Меню

Петушок машины постоянного тока

Устройство машины постоянного тока

Электротехническая промышленность выпускает электрические машины постоянного тока большой номенклатуры по мощности и конструктивному исполнению, поэтому, несмотря на некоторые различия в конструкции отдельных сборочных единиц и деталей, их устройство одинаково. Основным типом машины постоянного тока является коллекторная, отличительным признаком которой служит наличие коллектора на валу якоря машины. На статоре машины помимо главных полюсов с обмоткой возбуждения имеются добавочные полюсы.
Электрическая машина постоянного тока (рис. 1) состоит из статора, якоря, коллектора, щеточного аппарата и подшипниковых щитов.


Рис. 1. Устройство электрической машины постоянного тока:
1 — коллектор, 2 — щетки, 3, 9 — сердечник и обмотка якоря, 4 — главный полюс, 5 — катушка обмотки возбуждения, 6 — станина (корпус), 7 — подшипниковый щит, 8 — вентилятор, 10 — вал

Статор состоит из станины 6, главных полюсов 4 и добавочных полюсов (на рисунке не показаны) с соответствующими катушками. Станина служит для крепления полюсов и подшипниковых щитов и является частью магнитной цепи, поскольку через нее замыкается магнитный поток машины. Поэтому станину изготовляют из стали — материала, обладающего достаточной механической прочностью и большой магнитной проницаемостью. По окружности станины расположены отверстия для крепления полюсов.


a)

б)

Главные полюса (рис. 2) выполняют шихтованными из стальных штампованных листов стали толщиной 1 или 2 мм, а добавочные — массивными или также шихтованными. Стальные листы сердечника 2 полюсов спрессованы и скреплены заклепками 4, головки которых утоплены в нажимные щеки 5, установленные на торцах каждого полюса. Шихтованными могут изготовляться только наконечники главных полюсов, так как при вращении зубчатого якоря из-за пульсации магнитного потока в воздушном зазоре в них возникают вихревые токи и происходят потери мощности. Однако, исходя из технологического удобства изготовления полюсов, их обычно делают шихтованными.
Полюсы крепят к станине болтами: нарезку резьбы для болтов выполняют непосредственно в шихтованном сердечнике 2 полюса (рис. 2, а) либо в массивных стальных стержнях 6 (рис. 2, б), вставленных в выштампованные отверстия в полюсах.
Магнитное поле в машине создается намагничивающей силой обмотки возбуждения, выполняемой в виде полюсных катушек, надетых на сердечники главных полюсов. Для уменьшения искрения под щетками и предупреждения таким образом подгара пластин коллектора и образования на его поверхности «кругового огня» машина снабжена добавочными полюсами с катушками, установленными на их сердечниках. Добавочные полюсы размещают между главными полюсами и крепят к станине болтами.
Обмотки главных и добавочных полюсов (рис. 3, а, б) изготовляют из изолированного медного провода круглого или прямоугольного сечения.


Рис. 3. Обмотки полюсов: а — главного, б — добавочного;
1— катушка обмотки, 2, 4 — сердечники главного и добавочного полюсов, 3 — опорный угольник, 5 — обмотка добавочного
полюса

Обмотки добавочных полюсов включают последовательно с обмоткой якоря, поэтому сечение их проводов рассчитано на рабочий ток машины.
В некоторых мощных машинах постоянного тока обмотку полюса выполняют из нескольких секций с установкой между ними дистанционных шайб из изолированных материалов, образующих вентиляционные каналы.
Якорь машины постоянного тока состоит из вала, сердечника, обмотки и коллектора. Сердечник якоря собран из штампованных листов электротехнической стали (рис. 4) с выштампованными в них вырезами определенной формы, образующими в собранном сердечнике пазы для укладки в них обмотки якоря. Листы сердечника обычно изолированы с двух сторон тонкой пленкой лака, но могут быть и оксидированы. Собранные в общий пакет листы образуют сердечник, насаженный на вал якоря и закрепленный на нем нажимными шайбами. Такая конструкция позволяет уменьшить потери энергии в сердечнике от действия вихревых токов, возникающих в результате его перемагничивания при вращении якоря в магнитном поле. Для лучшего охлаждения машины в сердечниках якоря обычно имеются вентиляционные каналы для охлаждающего воздуха.
Сердечник, в пазы которого уложена секция обмотки якоря, показан на рис. 5.


