Меню

Определить емкость конденсатора если через него проходит ток частотой 50 гц

Механические и электромагнитные колебания

101. Цепь переменного тока состоит из последовательно соединенных катушки, конденсатора и резистора. Амплитудное значение суммарного напряжения на катушке и конденсаторе ULCm = 173 В, а амплитудное значение напряжения на резисторе URm = 100 В. Определите сдвиг фаз между током и внешним напряжением.

102. В цепь переменного тока частотой ν = 50 Гц последовательно включены резистор сопротивлением R = 100 Ом и конденсатор емкостью C = 22 мкФ. Определите, какая доля напряжения, приложенного к этой цепи, приходится на падение напряжения на конденсаторе.

103. В цепь переменного тока с частотой ν = 50 Гц и действующим значением напряжения U = 300 В последовательно включены конденсатор, резистор сопротивлением R = 50 Ом и катушка индуктивностью L = 0,1 Гн. Падения напряжения U1 : U2 = 1:2. Определите: 1) емкость конденсатора; 2) действующее значение силы тока.

104. Генератор, частота которого составляет 32 кГц и амплитудное значение напряжения 120 В, включен в резонирующую цепь, емкость которой C = 1 нФ. Определите амплитудное значение напряжения на конденсаторе, если активное сопротивление цепи R = 5 Ом.

105. В цепи переменного тока с частотой ω = 314 рад/с вольтметр показывает нуль при L = 0,2 Гн. Определите емкость конденсатора.

106. В цепи переменного тока (см. рисунок задачи 105) с частотой ν = 50 Гц вольтметр показывает нуль при значении C = 20 мкФ. Определите индуктивность катушки.

107. В приведенной на рисунке цепи переменного тока с частотой ν = 50 Гц сила тока внешней (неразветвленной) цепи равна нулю. Определите емкость С конденсатора, если индуктивность L катушки равна 1 Гн.

108. Активное сопротивление колебательного контура R = 0,4 Ом. Определите среднюю мощность

, потребляемую колебательным контуром, при поддержании в нем незатухающих гармонических колебаний с амплитудным значением силы тока Im = 30 мА.

109. Как и какими индуктивностью L и емкостью С надо подключить катушку и конденсатор к резистору сопротивлением R = 10 кОм, чтобы ток через катушку и конденсатор был в 10 раз больше общего тока? Частота переменного напряжения ν = 50 Гц.

110. Колебательный контур содержит конденсатор емкостью C = 5 нФ и катушку индуктивностью L = 5 мкГн и активным сопротивлением R = 0,1 Ом. Определите среднюю мощность

, потребляемую колебательным контуром, при поддержании в нем незатухающих гармонических колебаний с амплитудным значением напряжения на конденсаторе Umc = 10 В.

111. Колебательный контур содержит катушку индуктивностью L = 6 мкГн и конденсатор емкостью С = 1,2 нФ. Для поддержания в колебательном контуре незатухающих гармонических колебаний с амплитудным значением напряжения на конденсаторе Umc = 2 В необходимо подводить среднюю мощность

= 0,2 мВт. Считая затухание в контуре достаточно малым, определите добротность данного контура.

112. В сеть переменного тока с действующим значением напряжения 120 В последовательно включены проводник с активным сопротивлением 10 Ом и катушка индуктивностью 0,1 Гн. Определите частоту ν тока, если амплитудное значение силы тока в цепи равно 5 А.

113. Диэлектрик, диэлектрическая проницаемость которого равна 2,8, используется в конденсаторе в качестве изолятора. Конденсатор, находясь под напряжением, поглощает некоторую мощность, причем при ν = 50 Гц коэффициент мощности cos φ = 0,1. Определите удельное сопротивление диэлектрика.

114. В цепь переменного тока напряжением Um = 220 В и частотой 50 Гц включена катушка с активным сопротивлением. Сдвиг фаз между напряжением и током составляет π/6. Определите индуктивность катушки, если известно, что она поглощает мощность 445 Вт.

115. Цепь, состоящая из последовательно соединенных безындукционного резистора сопротивлением R = 100 Ом и катушки с активным сопротивлением, включена в сеть с действующим напряжением U = 300 В. Воспользовавшись векторной диаграммой, определите тепловую мощность, выделяемую на катушке, если действующее значение напряжения на сопротивлении и катушке соответственно равно UR = 150 В и UL = 250 В.

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

Источник

§ 2.14. Примеры решения задач

При решении задач на электрические колебания рекомендуется учесть следующее. В задачах на свободные колебания в контуре, кроме формулы для периода свободных электрических колебаний (2.3.2), можно применять закон сохранения энергии.

При решении задач на расчет цепей переменного тока следует иметь в виду, что амперметры и вольтметры в этих цепях показывают действующие значения силы тока (2.5.4) и действующие значения напряжения (2.5.5).

В отличие от цепей постоянного тока, обладающих только активным сопротивлением, цепи переменного тока могут иметь еще емкостное сопротивление (2.7.4) и индуктивное сопротивление (2.8.5). Полное сопротивление цепи с последовательно соединенными резистором, конденсатором и катушкой индуктивности определяется по формуле (2.9.4). Закон Ома для цепи переменного тока имеет вид (2.9.5).

