
Рисунок 4. Переходные процессы в RL-цепи.
(а – при подключении к источнику; б –при замыкании цепи)
На рисунке 4,а показано что ток в цепи, особенно в начале подключения к источнику, нарастает с наибольшей скоростью, но уже при t= τ его рост значительно замедляется, а при t=3τ практически прекращается и можно считать что его величина достигла установившегося значения i=U/R. При этом, с ростом тока, ЭДС самоиндукции уменьшается до нуля, переходной процесс заканчивается.
Переведём ключ К в положение ”2” (рисунок 3) – начнётся обратный переходной процесс, ”разряда” накопленной катушкой индуктивноси “энергии магнитного поля” и превращения её в тепловую на резисторе R, . В самом начале этого переходного процесса (рисунок 4,б) напряжение на катушке возрастает скачком от нуля до uL = -U. В дальнейшем, начинается процесс уменьшения по экспоненциальному закону тока и напряжения на элементах R-L цепи:Итого:
- переходные процессы в обеих цепях, как RC так и RL , происходят в соответствии с экспоненциальным законом ;
- в момент подключения RC-цепи к постоянному источнику питания напряжение на конденсаторе “минимамальное” и практически равняется нулю uc = 0 (если он был разряжен), но при этом по цепи протекает максимальный ток i=U/R, значение которого постепенно уменьшается по мере заряда конденсатора (рисунок 2,а);
- в момент подключения RL-цепи к постоянному источнику питания напряжение на катушке индуктивности принимает максимальное значение и приравнивается к величине напряжения источника, а ток имеет минимальное значение и практически равен нулю i=0, но с течением времени, по мере уменьшения ЭДС самоиндукции катушки, принимает значение i=U/R (рисунок 4,а);
- величина τ характеризует скорость затухания переходного процесса:
- постоянная времени RC-цепи —
;
- постоянная времени RL-цепи —
;
Источник
Постоянная времени электрической цепи — что это такое и где используется
Природе свойственны периодические процессы: день сменяет ночь, теплое время года сменяется холодным и т. д. Период этих событий почти постоянен и поэтому может быть строго определен. Кроме того, мы вправе утверждать, что приведенные в качестве примера периодические природные процессы не являются затухающими, по крайней мере по отношению к продолжительности жизни одного человека.
Однако в технике, а в электротехнике и в электронике — особенно, далеко не все процессы являются периодическими и незатухающими. Обычно какой-нибудь электромагнитный процесс сначала возрастает, а затем убывает. Часто дело ограничивается лишь фазой начала колебания, которое так и не успевает толком набрать размах.
Сплошь и рядом в электротехнике можно встретить так называемые экспоненциальные переходные процессы, суть которых заключается в том, что система просто стремится придти к какому-то равновесному состоянию, которое в конце концов выглядит как состояние покоя. Такой переходный процесс может быть как нарастающим, так и спадающим.
Внешняя сила сначала выводят динамическую систему из состояния равновесия, а затем не препятствует естественному возврату данной системы к ее исходному состоянию. Эта последняя фаза и есть так называемый переходный процесс, которому свойственна определенная длительность. Кроме того процесс выведения системы из равновесия также является переходным процессом с характерной длительностью.
Так или иначе, постоянной времени переходного процесса мы называем его временную характеристику, определяющую время, через которое некоторый параметр данного процесса изменится в «е» раз, то есть увеличится или уменьшится примерно в 2,718 раз по сравнению с состоянием, принятым за исходное.
Рассмотрим для примера электрическую цепь, состоящую из источника постоянного напряжения, конденсатора и резистора. Подобного рода цепь, где резистор включен последовательно с конденсатором, называется интегрирующей RC-цепью.
Если в начальный момент времени подать на такую цепь питание, то есть установить на входе некоторое постоянное напряжение Uвх, то Uвых — напряжение на конденсаторе, начнет по экспоненте нарастать.
Через время t1 напряжение на конденсаторе достигнет 63,2% от напряжения на входе. Так вот, промежуток времени от начального момента до t1 – это и будет постоянная времени данной RC-цепи.
Данную константу цепи называют «тау», она измеряется в секундах, а обозначают ее соответствующей греческой буквой. Численно для RC-цепи она равна R*C, где R выражается в омах, а С — в фарадах.
Интегрирующие RC-цепи применяются в электронике в качестве фильтров нижних частот, когда более высокие частоты необходимо отсечь (подавить), а более низкие — пропустить.
