Меню

Плоский контур с электрическим током

Контур с током в неоднородном магнитном поле

Рассмотрим плоский контур с током в неоднородном магнитном поле (рис. 35). Пусть (для простоты) контур имеет форму окружности. Предположим также, что магнитная индукция увеличивается в положительном направлении оси х, совпадающем с направлением вектора магнитной индукции . Сила Ампера , действующая на элемент контура , перпендикулярна к вектору (рис. 35, а). Так что силы, приложенные к различным элементам контура, образуют симметричный конический «веер» (рис. 35, б, в).

Если магнитный момент контура ориентирован по полю ( ) (рис. 35, б), то результирующая всех сил направлена в сторону увеличения густоты линий магнитной индукции, т. е. контур будет втягиваться в область более сильного поля. Втягивание будет тем сильнее, чем больше модуль градиента поля . Докажем это утверждение.

С учетом (2.23) элементарная работа сил поля

Для контура малых размеров, когда магнитную индукцию в точках плоскости, ограниченной контуром, можно считать одинаковой, согласно (2.21) в случае имеем выражение

после подстановки его в (2.24) получаем

что и требовалось доказать: сила пропорциональна градиенту магнитной индукции.

В случае, когда магнитный момент контура ориентирован в направлении, противоположном полю ( ) (рис. 34, в), контур будет выталкиваться в область более слабого поля.

В общем случае неоднородного поля, когда не перпендикулярен плоскости контура ( ), на контур с током будут действовать пара сил, стремящихся повернуть контур, и сила, приводящая к его поступательному движению. Величина последней будет зависеть не только от градиента поля, но и от ориентации контура в пространстве.

Когда зависит только от одной координаты, подстановка (2.21) в (2.24) дает величину силы, обусловливающей поступательное перемещение контура:

В общем случае неоднородного поля, когда есть функция всех координат, сила, действующая на контур с током, определяется выражением

Подставив выражение (2.21) в (2.26), получаем выражение для силы, действующей на малый по размерам контур с током:

Соотношение (2.27) показывает, что действие магнитного поля на контур с током зависит от магнитной индукции, от свойств контура ( ) и от его ориентации в пространстве ( ).

2.6. Работа, совершаемая при перемещении проводника с током
в магнитном поле. Магнитный поток

Рассмотрим простейшую замкнутую цепь, изображенную на рис. 36, в которой наряду с источником постоянного тока имеется прямолинейный проводник, который может свободно перемещаться в горизонтальной плоскости. Проводник находится в хорошем электрическом контакте с другими проводниками цепи. Пусть I – сила тока в цепи, магнитное поле однородно, а вектор магнитной индукции перпендикулярен к плоскости проводящего

контура. Для указанных на рисунке направлений тока и поля на подвижный проводник длиной l будет действовать сила Ампера , направленная вправо вдоль оси OX. Согласно (2.13)

Для элементарной работы силы Ампера справедливо выражение

где dx – элементарное перемещение подвижного проводника вдоль оси OX, а dS = l dx – площадь, пересекаемая проводником с током при его движении.

Полученный результат (2.28) легко обобщить на случай неоднородного поля и проводника произвольной формы. Для этого нужно разбить проводник на отдельные участки и сложить элементарные работы, совершаемые при перемещении каждого из них (рис. 37). В пределах малой площадки dS магнитную индукцию B можно считать постоянной. Найдем работу, совершаемую при произвольном бесконечно малом перемещении элемента тока вдоль оси ОХ (рис. 37). Пусть элемент тока переместился на , где – единичный вектор направления ОХ. При этом сила Ампера совершит работу:

Осуществив в (2.29) циклическую перестановку сомножителей, получим

Векторное произведение равно по модулю площади параллелограмма, построенного на векторах и :

т. е. площади, пересекаемой элементом тока при его перемещении. Направление векторного произведения по правилу правого винта совпадает с направлением нормали к площадке dS (рис. 37). Таким образом, (2.30) можно записать в виде

где – угол между вектором магнитной индукции и вектором нормали к поверхности dS; – проекция вектора магнитной индукции на направление нормали к поверхности dS.