При последовательном соединении потребителей в цепях переменного тока действующие или амплитудные значения напряжений складываются методом векторной диаграммы. При параллельном соединении потребителей в цепях переменного тока векторно складываются амплитуды сил токов или их действующие значения. В этом случае тоже следует строить векторные диаграммы. При построении векторных диаграмм надо хорошо знать фазовые соотношения между колебаниями силы тока и напряжения в цепях переменного тока.

Мощность вычисляется по формуле (2.10.4). Явление резонанса в электрической цепи имеет место при условии (2.11.1).

Задача 1

Колебательный контур состоит из катушки индуктивностью L = 6 • 10 -3 Гн и конденсатора емкостью С = 15 мкФ. Максимальная разность потенциалов на конденсаторе Um = 200 В. Чему равна сила тока i в контуре, когда разность потенциалов на конденсаторе уменьпгилась в n = 2 раза? Потерями энергии пренебречь.

Решение. Когда напряжение на обкладках конденсатора максимально, вся энергия контура сосредоточена в электрическом поле конденсатора (см. § 2.2.). Она равна . При уменьшении напряжения на обкладках конденсатора до значения энергия контура распределяется между конденсатором и катушкой. Энергия электрического поля конденсатора становится равной , а энергия магнитного поля катушки будет равна .

Согласно закону сохранения энергии имеем:

Задача 2

Напряжение на концах участка цепи, по которому течет переменный ток, изменяется с течением времени по закону

В момент времени мгновенное значение напряжения u = 10 В. Определите амплитуду напряжения Um и циклическую частоту ω, если период колебаний силы тока Т = 0,01 с. Начертите график зависимости изменения напряжения от времени.

Решение. Сначала найдем значение циклической частоты:

Далее записываем выражение для мгновенного значения напряжения в момент времени :

График изменения напряжения в зависимости от времени представлен на рисунке 2.33.

Задача 3

В цепь переменного тока стандартной частоты (v = 50 Гц) последовательно включены резистор сопротивлением R = 21 Ом, катушка индуктивностью L = 0,07 Гн и конденсатор емкостью С = 82 мкФ (см. рис. 2.20). Определите индуктивное, емкостное и полное сопротивления цепи, а также сдвиг фаз между силой тока и напряжением.

Решение. Индуктивное сопротивление находим по формуле (2.8.5):

Емкостное сопротивление вычисляется по формуле (2.7.4):

Полное сопротивление согласно формуле (2.9.4) равно:

Задача 4

К магистрали переменного тока с напряжением U = 120 В (U — действующее значение напряжения) через катушку (дроссель) с индуктивностью L = 0,05 Гн и активным сопротивлением R = 1 Ом подключена осветительная сеть квартиры (рис. 2.34, а). Каково напрялсение U1 на входе в квартиру, если сила потребляемого тока I = 2 А? Частота тока стандартная (V = 50 Гц). Индуктивностью и емкостью электрической цепи квартиры пренебречь.

Решение. Дроссель и осветительная сеть квартиры подключены к магистрали последовательно, поэтому сила тока одинакова на всех участках цепи. Напряжение U1 и напряжение UR на активном сопротивлении дросселя совпадают по фазе с силой тока I. Напряжение U1 на индуктивном сопротивлении дросселя опережает силу тока по фазе на π/2. Следовательно, векторная диаграмма для действующих значений напряжений и силы тока имеет вид, изображенный на рисунке 2.34, б.

По теореме Пифагора

где ω = 2πv. Так как действующее значение напряжения всегда пололсительно, то

Задача 5

В цепи (рис. 2.35) параметры R, L и С известны. Напряжение между точками А и В равно U. Постройте векторную диаграмму сил токов в данной цепи и определите силу тока в неразветвленном участке цепи. Найдите сдвиг фаз между колебаниями силы тока и напряжения. При каком условии сила тока в неразветвленном участке цепи окажется минимальной? Чему равен сдвиг фаз между силой тока и напряжением в этом случае?

Решение. В этой задаче рассматривается электрическая цепь, состоящая из двух ветвей, соединенных параллельно. Одна ветвь содержит резистор и катушку индуктивности, другая — конденсатор.

Построение векторной диаграммы начнем с вектора действующего значения напряжения , поскольку напряжение одинаково для обеих ветвей цепи. Направим вектор горизонтально вправо (рис. 2.36).

Сила тока i является суммой сил токов i1 и i2 (см. рис. 2.35). Колебания силы тока i1 отстают по фазе от колебаний напряжения на угол φ1 , так как верхний участок цепи содержит катушку индуктивности.