Рис. 4. Стальной лист сердечника якоря:
1 — зубец, 2 — изоляция, 3 — паз

Рис. 5. Расположение секции обмотки
якоря в пазах сердечника

Обмотка якоря выполняется из медных проводов круглого или прямоугольного сечения и состоит из заранее заготовленных секций, концы которых припаивают к петушкам пластин коллектора. Обмотку делают двухслойной: размещают в каждом пазу две стороны различных якорных катушек — одну поверх другой. Для прочного закрепления проводов обмотки якоря в пазах используют деревянные, гетинаксовые или текстолитовые клинья. Деревянные клинья, широко применявшиеся в электродвигателях старых конструкций, не обеспечивают надежного крепления обмотки в пазах сердечника, поскольку при высыхании настолько уменьшаются в объеме, что могут выпасть из паза. В некоторых конструкциях машин пазы не расклинивают, а обмотку крепят бандажом.
Бандаж выполняют из немагнитной стальной проволоки, наматываемой с предварительным натяжением. Лобовые части обмотки якоря крепят к обмоткодержателю также с помощью бандажа. В современных машинах для бандажирования якорей используют стеклоленту.
Коллектор машины постоянного тока собран из клинообразных пластин холоднокатаной меди, изолированных друг от друга прокладками из коллекторного миканита. Нижние (узкие) края пластин имеют вырезы в форме «ласточкина хвоста», служащие для закрепления медных пластин и миканитовой изоляции.


Рис. 6. Коллекторы электрических машин постоянного тока:
а — на пластмассе, б — с нажимными конусами;
1,6 — пластины коллектора, 2 — пластмасса, 3 — втулка, 4, 7 — нажимные конусы, 5 — изоляционная манжета, 8 — стяжной винт

По способу закрепления комплекта медных и миканитовых пластин различают коллекторы на пластмассе (рис. 6, а) и со стальными нажимными конусами и втулкой (рис. 6, б). Коллекторы крепят нажимными конусами двумя способами: при одном из них усилие от зажима передается только на внутреннюю поверхность «ласточкина хвоста», а при другом — на «ласточкин хвост» и конец пластины, при этом пластины закрепляют враспор.
Коллекторы с первым способом крепления называют арочными, а вторым способом — клиновыми. Чаще всего применяют арочные коллекторы, поскольку при ослаблении давления между их пластинами из-за усадки межпластинной миканитовой изоляции эти коллекторы можно подпрессовывать, восстанавливая таким образом необходимое сжатие пластин и прочность коллекторов.
Щеточный аппарат (рис. 7) состоит из траверсы, щеточных пальцев и щеткодержателей.


Рис. 7. Щеточный аппарат электрической машины постоянного
тока:
а— траверса, б, в — радиальные щеткодержатели, г — реактивный щеткодержатель;
1—пальцы (бракеты), 2 — рычаг, 3, 8, 15 — пружины, 4 — корпус, 5, 11 — щетки, 6 — обойма, 7 — фарфоровый наконечник, 9 — хомутик, 10 — штифт, 12 — стенка обоймы, 13 — храповик,
14 — колечко пружины