Полученный результат (2.31) можно представить в более удобном виде, если ввести понятие потока вектора магнитной индукции (магнитного потока) аналогично тому, как вводилось понятие потока вектора напряженности в электростатике [3]. В общем случае неоднородного магнитного поля произвольную поверхность S можно разбить на бесконечно малые элементы dS (рис. 38). Каждый элемент поверхности можно рассматривать как плоскую площадку, а поле в пределах ее – как однородное. Пусть – единичный вектор нормали к площадке dS. Для потока вектора магнитной индукции через элемент поверхности dS справедливо выражение

а для потока через всю рассматриваемую поверхность –

Заметим, что поток вектора –величина алгебраическая, знак которой зависит от знака проекции , который, в свою очередь, зависит от выбора направления нормали . Принято связывать направление нормали с направлением тока в проводящем контуре правилом правого винта (подразд. 1.1).

Введение понятия потока позволяет переписать выражение (2.31) для элементарной работы в виде

Если контур с постоянным током совершает конечное перемещение, то

где и – потоки магнитной индукции, сцепленные с контуром в начале и в конце его перемещения соответственно.

Если контур состоит из N последовательно соединенных одинаковых витков, то вводится величина

которая называется потокосцеплением или полным потоком магнитной индукции. В этом случае выражение (2.33) для работы, совершаемой силами магнитного поля по перемещению контура с током, имеет вид

В заключение отметим, что работа силы Ампера во всех рассмотренных выше случаях совершается не за счет энергии магнитного поля, а за счет энергии источника, поддерживающего ток в контуре постоянным. Далее в курсе общей физики будет показано, что любое изменение магнитного потока, сцепленного с проводящим контуром, сопровождается возникновением в нем эдс индукции:

При этом источник совершает дополнительную работу против эдс индукции, определяемую выражением

Источник

5.7. Контур с током в магнитном поле

Пусть контур с током помещен в магнитное поле, причем он может вращаться вокруг вертикальной оси OO’ (рис. 5.30-1). Силы Ампера, действующие на стороны контура длиной l, перпендикулярны к ним и к магнитному полю и поэтому направлены вертикально: они лишь деформируют контур, стремясь растянуть его. Стороны, имеющие длину a, перпендикулярны B, так что на каждую из них действует сила F = BIa. Эти силы стремятся повернуть контур таким образом, чтобы его плоскость стала ортогональной B.

Рис. 5.30. Силы, действующие на контур с током в магнитном поле:
1 — вид сбоку; 2 — вид сверху (масштаб увеличен)

Видео 5.7. Контур с током в однородном магнитном поле.

Момент пары сил (рис. 5.30-2) равен

где — плечо пары сил, а — угол между вектором B и стороной l.

Величина, численно равная произведению силы тока I, протекающего в контуре, на площадь контура S = al называется магнитным моментом Pm плоского контура стоком

Читайте также:  Рабочие характеристики электрических машин постоянного тока

Таким образом, мы можем записать момент пары сил в виде

Магнитный момент контура с током — векторная величина. Направление Рm совпадает с положительным направлением нормали к плоскости контура, которое определяется правилом винта: если рукоятка вращается по направлению тока в контуре, то поступательное движение винта показывает направление вектора Pm . Введем в формулу (15.36) угол a между векторами Pm и B. Справедливо соотношение

то есть момент сил , действующий на виток с током в однородном магнитном поле, равен векторному произведению магнитного момента витка на вектор индукции магнитного поля (рис. 5.31). При величина момента сил максимальна

Рис. 5.31. Силы, действующие на прямоугольный контур с током в магнитном поле.
Магнитное поле вертикально, а магнитный момент перпендикулярен плоскости контура

Опять-таки прозрачна аналогия с электростатикой: говоря об электрическом диполе, мы получили выражение для момента сил, действующих на него со стороны электрического поля в виде

где — электрический дипольный момент.

В системе СИ единицей измерения магнитного момента контура является ампер на квадратный метр (А · м 2 )

Видео 5.10. «Сознательные катушки»: отталкивание и притяжение параллельных токов и поворот магнитного момента по магнитному полю.

Пример. По тонкому проводу в виде кольца радиусом 30 см течет ток 100 A. Перпендикулярно плоскости кольца возбуждено однородное магнитное поле с магнитной индукцией 20 мТл (рис. 5.32). Найти силу, растягивающую кольцо.

Рис. 5.32. Силы, растягивающие кольцо с током в магнитном поле

Решение. Пусть магнитное поле направлено от нас за плоскость рис. 5.32 (показано крестиками), а ток идет по часовой стрелке. Выделим элемент длины dl, видный из центра под углом На этот элемент действует сила Ампера направленная по радиусу кольца. Кроме того, из-за растяжения кольца на концы элемента действуют силы натяжения F, которые и требуется найти в задаче. Проекция этих сила на радиальное направление равна

Приравнивая эту проекцию силе Ампера, находим

Источник



Магнитное поле

Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).

Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.

Свойства магнитного поля:

  • магнитное поле материально;
  • источник и индикатор поля – электрический ток;
  • магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
  • величина поля убывает с расстоянием от источника поля.

Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.

Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.

Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.

Силовая характеристика магнитного поля – вектор магнитной индукции ​ \( \vec \) ​. Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ​ \( I \) ​ и его длине ​ \( l \) ​:

Обозначение – \( \vec \) , единица измерения в СИ – тесла (Тл).

1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.

Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.

Направление вектора магнитной индукции можно определить по правилу буравчика:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Для определения магнитной индукции нескольких полей используется принцип суперпозиции:

магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:

Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным.

Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.

Свойства магнитных линий:

  • магнитные линии непрерывны;
  • магнитные линии замкнуты (т.е. в природе не существует магнитных зарядов, аналогичных электрическим зарядам);
  • магнитные линии имеют направление, связанное с направлением тока.

Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.

На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил ​ \( M \) ​:

где ​ \( I \) ​ – сила тока в проводнике, ​ \( S \) ​ – площадь поверхности, охватываемая контуром, ​ \( B \) ​ – модуль вектора магнитной индукции, ​ \( \alpha \) ​ – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.

Тогда для модуля вектора магнитной индукции можно записать формулу:

где максимальный момент сил соответствует углу ​ \( \alpha \) ​ = 90°.

В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Взаимодействие магнитов

Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.

Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ​ \( N \) ​ и южный ​ \( S \) ​.

Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.

Разделить полюса магнита нельзя.

Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.

Читайте также:  Схемы цифровых вольтметров переменного тока

Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Сила Ампера

Сила Ампера – сила, которая действует на проводник с током, находящийся в магнитном поле.

Закон Ампера: на проводник c током силой ​ \( I \) ​ длиной ​ \( l \) ​, помещенный в магнитное поле с индукцией ​ \( \vec \) ​, действует сила, модуль которой равен:

где ​ \( \alpha \) ​ – угол между проводником с током и вектором магнитной индукции ​ \( \vec \) ​.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​ \( B_\perp \) ​ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.

Сила Ампера не является центральной. Она направлена перпендикулярно линиям магнитной индукции.

Сила Ампера широко используется. В технических устройствах создают магнитное поле с помощью проводников, по которым течет электрический ток. Электромагниты используют в электромеханическом реле для дистанционного выключения электрических цепей, магнитном подъемном кране, жестком диске компьютера, записывающей головке видеомагнитофона, в кинескопе телевизора, мониторе компьютера. В быту, на транспорте и в промышленности широко применяют электрические двигатели. Взаимодействие электромагнита с полем постоянного магнита позволило создать электроизмерительные приборы (амперметр, вольтметр).

Простейшей моделью электродвигателя служит рамка с током, помещенная в магнитное поле постоянного магнита. В реальных электродвигателях вместо постоянных магнитов используют электромагниты, вместо рамки – обмотки с большим числом витков провода.

Коэффициент полезного действия электродвигателя:

где ​ \( N \) ​ – механическая мощность, развиваемая двигателем.

Коэффициент полезного действия электродвигателя очень высок.

Алгоритм решения задач о действии магнитного поля на проводники с током:

  • сделать схематический чертеж, на котором указать проводник или контур с током и направление силовых линий поля;
  • отметить углы между направлением поля и отдельными элементами контура;
  • используя правило левой руки, определить направление силы Ампера, действующей на проводник с током или на каждый элемент контура, и показать эти силы на чертеже;
  • указать все остальные силы, действующие на проводник или контур;
  • записать формулы для остальных сил, упоминаемых в задаче. Выразить силы через величины, от которых они зависят. Если проводник находится в равновесии, то необходимо записать условие его равновесия (равенство нулю суммы сил и моментов сил);
  • записать второй закон Ньютона в векторном виде и в проекциях;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​ \( q \) ​ – заряд частицы, ​ \( v \) ​ – скорость частицы, ​ \( B \) ​ – модуль вектора магнитной индукции, ​ \( \alpha \) ​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​ \( B_\perp \) ​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Читайте также:  Пусковой ток опель инсигния

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно.

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​ \( m \) ​ – масса частицы, ​ \( v \) ​ – скорость частицы, ​ \( B \) ​ – модуль вектора магнитной индукции, ​ \( q \) ​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы.