Поэтому вектор 1 повернут относительно вектора на угол φ1 в отрицательную сторону (по часовой стрелке). Сила тока i2. текущего через конденсатор, опережает по фазе напряжение на π/2. Соответствующий вектор 2 повернут относительно вектора на угол π/2 в положительную сторону (против часовой стрелки). Его модуль I2 = ωCU. Действующее значение силы тока в неразветвленной части цепи находится с помощью векторной диаграммы (см. рис. 2.36):

Пользуясь теоремой косинусов, из векторной диаграммы определяем

Так как α = — φ1, то cos α = sin φ1 и

Как видно из векторной диаграммы (см. рис. 2.36), вектор силы тока образует с вектором напряжения угол φc. Из рисунка находим

Учитывая, что получим

Из выражения (2.14.1) вытекает, что сила тока в неразветвленном участке цепи минимальна, если LCω 2 — 1 = 0, т. е. если ω = . Но = ω — это циклическая частота собственных колебаний контура, входящего в состав данной цепи. В этом случае говорят, что в цепи наступил резонанс токов.

При резонансе токов, как следует из формулы (2.14.2),

При малом активном сопротивлении (R ⇒ 0)

Это значит, что при резонансе токов при малом активном сопротивлении сдвиг фаз между силой тока и напряжением равен нулю (рис. 2.37). Важно обратить внимание на то, что при резонансе сила тока I в неразветвленной части цепи меньше силы тока I1 в ветви, содержащей последовательно соединенные резистор сопротивлением R и катушку индуктивностью L, а также меньше силы тока I2 в ветви с конденсатором емкостью С.

Читайте также:  Коэффициент передачи тока эмиттера биполярного транзистора

Задача 6

В колебательный контур (см. рис. 2.20) включен источник переменной ЭДС е = Em cos ωt, причем амплитуда Em = 2 В. Определите амплитуду напряжения на конденсаторе при резонансе. Резонансная частота контура V = 10 5 Гц, индуктивность катушки L = 1 мГн и ее активное сопротивление R = 3 Ом.

Решение. При резонансе амплитуда напряжения на конденсаторе, равная амплитуде напряжения на катушке UmL (UmC = UmL), больше амплитуды напряжения на зажимах цепи Um в отношении . Если пренебречь внутренним сопротивлением источника переменной ЭДС, то Um = Em. Тогда

Упражнение 2

1. После зарядки конденсатора емкостью С от источника постоянного напряжения U переключатель замыкают на катушку индуктивностью L1 (см. рис. 2.5, б). В контуре возникают гармонические колебания с амплитудой силы тока Im1. Опыт повторяют по прежней схеме, заменив катушку на другую индуктивностью L2 = 2L1. Найдите амплитуду силы тока Im2 во втором случае.

2. Колебательный контур состоит из дросселя индуктивностью L = 0,2 Гн и конденсатора емкостью С = 10 -5 Ф. Конденсатор зарядили до напряжения U = 20 В. Чему равна сила тока при разрядке конденсатора в момент, когда энергия контура оказывается распределенной поровну между электрическим и магнитным полями?

3. Определите частоту собственных колебаний в контуре, состоящем из соленоида длиной l — 15 см, площадью поперечного сечения S1 = 1 см 2 и плоского конденсатора с площадью пластин S2 = 6 см 2 и расстоянием между ними d = 0,1 см. Число витков соленоида N = 1000.

4. Электрический контур состоит из конденсатора постоянной емкости и катушки, в которую может вдвигаться сердечник. Один сердечник спрессован из порошка магнитного соединения железа (феррита) и является изолятором. Другой сердечник изготовлен из меди. Как изменится частота собственных колебаний контура, если в катушку вдвинуть: а) медный сердечник; б) сердечник из феррита?

5. Для чего в телефонной трубке нужен постоянный магнит (рис. 2.38)? Почему магнитная индукция этого магнита должна быть больше максимальной индукции, создаваемой током, проходящим по обмотке катушки телефона?

6. На вертикально отклоняющие пластины осциллографа подано напряжение u1 = Um1 cos ωt, а на горизонтально отклоняющие — напряжение u2 = Um2 cos (ωt — φ). Какую траекторию опишет электронный луч на экране осциллографа, если разность фаз между напряжениями на пластинах равна: а) φ1 = ; б) φ2 = π?

7. Кипятильник работает от сети переменного тока с напряжением U = 120 В*. При температуре t1 = 20 °С спираль имеет сопротивление R1 = 25 Ом. Температурный коэффициент сопротивления материала спирали α = 2 • 10 -2 К -1 . Определите массу воды, после закипания превратившейся в пар за время τ = 1 мин. Удельная теплота парообразования воды r = 2,26 • 10 6 Дж/кг.

8. При включении катушки в сеть переменного тока с напряжением 120 В и частотой 50 Гц сила тока в ней равна 4 А. При включении той же катупхки в сеть постоянного тока с напряжением 50 В сила тока в катупхке оказывается равной 5 А. Определите индуктивность катушки.

9. Определите сдвиг фаз между силой тока и напряжением в электрической цепи, если генератор отдает в цепь мощность Р = 8 кВт, амплитуда силы тока в цепи Im = 100 А и амплитуда напряжения на зажимах генератора Um = 200 В.

10. В сеть стандартной частоты с напряжением 100 В последовательно включены резистор сопротивлением 150 Ом и конденсатор емкостью 16 мкФ. Найдите полное сопротивление цепи, силу тока в ней, напряжения на зажимах резистора и конденсатора и сдвиг фаз между силой тока и напряжением.