Траверса (рис. 7, а) служит для крепления на ее щеточных пальцах щеткодержателей
(рис. 7, б, в, г), создающих необходимую электрическую цепь. Щеткодержатель состоит из обоймы и нажимного устройства, обеспечивающего прилегание щетки к коллектору с необходимым усилием. Давление (0,02— 0,04 МПа) на щетку должно быть отрегулировано так, чтобы был плотный и надежный контакт между щеткой и коллектором.
В машинах постоянного тока применяют щеткодержатели двух типов: радиальные, у которых ось щетки совпадает с продолжением радиуса коллектора (рис. 7, б, в), и реактивные, у которых ось щетки расположена под углом к продолжению радиуса коллектора в сторону его вращения (рис. 7, г).
Щетка (рис. 8) представляет собой прямоугольный брусок из композиций, выполненных на основе графита. Она снабжена гибким медным канатиком 1, один конец которого заармирован в щетку, а другой, свободный, снабжен наконечником 2 для присоединения к щеточному аппарату. Все щеткодержатели одной полярности соединены между собой сборными шинами, подключенными к выводам машины.
Применяемые в машинах постоянного тока щетки имеют маркировку, характеризующую их состав и физические свойства. Щетки, используемые в машинах общепромышленного назначения, подразделяют на три основные группы: графитные, угольно-графитные и медно-графитные. В целях нормальной работы и продления срока службы коллектора следует применять для каждой машины щетки только той марки, которая определена заводом-изготовителем с учетом мощности, конструкции, условий работы и электрической характеристики машины.
Подшипниковые щиты электрических машин служат в качестве соединительных деталей между станиной и якорем, а также опорной конструкцией для якоря, вал которого вращается в подшипниках, установленных в щитах.
В электрических машинах постоянного тока применяют, различные подшипниковые щиты, отличающиеся друг от друга формой, размером и материалом, из которого они изготовлены. Однако, несмотря на большое разнообразие конструкций подшипников, щиты можно разделить по назначению на два основных вида: обычные и фланцевые для установки и крепления непосредственно на исполнительном механизме.
В ряде случаев электрические машины постоянного тока могут иметь комбинированную систему крепления, т. е. станину с лапами для установки и крепления на опорной конструкции и одновременно фланцевый подшипниковый ; щит для крепления па исполнительном механизме.
Подшипниковые щиты электрических машин постоянного тока изготовляют методом литья (преимущественно из стали, реже из чугуна и сплавов алюминия), а также сварки или штамповки. В центре щита имеется расточка под подшипник, в которой устанавливают шариковый или роликовый подшипник качения. В мощных машинах постоянного тока в ряде случаев используют подшипники скольжения.

Читайте также:  Тест электрический ток в электролитах ответы

Источник

Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Схематическое изображение простейшего ДПТ

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статора

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якорем

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Читайте также:  Ожог человека поражением тока

Принцип работы ДПТ

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Регулировочная характеристика ДПТ

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному



Источник



Большая Энциклопедия Нефти и Газа

Распайка — петушки

Распайка петушков в месте их соединения с обмоткой происходит в результате чрезмерного нагрева якоря при работе машины или из-за некачественной пайки. Пластины, имеющие плохой контакт с обмоткой, темнеют. [2]

Распайка петушков в месте их соединения с обмоткой происходит в результате чрезмерного нагрева якоря при работе машины или из-за некачественной пайки. Пластины, имеющие плохой контакт с обмоткой, темнеют. Для восстановления контакта петушки 3 ( рис. 105, а) пропаивают, нагревая их дуговым паяльником с наконечником 2 специальной формы. [3]

Распайка петушков коллектора возникает во время чрезмерного перегрева машины ( нарушение вентиляции, длительные перегрузки) или как следствие перекрытия. [4]

После того, как бандаж снят с лобовой части обмотки и произведена распайка петушков от нее, поврежденные пластины вынимают из их мест. Легкими ударами ручника по зубилу или крейцмейселю пластину передвигают вдоль ее оси до выхода из ласточкина хвоста коллекторной втулки. В освобожденное гнездо вводят временные клинья, а затем постепенно заводят новые пластины совместно с коллекторным миканитом. [5]

У коллекторов возможны следующие повреждения: повышенное биение рабочей поверхности, подгар и износ пластин, замыкание пластин между собой и на корпус, поломка и распайка петушков , перекрытия и прожоги пластмассы, трещины пластмассы. [6]

У коллекторов встречаются следующие повреждения: подгар и износ пластин, повышенное биение рабочей поверхности в результате ослабления прессовки, замыкание пластин между собой и на корпус, поломка и распайка петушков . При периодических осмотрах проверяют работу щеточно-коллекторного узла. Допускается искрение под частью щетки. Искрение под всем краем щетки приводит к появлению следов почернения на коллекторе и следов нагара на щетках. Такое искрение допустимо только при кратковременных перегрузках или изменении направления вращения якоря. [7]