Если вектор скорости направлен под углом ​ \( \alpha \) ​ (0° \( \alpha \) \( \vec_2 \) ​, параллелен вектору \( \vec \) , а другой, \( \vec_1 \) , – перпендикулярен ему. Вектор \( \vec_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec_1 \) . Частица будет двигаться по окружности. Период обращения частицы по окружности – ​ \( T \) ​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec \) . Частица движется по винтовой линии с шагом ​ \( h=v_2T \) ​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Источник

§ 38.КОНТУР С ТОКОМ В МАГНИТНОМ ПОЛЕ

Рассмотрим действие магнитного поля на замкнутый контур с током. Для характеристики плоского контура с током вводят вектор магнитного момента , где S – площадь, ограниченная контуром, а направление нормали связано правилом правого винта с направлением тока в контуре (рис.84).

Рассмотрим плоский контур в однородном магнитном поле. Сила, действующая со стороны магнитного поля на весь контур на основании закона Ампера равна: .

Так как сила тока и магнитная индукция при указанных условиях постоянны, то их можно вынести из-под знака суммы, а сумма элементарных векторов , в виде цепочки которых можно представить контур, равна нулю (рис.85).

Если результирующая сила равна нулю, то центр масс контура будет оставаться неподвижным, т. е. контур не будет двигаться поступательно, но возможно вращательное движение. Найдем вращающий момент сил, действующих на контур.

Рассмотрим простейший случай – линии вектора магнитной индукции лежат в плоскости контура. Разобьем контур на бесконечно узкие полоски шириной , параллельные линиям индукции.

Каждая полоска ограничена элементами тока, на которые со стороны магнитного поля действуют силы

и

перпендикулярные плоскости чертежа и противоположные по направлению.

, .

Величина момента этой пары сил (равные по величине и противоположные по направлению):

РИС.84 РИС.85 РИС.86

Моменты сил действующих на все пары элементов тока контура направлены в одну строну и величина момента, действующего на весь контур .

Следовательно, в этом случае при , величина вращающего момента равна .

В общем случае и .

Вращающий момент равен нулю при и . В первом случае и положение контура устойчивое.

Во втором случае и положение контура неустойчивое. На рис.86 представлено возникновение вращающего момента для прямоугольного контура с током.

Свободный контур в магнитном поле будет вращаться до устойчивого положения и, при достаточно малых размерах, может быть использован для исследования магнитного поля, а также определения вектора магнитной индукции: .

Магнитная индукция – векторная физическая величина, численно равная максимальному вращающему моменту, действующему со стороны магнитного поля на контур с единичным магнитным моментом в данной точке поля.

В устойчивом положении силы Ампера будут растягивать контур, а в неустойчивом положении эти силы будут вызывать сжатие контура (рис.87). В сильных магнитных полях возможна деформация замкнутых контуров, разрыв витков катушек.

Если контур с током не плоский, то каждый элемент контура можно представить в виде двух векторов, параллельных и перпендикулярных вектору индукции . Вращающий момент будет определяться «проекцией» контура на плоскость параллельную линиям индукции.

При повороте контура на малый угол совершается работа

, которая определяет изменение энергии контура при этом. Пусть контур жесткий (pm=const).

Введем условие нормировки. При .

— энергия жесткого контура в магнитном поле при условии, что его энергия принята нулевой в положении, когда магнитный момент контура перпендикулярен вектору магнитной индукции.

Энергия контура минимальна, если магнитный момент параллелен вектору магнитной индукции, т. е. в этом случае контур находится в устойчивом положении равновесия. В неустойчивом положении энергия контура будет максимальна.

В общем случае неоднородного поля описать поведение контура достаточно сложно. Поэтому рассмотрим случай, когда поле неоднородно, но величина магнитной индукции существенно изменяется в направлении линий магнитной индукции и практически не изменяется в перпендикулярных к ним направлениях (рис.88а).

В этом случае также возникает момент сил, ориентирующий магнитный момент в направлении вектора магнитной индукции. В отличие от однородного поля результирующая сила, действующая на контур не равна нулю, так каждую силу можно представить в виде двух слагаемых

.

Сумма сил, лежащих в плоскости контура, определяет деформацию контура, а силы, перпендикулярные плоскости контура определяют втягивание контура в область более сильного поля (рис.88б).

Для элементарного контура (малых размеров) и в случае указанного неоднородного поля сила, действующая на него, может быть определена по следующей формуле

, т. е. для жесткого контура направление силы обусловлено изменением вектора магнитной индукции вдоль направления нормали к контуру.

Источник