11. Каковы показания приборов в цепях, представленных схемами на рисунке 2.39, а, 61 Напряжение сети U = 250 В, R = 120 Ом, С = 20 мкФ. Постройте для обеих схем векторные диаграммы.

12. В сеть переменного тока стандартной частоты с напряжением 210 В включены последовательно резистор сопротивлением 40 Ом и катушка индуктивностью 0,2 Гн. Определите силу тока в цепи и сдвиг фаз между силой тока и напряжением. Конденсатор какой емкости надо включить последовательно в цепь, чтобы сдвиг фаз оказался равным нулю? Какой будет сила тока в цепи в этом случае?

13. Каковы показания приборов в цепях, схемы которых изображены на рисунке 2.40, а, б? Напряжение сети U = 119 В, активное сопротивление R = 8 Ом, индуктивность L = 0,048 Гн. Постройте для схемы, изображенной на рисунке 2.40, б, векторную диаграмму.

14. Найдите показания приборов в цепи, схема которой представлена на рисунке 2.41. Напряжение на зажимах цепи U = 216 В, R = 21 Ом, L = 70 мГн, С = 82 мкФ. Частота стандартная. Постройте векторную диаграмму сил токов.

15. Электродвигатель мощностью Р = 10 кВт присоединен к сети с напряжением U = 240 В, cos φ1 = 0,6, частота v = 50 Гц. Вычислите емкость конденсатора, который нужно подключить параллельно двигателю для того, чтобы коэффициент мощности установки повысить до значения cos φ2 = 0,9.

16. В цепи, схема которой изображена на рисунке 2.42, R = 56 Ом, С = 106 мкФ и L = 159 мГн. Активное сопротивление катушки мало. Частота тока в сети v = 50 Гц. Определите напряжение в сети U, если амперметр показывает 2,4 А. Постройте векторную диаграмму.

17. В катушке индуктивности сила тока линейно увеличивается со скоростью = 10 А/с. Найдите ЭДС индукции, возникающую при этом в катушке, если резонансная частота колебательного контура с этой катушкой и конденсатором емкостью С = 100 пФ равна v = 100 кГц.

18. Резонанс в колебательном контуре с конденсатором емкостью С1 = 1 мкФ наступает при частоте v1 = 400 Гц. Когда параллельно конденсатору С1 подключают другой конденсатор емкостью C2, то резонансная частота становится равной V2 = 100 Гц. Определите емкость C2. Активным сопротивлением контура пренебречь.

19. На рисунке 2.43 изображены два соленоида, каждый из которых может быть использован в ламповом генераторе в качестве катушки обратной связи. В один и тот же момент в обеих катушках ток течет сверху вниз. Однако при включении одной катушки генератор работает, а при включении другой — нет. Почему?

20. Конец пружины опущ;ен в ванночку со ртутью (рис. 2.44). Что произойдет, если замкнуть ключ и пропустить через пружину достаточно сильный ток?

* В этой и последующих задачах даются действующие значения напряжения и силы тока.

Источник



Определить емкость конденсатора если через него проходит ток частотой 50 гц

§ 55. Емкость в цепи переменного тока

В главе I, § 10 был объяснен процесс заряда и разряда конденсатора, включенного в цепь постоянного тока.
Рассмотрим теперь цепь переменного тока (рис. 58, а), в которую включена электрическая емкость (конденсатор). Активным сопротивлением этой цепи пренебрегаем (r = 0).

Полярность зажимов генератора переменного тока, включенного в цепь с емкостью, меняется с частотой ω = 2πf.
В первую четверть периода (рис. 58, в) конденсатор заряжается и на его пластинах появляются противоположные по знаку электрические заряды (на левой пластине плюс, на правой — минус).
При заряде конденсатора по проводам, соединяющим генератор с пластинами, перемещаются электрические заряды, следовательно, протекает зарядный ток, измеряемый миллиамперметром. Через диэлектрик конденсатора ток не проходит. Как видно на волновой диаграмме, в первую четверть периода во время заряда конденсатора напряжение на пластинах конденсатора возрастает от нуля до максимального значения, сила тока, наоборот, в начале заряда будет максимальной, а в конце заряда, когда напряжение на конденсаторе (Uc) окажется равным напряжению генератора (Uг), она станет равной нулю.
За вторую четверть периода напряжение генератора постепенно убывает и становится равным нулю. В это время конденсатор разряжается. При этом разрядный ток, протекающий по проводам, имеет направление, противоположное направлению тока заряда.
За третью четверть периода полярность на зажимах генератора изменится и напряжение возрастет от нуля до наибольшего значения. В это время конденсатор вновь зарядится, но полярность на его пластинах изменится. На левой пластине будет отрицательный заряд, на правой пластине — положительный заряд. По проводам пройдет зарядный ток, сила которого к концу заряда конденсатора, когда Uc = Uг, станет равной нулю.
В четвертую часть периода напряжение генератора убывает и становится равным нулю. Конденсатор в это время вторично разряжается, и по проводам, соединяющим генератор с пластинами конденсатора, вновь протекает разрядный ток.
Из сказанного следует, что за один период изменения переменного напряжения дважды происходит процесс заряда и разряда конденсатора и при этом в его цепи протекает переменный ток. Кроме того, при заряде и разряде конденсатора ток в цепи и напряжение не совпадают по фазе. Ток опережает по фазе напряжение на четверть периода, т. е. на 90°.
Построим векторную диаграмму для цепи переменного тока с емкостью (рис. 58, б). Для этого отложим вектор тока I в выбранном масштабе по горизонтали. Чтобы на векторной диаграмме показать, что напряжение отстает от тока на угол φ = 90°, откладываем вектор напряжения Uc вниз под углом 90°.
Выясним, от чего зависит сила тока в цепи с емкостью. Обозначим сопротивление цепи Xc и назовем его емкостным сопротивлением. Тогда закон Ома для цепи с емкостью можно выразить так:

где U — напряжение генератора, в;
Xc — емкостное сопротивление, ом;
I — сила тока, а. Известно, что сила тока в цепи определяется количеством электрических зарядов, проходящих через поперечное сечение проводника в единицу времени:

Если в единицу времени по проводам протекает большое количество зарядов, то сила тока будет большой, и наоборот, когда по проводам в каждую секунду протекает малое количество зарядов, то сила тока оказывается незначительной.
Допустим, что частота переменного тока, вырабатываемого генератором, большая. В этом случае в каждую секунду конденсатор много раз (часто) заряжается и разряжается. В проводах, идущих от генератора к пластинам конденсатора, будет перемещаться в каждую секунду большое количество электрических зарядов. Поэтому можно сказать, что в рассматриваемой цепи возникает большая сила тока и в данном случае, согласно закону Ома, емкостное сопротивление цепи Xc оказывается малой величиной.
Если же частота переменного тока генератора будет мала, то конденсатор в каждую секунду зарядится и разрядится меньшее количество раз. В связи с этим по проводам цепи в каждую секунду пройдет незначительное количество зарядов и сила тока будет мала, а следовательно, емкостное сопротивление цепи, наоборот, будет большим.
Из сказанного можно сделать вывод, что емкостное сопротивление обратно пропорционально частоте переменного тока.
Емкостное сопротивление зависит не только от частоты переменного тока, но и от величины емкости, включенной в цепь.
Допустим, что в цепь включен конденсатор большой емкости. Количество электричества, которое накапливает конденсатор при заряде и отдает при разряде, прямо пропорционально его емкости:

Читайте также:  Как поменять вращения электродвигателя постоянного тока

q = C U.

Чем больше емкость конденсатора, включенного в цепь переменного тока, тем большее количество электричества переместится при заряде и разряде по проводам, идущим от генератора к его пластинам. Поэтому в проводах возникает ток большой силы и в данном случае, согласно закону Ома, емкостное сопротивление цепи Xc будет мало.
Если же включенная в цепь емкость мала, то при заряде и разряде по проводам пройдет меньшее количество электрических зарядов и сила тока будет незначительной, следовательно, емкостное сопротивление цепи, наоборот, будет большим.
Из сказанного можно сделать вывод, что емкостное сопротивление обратно пропорционально емкости.
Таким образом, емкостное сопротивление:

где Xc — емкостное сопротивление, ом;
ω — угловая частота переменного тока, рад/сек;
С — емкость, ф.
Известно, что угловая частота ω = 2πf.
Поэтому емкостное сопротивление можно определить так:

где f — частота переменного тока, гц.
Если включенная емкость измеряется в микрофарадах, то емкостное сопротивление

Если емкость измеряется в пикофарадах, то

Следует подчеркнуть, что имеется существенное различие между емкостным и активным сопротивлениями. Как известно, активная нагрузка безвозвратно потребляет энергию генератора переменного тока.
Если же к источнику переменного тока присоединена емкость, то, как было рассмотрено выше, энергия генератора расходуется при заряде конденсатора на создание электрического поля между пластинами и возвращается обратно генератору при разряде конденсатора.
Следовательно, емкостная нагрузка не потребляет энергию генератора, а в цепи с емкостью происходит «перекачивание» энергии из генератора в конденсатор и обратно. По этой причине емкостное сопротивление, как и индуктивное, называется реактивным.

Пример. Конденсатор емкостью С = 2 мкф включен в цепь переменного тока, частота которого 50 гц. Определить:
1) его емкостное сопротивление при частоте f = 50 гц;
2) емкостное сопротивление этого конденсатора переменному току, частота которого 500 гц.
Решение . Емкостное сопротивление конденсатора переменному току при частоте f = 50 гц

При частоте f = 500 гц

Из приведенного примера видно, что емкостное сопротивление конденсатора уменьшается с повышением частоты, а с уменьшением частоты переменного тока емкостное сопротивление возрастает. Для постоянного тока, когда напряжение на зажимах цепи не изменяется, конденсатор практически обладает бесконечно большим сопротивлением и поэтому он постоянного тока не пропускает.