Повреждение обмоток якорей машин постоянного тока проявляется в пробое корпусной изоляции между пакетом стали якоря и обмоткой и пробое изоляции между витками в якорях с многовитковыми секциями. В крупных машинах постоянного тока повреждения проявляются в распайке соединительных петушков коллекторных пластин с обмоткой и из-за разрушения проволочных бандажей. [8]

Повреждение обмоток якорей машин постоянного тока проявляется в пробое корпусной изоляции между пакетом стали якоря и обмоткой и пробое изоляции между витками в якорях с многовитко-выми секциями. В крупных машинах постоянного тока повреждения проявляются в распайке соединительных петушков коллекторных пластин с обмоткой и из-за разрушения проволочных бандажей. [9]

Читайте также:  Теплоотражательные костюмы ток 200 размеры

Повреждения обмоток якорей машин постоянного тока проявляются в пробое корпусной изоляции между пакетом стали якоря и обмоткой и пробое изоляции между витками. В крупных машинах постоянного тока повреждения проявляются в распайке соединительных петушков коллекторных пластин с обмоткой и в разрушении проволочных бандажей. [10]

Если сердечник якоря заперт на валу кольцевой шпонкой врезанной в канавку вала, то выпрессовать вал без распайки петушков и выемки обмотки из пазов не удается. В крупных машинах постоянного тока коллектор насаживают на выступы втулки якоря но-этому можно выпрессовать старый вал, не повреждая якоря. Нужно лишь иметь достаточно мощный гидравлический пресс. [11]

Если сердечник якоря заперт на валу кольцевой шпонкой, врезанной в канавку вала, то выпрессовать вал без распайки петушков и выемки обмотки из пазов не удается. В крупных машинах постоянного тока коллектор насаживают на выступы втулки якоря, поэтому можно выпрессовать старый вал, не повреждая якоря. Нужно лишь иметь достаточно мощный гидравлический пресс. [12]

Если сердечник якоря заперт на валу кольцевой шпонкой, врезанной в канавку вала ( см. рис. 39), то выпрессовать вал без распайки петушков и выемки обмотки из пазов не удается. В крупных машинах постоянного тока коллектор насаживают на выступы втулки якоря ( см. рис. 41), поэтому можно выпрессовать старый вал, не повреждая якоря. Нужно лишь иметь достаточно мощный гидравлический пресс. [13]

В процессе эксплуатации в результате трения щеток происходит неравномерный износ рабочей поверхности коллектора, который нарушает ее цилиндрическую форму. При правильной эксплуатации износ коллекторов во время непрерывной работы находится в пределах от 0 1 до 2 мм в год. У коллекторов встречаются следующие неисправности: подгар пластин, замыкание пластин между собой и на корпус, поломка и распайка петушков , оплавление пластин в результате кругового огня на коллекторе и др. При возникновении одного из указанных повреждений машина постоянного тока должна быть остановлена для проведения соответствующего ремонта. [14]

Источник

Устройство обмотки якоря

Устройство обмотки якоря Обмотка машины постоянного тока состоит из одинаковых частей, называемых секциями. На рис. 8-8 представлена одна секция, состоящая из одного витка (ɯ = 1), вторая — из двух витков (ɯ = 2) , Число витков в секции может быть и большим. Начало и конец каждой секции припаиваются к петушкам двух коллекторных пластин, находящихся рядом или на некотором расстоянии друг от друга. Так как конец каждой секции и начало следующей за ней секции припаиваются к одной коллекторной пластине, то образуется замкнутая обмотка.

Боковые части секции (рис 8-8) лежат в пазах. При вращении в них наводится э. д. с, почему они и называются активными сторонами секции. Остальные части секций лежат на торцах якоря, вне пазов. Они называются лобовыми частями и в них э. д. с. не наводится.

