Меню

Плотность тока формула электрический заряд

4.1. Сила тока и плотность тока в проводнике

В проводниках часть валентных электронов не связана с определенными атомами и может свободно перемещаться по всему его объему. В отсутствие приложенного к проводнику электрического поля такие свободные электроны — электроны проводимости — движутся хаотично, часто сталкиваясь с ионами и атомами, и изменяя при этом энергию и направление своего движения. Через любое сечение проводника в одну сторону проходит столько же электронов, сколько и в противоположную. Поэтому результирующего переноса электронов через такое сечение нет, и электрический ток равен нулю. Если же к концам проводника приложить разность потенциалов, то под действием сил электрического поля свободные заряды в проводнике начнут двигаться из области большего потенциала в область меньшего — возникнет электрический ток. Исторически сложилось так, что за направление тока принимают направление движение положительных зарядов, которое соответствует их переходу от большего потенциала к меньшему.

Электрический ток характеризуется силой тока I (рис. 4.1).

Сила тока есть скалярная величина, численно равная заряду переносимому через поперечное сечение проводника в единицу времени

Рис. 4.1. Сила тока в проводнике

Согласно (4.1), сила тока в проводнике равна отношению заряда , прошедшего через поперечное сечение проводника за время к этому времени.

Замечание: В общем случае сила тока через некоторую поверхность равна потоку заряда через эту поверхность.

Если сила тока с течением времени не изменяется, то есть за любые равные промежутки времени через любое сечение проводника проходят одинаковые заряды, то такой ток называется постоянным, и тогда заряд, протекший за время t, может быть найден как (рис. 4.2)

Рис. 4.2. Постоянный ток, протекающий через разные сечения проводника

Величина , численно равная заряду, проходящему через единицу площади поперечного сечения проводника за единицу времени, называется плотностью тока.

С учетом определения силы тока плотность тока через данное сечение может быть выражена через силу тока , протекающего через это сечение

При равномерном распределении потока зарядов по всей площади сечения проводника плотность тока равна

В СИ единицей измерения силы тока является ампер (А). В СИ эта единица измерения является основной.

Уравнение (4.1) связывает единицы измерения силы тока и заряда

В СИ единицей измерения плотности тока является ампер на квадратный метр (А/м 2 ):

Это очень малая величина, поэтому на практике обычно имеют дело с более крупными единицами, например

Плотность тока можно выразить через объемную плотность зарядов и скорость их движения v (рис. 4.3).

Рис. 4.3. К связи плотности тока j с объемной плотностью зарядов и дрейфовой скоростью v носителей заряда. За время dt через площадку S пройдут все заряды из объема dV = vdt S

Полный заряд, проходящий за время dt через некоторую поверхность S, перпендикулярную вектору скорости v, равен

Так как dq/(Sdt) есть модуль плотности тока j, можно записать

Поскольку скорость v есть векторная величина, то и плотность тока также удобно считать векторной величиной, следовательно

Здесь плотность заряда, скорость направленного движения носителей заряда.

Замечание: Для общности использован индекс , так как носителями заряда, способными участвовать в создании тока проводимости, могут быть не только электроны, но, например, протоны в пучке, полученном из ускорителя или многозарядные ионы в плазме, или так называемые «дырки» в полупроводниках «р» типа, короче, любые заряженные частицы, способные перемещаться под воздействием внешних силовых полей.

Кроме того, удобно выразить плотность заряда через число носителей заряда в единице объема — (концентрацию носителей заряда) . В итоге получаем:

Следует подчеркнуть, что плотность тока, в отличие от силы тока — дифференциальная векторная величина. Зная плотность тока, мы знаем распределение течения заряда по проводнику. Силу тока всегда можно вычислить по его плотности. Соотношение (4.4) может быть «обращено»: если взять бесконечно малый элемент площади , то сила тока через него определится как . Соответственно, силу тока через любую поверхность S можно найти интегрированием

Что же понимать под скоростью заряда v, если таких зарядов — множество, и они заведомо не движутся все одинаково? В отсутствие внешнего электрического поля, скорости теплового движения носителей тока распределены хаотично, подчиняясь общим закономерностям статистической физики. Среднее статистическое значение ввиду изотропии распределения по направлениям теплового движения. При наложении поля возникает некоторая дрейфовая скорость — средняя скорость направленного движения носителей заряда:

которая будет отлична от нуля. Проведем аналогию. Когда вода вырывается из шланга, и мы интересуемся, какое ее количество поступает в единицу времени на клумбу, нам надо знать скорость струи и поперечное сечение шланга. И нас совершенно не волнуют скорости отдельных молекул, хотя они и очень велики, намного больше скорости струи воды, как мы убедились в предыдущей части курса.