Источник

Переменный ток

Господа, в сегодняшней статье я хотел бы рассмотреть такой интересный вопрос, как конденсатор в цепи переменного тока. Эта тема весьма важна в электричестве, поскольку на практике конденсаторы повсеместно присутствуют в цепях с переменным током и, в связи с этим, весьма полезно иметь четкое представление, по каким законам изменяются в этом случае сигналы. Эти законы мы сегодня и рассмотрим, а в конце решим одну практическую задачу определения тока через конденсатор.

Господа, сейчас для нас наиболее интересным моментом является то, как связаны между собой напряжение на конденсаторе и ток через конденсатор для случая, когда конденсатор находится в цепи переменного сигнала.

Почему сразу переменного? Да просто потому, что конденсатор в цепи постоянного тока ничем не примечателен. Через него течет ток только в первый момент, пока конденсатор разряжен. Потом конденсатор заряжается и все, тока нет (да-да, слышу, уже начали кричать, что заряд конденсатора теоретически длится бесконечно долгое время, да еще у него может быть сопротивление утечки, но пока что мы этим пренебрегаем). Заряженный конденсатор для постоянного тока – это как разрыв цепи. Когда же у нас случай переменного тока – тут все намного интереснее. Оказывается, в этом случае через конденсатор может протекать ток и конденсатор в этом случае как бы эквивалентен резистору с некоторым вполне определенным сопротивлением (если пока забить забыть про всякие там сдвиги фазы, об этом ниже). Нам надо каким-нибудь образом получить связь между током и напряжением на конденсаторе.

Пока мы будем исходить из того, что в цепи переменного тока находится только конденсатор и все. Без каких-либо других компонентов типа резисторов или индуктивностей. Напомню, что в случае, когда у нас в цепи находится исключительно одни только резисторы, подобная задача решается очень просто: ток и напряжения оказываются связанными между собой через закон Ома . Мы про это уже не один раз говорили. Там все очень просто: делим напряжение на сопротивление и получаем ток. А как же быть в случае конденсатора? Ведь конденсатор-то это не резистор. Там совсем иная физика протекания процессов, поэтому вот так вот с наскока не получится просто связать между собой ток и напряжение. Тем не менее, сделать это надо, поэтому давайте попробуем порассуждать.

Сперва давайте вернемся назад. Далеко назад. Даже очень далеко. К самой-самой первой моей статье на этом сайте. Старожилы должно быть помнят, что это была статья про силу тока . Вот в этой самой статье было одно интересное выражение, которое связывало между собой силу тока и заряд, протекающий через сечение проводника. Вот это самое выражение

Кто-нибудь может возразить, что в той статье про силу тока запись была через Δq и Δt – некоторые весьма малые величины заряда и времени, за которое этот заряд проходит через сечение проводника. Однако здесь мы будем применять запись через dq и dt – через дифференциалы. Такое представление нам потребуется в дальнейшем. Если не лезть глубоко в дебри матана, то по сути dq и dt здесь особо ничем не отличаются от Δq и Δt. Безусловно, глубоко сведущие в высшей математике люди могут поспорить с этим утверждением, но да сейчас я не хочу концентрировать внимание на данных вещах.

Итак, выражение для силы тока мы вспомнили. Давайте теперь вспомним, как связаны между собой емкость конденсатора С, заряд q, который он в себе накопил, и напряжение U на конденсаторе, которое при этом образовалось. Ну, мы же помним, что если конденсатор накопил в себе какой-то заряд, то на его обкладках неизбежно возникнет напряжение. Про это все мы тоже говорили раньше, вот в этой вот статье . Нам будет нужна вот эта формула, которая как раз и связывает заряд с напряжением

Давайте-ка выразим из этой формулы заряд конденсатора:

А теперь есть очень большой соблазн подставить это выражение для заряда конденсатора в предыдущую формулу для силы тока. Приглядитесь-ка повнимательнее – у нас ведь тогда окажутся связанными между собой сила тока, емкость конденсатора и напряжение на конденсаторе! Сделаем эту подстановку без промедлений:

Емкость конденсатора у нас является величиной постоянной. Она определяется исключительно самим конденсатором, его внутренним устройством, типом диэлектрика и всем таким прочим. Про все это подробно мы говорили в одной из прошлых статей . Следовательно, емкость С конденсатора, поскольку это константа, можно смело вынести за знак дифференциала (такие вот правила работы с этими самыми дифференциалами). А вот с напряжением U нельзя так поступить! Напряжение на конденсаторе будет изменяться со временем. Почему это происходит? Ответ элементарный: по мере протекания тока на обкладках конденсатора, очевидно, заряд будет изменяться. А изменение заряда непременно приведет к изменению напряжения на конденсаторе. Поэтому напряжение можно рассматривать как некоторую функцию времени и его нельзя выносить из-под дифференциала. Итак, проведя оговоренные выше преобразования, получаем вот такую вот запись:

Господа, спешу вас поздравить – только что мы получили полезнейшее выражение, которое связывает между собой напряжение, приложенное к конденсатору, и ток, который течет через него. Таким образом, если мы знаем закон изменения напряжения, мы легко сможем найти закон изменения тока через конденсатор путем простого нахождения производной.