Активные стороны лежат в пазах в два слоя: нечетные сверху, а четные снизу, у дна паза. Цифры на рис. 8-8 обозначают номер паза, а буквы, стоящие рядом, — слой: верхний (в) и нижний (н). Упрощенная схема обмотки якоря, составленная из секций, показана на рис. 8-9. Число витков в секции принято равным единице.

Рис. 8-8. Секция обмотки якоря.

Активные стороны, лежащие в пазах, идущие от зрителя за плоскость рисунка, изображены кружками, а лобовые части — сплошными линиями на лицевой стороне торца якоря и пунктиром на торце за плоскостью рисунка. Таким образом, из коллекторной пластины № 1 провод идет в верхний слой паза 7, затем по невидимому торцу (пунктир) в нижний слой паза 4 и из него в коллекторную пластину № 2. Из коллекторной пластины № 2 провод идет в верхний слой паза 2 и т. д. После полного обхода якоря обмотка замыкается на себя у коллекторной пластины № 1.

Если обмотка якоря вращается по направлению, указанному на рис: 8-9, то в активных частях ее проводов появятся э. д. с, направление которых определено правилом правой руки. В каждой секции наводится э. д. с. е = Ем sin ωt (рис. 5-2) и естественно, что сумма их всех в замкнутой на себя обмотке равна нулю. Однако при обходе всей обмотки можно заметить, что в одной части проводов э. д. с, имеют одно направление, в другой части — противоположное. Это указывает на наличие двух параллельных ветвей обмотки.

Схема обмотки якоря

Рис. 8-9. Схема обмотки якоря.

На рис. 8-10 показано, как образуются параллельные ветви между коллекторными пластинами 1 и 4. Как и ранее, цифры на рисунке обозначают номер паза, а буквы рядом слой — верхний (в) или нижний (н). Оказывается, что коллекторная пластина 4 является точкой высшего, а коллекторная пластина 1 — низшего потенциала. На эти места и ставятся щетки. На рис. 8-9 щетки показаны условно расположенными внутри коллектора, в действительности же они всегда расположены на его наружной поверхности.

В момент времени, соответствующий положению якоря, показанного на рис. 8-9, между щетками будет действовать разность потенциалов, равная напряжению машины

Устройство обмотки якоря машины постоянного тока

Рис. 8-10. Упрощенное изображение схемы рис. 8-9

Можно заметить, что при повороте якоря на угол 60° величина напряжения U и поляр ность щеток сохраняется прежними, так как шестой паз займет место первого, первый — второго и т. д. На схеме на рис. 8-10 секция () из верхней параллельной ветви переключится в нижнюю, а равноценная ей секция () переключится из нижней ветви в верхнюю. Такое же положение будет и при повороте на любой угол, кратный 60°.

Однако при повороте якоря на угол, меньший чем 60°, положение будет несколько иное.

На рис 8-11 показано положение якоря при повороте на угол 30°, Лобовые части для простоты показаны только для секций () и (3н 6в). В этом положении указанные секции замкнуты щетками накоротко и, следовательно, исключены из параллельных ветвей обмотки якоря. Напряжение машины теперь определяется суммой э. д. с

а сами e1 и е2 будут иметь другие мгновенные значения, чем при первом положении якоря. Очевидно, напряжение будет меньше, чем при положении якоря, представленном на рис. 8-10. При вращении машины ее напряжение будет непрерывно колебаться в некоторых пределах

UмаксUUмин

Расположение обмотки при повороте якоря на 30° машины постоянного тока

Рис 8-11. Расположение обмотки при повороте якоря на 30° (сравнить рис. 8-9).

Чем больше секций включено в параллельную ветвь, тем меньше величина пульсаций напряжения U. В современных машинах пульсации настолько малы, что напряжение считают постоянным.

Геометрической нейтралью машины называется плоскость, проходящая через ось вала машины и делящая расстояние между полюсами пополам. Электродвижущая сила, наводимая в секции обмотки, проходящей через геометрическую нейтраль, равна нулю или очень мала. В этот момент времени и происходит замыкание секции щеткой накоротко. О процессах, происходящих при переключении секций из одной параллельной ветви в другую.

Статья на тему Устройство обмотки якоря

Источник