Практически механизм такой фильтрации зиждиться на следующем принципе. Для переменного тока конденсатор выступает как емкостное сопротивление, значение которого обратно пропорционально частоте, то есть чем выше частота — тем меньшим будет реактивное сопротивление конденсатора в омах.
Следовательно, если пропустить через RC-цепь переменный ток, то, как на плечах делителя напряжения, на конденсаторе упадет определенное напряжение, пропорциональное его емкостному сопротивлению на частоте пропускаемого тока.
Если известна частота среза и амплитуда входного переменного сигнала, то для разработчика не составит труда подобрать такие конденсатор и резистор в RC-цепь, чтобы минимальное (граничное) напряжение (для частоты среза — верхней частотной границы) приходилось на конденсатор как на реактивное сопротивление, входящее в состав делителя в совокупности с резистором.
Теперь рассмотрим так называемую дифференцирующую цепь. Это цепь, состоящая из последовательно соединенных резистора и катушки индуктивности, RL-цепь. Ее постоянная времени численно равна L/R, где L – индуктивность катушки в генри, а R – сопротивление резистора в омах.
Если к такой цепи приложить постоянное напряжение от источника, то через время тау напряжение на катушке уменьшится по сравнению с U вх на 63,2%, то есть в полном соответствии со значением постоянной времени для данной электрической цепи.
В цепях переменного тока (переменных сигналов) LR-цепи применяются в качестве фильтров верхних частот, когда низкие частоты необходимо отсечь (подавить), а частоты выше (выше частоты среза — нижней частотной границы)— пропустить. Так вот, индуктивное сопротивление катушки тем больше, чем выше частота.
Как и в случае с рассмотренной выше RC-цепью, здесь используется принцип делителя напряжения. Ток более высокой частоты, пропускаемый через RL-цепь, вызовет большее падение напряжения на индуктивности L, как на индуктивном сопротивлении, входящем в состав делителя напряжения в совокупности с резистором. Задача разработчика — подобрать такие R и L, чтобы минимальное (граничное) напряжение на катушке получалось как раз на частоте среза.
Источник
Термин: Постоянная времени RC-цепи
τ – постоянная времени RC-цепи – это временна́я характеристика простой электрической цепи, в которой происходит изменение заряда конденсатора С за счёт его разряда через сопротивление R. Постоянная времени вычисляется как τ=R*C [Ф*Ом], что эквивалентно размерности «секунда» [c].
Как показано на рисунке, постоянная времени τ входит в аналитическую функцию описания процесса изменения напряжения на конденсаторе U(t) при его заряде от источника напряжения через сопротивление R. На рисунке U(0) – это начальное напряжение на конденсаторе (в момент времени t=0), а U(∞) – это напряжение источника напряжения, к которому асимтотически стремится U(t).
За время, равное τ, напряжение на конденсаторе изменяется от U(0) до U(∞) + [U(0) — U(∞)]/e, где e=2,718. .
Экспоненциальный заряд конденсатора происходит для случая U(∞) > U(0), а экспоненциальный разряд – для случая U(∞) -t/τ ) в моменты времени t от t=0,001τ до t=10τ протекания экспоненциального процесса.
Время процесса в единицах τ=RC | Доля неустановившейся величины напряжения e -t/τ | |
---|---|---|
*100, % | *10 6 , ppm | |
0,001τ | ≈99,9% | ≈999000 |
0,01τ | ≈99% | ≈990000 |
0,1τ | ≈90% | ≈900000 |
0,5τ | ≈61% | ≈610000 |
τ | ≈37% | ≈370000 |
2τ | ≈14% | ≈140000 |
3τ | ≈5,0% | ≈50000 |
4τ | ≈1,8% | ≈1800 |
5τ | ≈0,67% | ≈6700 |
6τ | ≈0,25% | ≈2500 |
7τ | ≈0,091% | ≈910 |
8τ | ≈0,034% | ≈340 |
9τ | ≈0,012% | ≈120 |
10τ | ≈0,0045% | ≈45 |
Понятие постоянной времени RC-цепи помогает оценить время протекания процесса при анализе эквивалентных электрических схем, содержащих RC-цепи. Заметим только, что понятие постоянной времени не применимо для частного случая заряда-разряда конденсатора постоянным током, где закон изменения напряжения и заряда на конденсаторе имеет линейный характер, а не экспоненциальный.
Постоянные времени RC-цепей (в качестве величин с прозрачным физическим смыслом) участвуют в аналитических решениях дифференциальных уравнений, описывающих не только экспоненциальные процессы в электрических схемах, содержащих RC-цепи (например, пассивные и активные RC-фильтры).
Источник