А как быть в обратном случае? Допустим, нам известен закон изменения тока через конденсатор и мы хотим найти закон изменения напряжения на нем. Читатели, сведущие в математике, наверняка уже догадались, что для решения этой задачи достаточно просто проинтегрировать написанное выше выражение. То есть, результат будет выглядеть как-то так:

По сути оба этих выражений про одно и тоже. Просто первое применяется в случае, когда нам известен закон изменения напряжения на конденсаторе и мы хотим найти закон изменения тока через него, а второе – когда нам известно, каким образом меняется ток через конденсатор и мы хотим найти закон изменения напряжения. Для лучшего запоминания всего этого дела, господа, я приготовил для вас поясняющую картинку. Она изображена на рисунке 1.

Рисунок 1 – Поясняющая картинка

На ней, по сути, в сжатой форме изображены выводы, которые хорошо бы запомнить.

Господа, обратите внимание – полученные выражения справедливы для любого закона изменения тока и напряжения. Здесь не обязательно должен быть синус, косинус, меандр или что-то другое. Если у вас есть какой-то совершенно произвольный, пусть даже совершенно дикий, не описанный ни в какой литературе, закон изменения напряжения U(t), поданного на конденсатор, вы, путем его дифференцирования можете определить закон изменения тока через конденсатор. И аналогично если вы знаете закон изменения тока через конденсатор I(t) то, найдя интеграл, сможете найти, каким же образом будет меняться напряжение.

Читайте также:  Какая сила тока для 5 электродами

Итак, мы выяснили как связать между собой ток и напряжение для абсолютно любых, даже самых безумных вариантов их изменения. Но не менее интересны и некоторые частные случаи. Например, случай успевшего уже нам всем полюбиться синусоидального тока. Давайте теперь разбираться с ним.

Пусть напряжение на конденсаторе емкостью C изменяется по закону синуса вот таким вот образом

Какая физическая величина стоит за каждой буковкой в этом выражении мы подробно разбирали чуть раньше . Как же в таком случае будет меняться ток? Используя уже полученные знания, давайте просто тупо подставим это выражение в нашу общую формулу и найдем производную

Или можно записать вот так

Господа, хочу вам напомнить, что синус ведь только тем и отличается от косинуса, что один сдвинут относительно другого по фазе на 90 градусов. Ну, или, если выражаться на языке математики, то . Не понятно, откуда взялось это выражение? Погуглите формулы приведения . Штука полезная, знать не помешает. А еще лучше, если вы хорошо знакомы с тригонометрическим кругом, на нем все это видно очень наглядно.

Господа, отмечу сразу один момент. В своих статьях я не буду рассказывать про правила нахождения производных и взятия интегралов. Надеюсь, хотя бы общее понимание этих моментов у вас есть. Однако даже если вы не знаете, как это делать, я буду стараться излагать материал таким образом, чтобы суть вещей была понятна и без этих промежуточных выкладок. Итак, сейчас мы получили немаловажный вывод – если напряжение на конденсаторе изменяется по закону синуса, то ток через него будет изменяться по закону косинуса. То есть ток и напряжение на конденсаторе сдвинуты друг относительно друга по фазе на 90 градусов. Кроме того, мы можем относительно легко найти и амплитудное значение тока (это множители, которые стоят перед синусом). Ну то есть тот пик, тот максимум, которого ток достигает. Как видим, оно зависит от емкости C конденсатора, амплитуды приложенного к нему напряжения Um и частоты ω. То есть чем больше приложенное напряжение, чем больше емкость конденсатора и чем больше частота изменения напряжения, тем большей амплитуды достигает ток через конденсатор. Давайте построим график, изобразив на одном поле ток через конденсатор и напряжение на конденсаторе. Пока без конкретных цифр, просто покажем качественный характер. Этот график представлен на рисунке 2 (картинка кликабельна).

Рисунок 2 – Ток через конденсатор и напряжение на конденсаторе

На рисунке 2 синий график – это синусоидальный ток через конденсатор, а красный – синусоидальное напряжение на конденсаторе. По этому рисунку как раз очень хорошо видно, что ток опережает напряжение (пики синусоиды тока находятся левее соответствующих пиков синусоиды напряжения, то есть наступают раньше).

Давайте теперь проделаем работу наоборот. Пусть нам известен закон изменения тока I(t) через конденсатор емкостью C. И закон этот пусть тоже будет синусоидальным

Давайте определим, как в таком случае будет меняться напряжение на конденсаторе. Воспользуемся нашей общей формулой с интегральчиком:

По абсолютнейшей аналогии с уже написанными выкладками, напряжение можно представить вот таким вот образом

Здесь мы снова воспользовались интересными сведениями из тригонометрии, что . И снова формулы приведения придут вам на помощь, если не понятно, почему получилось именно так.

Какой же вывод мы можем сделать из данных расчетов? А вывод все тот же самый, какой уже был сделан: ток через конденсатор и напряжение на конденсаторе сдвинуты по фазе друг относительно друга на 90 градусов. Более того, они не просто так сдвинуты. Ток опережает напряжение. Почему это так? Какая за этим стоит физика процесса? Давайте разберемся.

Представим, что незаряженный конденсатор мы подсоединили к источнику напряжения. В первый момент никаких зарядов в конденсаторе вообще нет: он же разряжен. А раз нет зарядов, то нет и напряжения. Зато ток есть, он возникает сразу при подсоединении конденсатора к источнику. Замечаете, господа? Напряжения еще нет (оно не успело нарасти), а ток уже есть. И кроме того, в этот самый момент подключения ток в цепи максимален (разряженный конденсатор ведь по сути эквивалентен короткому замыканию цепи). Вот вам и отставание напряжения от тока. По мере протекания тока, на обкладках конденсатора начинает накапливаться заряд, то есть напряжение начинает расти а ток постепенно уменьшаться. И через некоторое время накопится столько заряда на обкладках, что напряжение на конденсаторе сравняется с напряжением источника и ток в цепи совсем прекратится.

Теперь давайте этот самый заряженный конденсатор отцепим от источника и закоротим накоротко. Что получим? А практически то же самое. В самый первый момент ток будет максимален, а напряжение на конденсаторе останется таким же, какое оно и было без изменений. То есть снова ток впереди, а напряжение изменяется вслед за ним. По мере протекания тока напряжение начнет постепенно уменьшаться и когда ток совсем прекратится, оно тоже станет равным нулю.

Для лучшего понимания физики протекающих процессов можно в который раз уже использовать водопроводную аналогию. Представим себе, что заряженный конденсатор – это некоторый бачок, полный воды. У этого бачка есть внизу краник, через который можно спустить воду. Давайте этот краник откроем. Как только мы его откроем, вода потечет сразу же. А давление в бачке будет падать постепенно, по мере того, как вода будет вытекать. То есть, грубо говоря, ручеек воды из краника опережает изменение давления, подобно тому, как ток в конденсаторе опережает изменение напряжения на нем.

Подобные рассуждения можно провести и для синусоидального сигнала, когда ток и напряжения меняются по закону синуса, да и вообще для любого. Суть, надеюсь, понятна.

Давайте проведем небольшой практический расчет переменного тока через конденсатор и построим графики.

Пусть у нас имеется источник синусоидального напряжения, действующее значение равно 220 В, а частота 50 Гц. Ну, то есть все ровно так же, как у нас в розетках. К этому напряжению подключают конденсатор емкостью 1 мкФ. Например, пленочный конденсатор К73-17, рассчитанный на максимальное напряжение 400 В (а на меньшее напряжение конденсаторы ни в коем случае нельзя подключать в сети 220 В), выпускается с емкостью 1 мкФ. Чтобы вы имели представление, с чем мы имеем дело, на рисунке 3 я разместил фотографию этого зверька (спасибо Diamond за фото )

Рисунок 3 – Ищем ток через этот конденсатор

Требуется определить, какая амплитуда тока будет протекать через этот конденсатор и построить графики тока и напряжения.

Сперва нам надо записать закон изменения напряжения в розетке. Если вы помните, амплитудное значение напряжения в этом случае равно около 311 В. Почему это так, откуда получилось, и как записать закон изменения напряжения в розетке, можно прочитать вот в этой статье . Мы же сразу приведем результат. Итак, напряжение в розетке будет изменяться по закону

Теперь мы можем воспользоваться полученной ранее формулой, которая свяжет напряжение в розетке с током через конденсатор. Выглядеть результат будет так

Мы просто подставили в общую формулу емкость конденсатора, заданную в условии, амплитудное значение напряжения и круговую частоту напряжения сети. В результате после перемножения всех множителей имеем вот такой вот закон изменения тока

Вот так вот, господа. Получается, что амплитудное значение тока через конденсатор чуть меньше 100 мА. Много это или мало? Вопрос нельзя назвать корректным. По меркам промышленной техники, где фигурируют сотни ампер тока, очень мало. Да и для бытовых приборов, где десятки ампер не редкость – тоже. Однако для человека даже такой ток представляет большую опасность! Отсюда следует вывод, что хвататься за такой конденсатор, подключенный к сети 220 В не следует . Однако на этом принципе возможно изготовление так называемых источников питания с гасящим конденсатором. Ну да это тема для отдельной статьи и здесь мы не будем ее затрагивать.

Все это хорошо, но мы чуть не забыли про графики, которые должны построить. Надо срочно исправляться! Итак, они представлены на рисунке 4 и рисунке 5. На рисунке 4 вы можете наблюдать график напряжения в розетке, а на рисунке 5 – закон изменения тока через конденсатор, включенный в такую розетку.

Рисунок 4 – График напряжения в розетке

Рисунок 5 – График тока через конденсатор

Как мы можем видеть из этих рисунков, ток и напряжение сдвинуты на 90 градусов, как и должно быть. И, возможно, у читателя возникла мысль – если через конденсатор течет ток и на нем падает какое-то напряжение, вероятно, на нем должна выделяться и некоторая мощность . Однако спешу предупредить вас – для конденсатора дело обстоит совершенно не так. Если рассматривать идеальный конденсатор, то мощность на нем не будет вообще выделяться, даже при протекании тока и падении на нем напряжения. Почему? Как же так? Об этом – в будущих статьях. А на сегодня все. Спасибо что читали, удачи, и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Источник