Таким образом, скорость в выражении (4.7) — это дрейфовая скорость носителей тока в присутствии внешнего электрического поля или любого другого силового поля, обуславливающего направленное (упорядоченное) движение носители заряда. Если в веществе возможно движение зарядов разного знака, то полная плотность тока определяется векторной суммой плотностей потоков заряда каждого знака.

Как уже указывалось, в отсутствие электрического поля движение носителей заряда хаотично и не создает результирующего тока. Если, приложив электрическое поле, сообщить носителям заряда даже малую (по сравнению с их тепловой скоростью) скорость дрейфа, то, из-за наличия в проводниках огромного количества свободных электронов, возникнет значительный ток.

Читайте также:  Электродинамическая стойкость при токе 630

Поскольку дрейфовая скорость носителей тока создается электрическим полем, логично предположить пропорциональность

так что и плотность тока будет пропорциональна вектору напряженности (рис. 4.4)

Более подробно этот вопрос обсуждается в Дополнении

Входящий в соотношение (4.9)

Коэффициент пропорциональности называется проводимостью вещества проводника.

Проводимость связывает напряженность поля в данной точке с установившейся скоростью «течения» носителей заряда. Поэтому она может зависеть от локальных свойств проводника вблизи этой точки (то есть от строения вещества), но не зависит от формы и размеров проводника в целом. Соотношение (4.9) носит название закона Ома для плотности тока в проводнике (его называют также законом Ома в дифференциальной форме).

Рис. 4.4. Силовые линии электрического поля совпадают с линиями тока

Чтобы понять порядки величин, оценим дрейфовую скорость носителей заряда в одном из наиболее распространенных материалов — меди. Возьмем для примера силу тока I = 1 А, и пусть площадь поперечного сечения провода составляет
1 мм 2 = 10 –6 м 2 . Тогда плотность тока равна j = 10 6 А/м 2 . Теперь воспользуемся соотношением (4.7)

Носителями зарядов в меди являются электроны (е = 1.6·10 -19 Кл), и нам осталось оценить их концентрацию . В таблице Менделеева медь помещается в первой группе элементов, у нее один валентный электрон, который может быть отдан в зону проводимости. Поэтому число свободных электронов примерно совпадает с числом атомов. Берем из справочника плотность меди — r Cu=8,9·10 3 кг/м3. Молярная масса меди указана в таблице Менделеева — MCu = 63,5·10 –3 кг/моль. Отношение

— это число молей в 1 м 3 . Умножая на число Авогадро Na = 6,02·10 23 моль –1 , получаем число атомов в единице объема, то есть концентрацию электронов

Теперь получаем искомую оценку дрейфовой скорости электронов

Для сравнения: скорости хаотического теплового движения электронов при 20°С в меди по порядку величины составляют 10 6 м/с, то есть на одиннадцать порядков величины больше.

Возьмем произвольную воображаемую замкнутую поверхность S, которую в разных направлениях пересекают движущиеся заряды. Мы видели, что полный ток через поверхность равен

где dq — заряд, пересекающий поверхность за время dt. Обозначим через q ‘ заряд, находящийся внутри поверхности. Его можно выразить через плотность заряда , проинтегрированную по всему объему, ограниченному поверхностью

Из фундаментального закона природы — закона сохранения заряда — следует, что заряд dq, вышедший через поверхность за время dt, уменьшит заряд q ‘ внутри поверхности точно на эту же величину, то есть dq ‘ = –dq или

Подставляя сюда написанные выше выражения для скоростей изменения заряда внутри поверхности , получаем математическое соотношение, выражающее закон сохранения заряда в интегральной форме

Напомним, что интегрирования ведутся по произвольной поверхности S и ограниченному ею объему V.

Источник

Плотность тока формула электрический заряд

Вы будете перенаправлены на Автор24

Сила тока

Электрический ток количественно характеризует сила тока (I), которая равна производной от заряда ($q$) по времени для тока, который течет через поверхность S:

По своей сути сила тока — это поток заряда через поверхность S.

Электрический ток — процесс движения, как отрицательных зарядов, так и положительных.

Перенос отрицательного заряда в одном направлении эквивалентен переносу такого же положительного заряда в противоположном направлении. В том случае, если ток создается зарядами обоих знаков $(dq^+\ и\ dq^-)$, то можно записать, что сила тока равна:

Положительным направлением тока считают направление движения положительных зарядов. Ток может быть постоянным и переменным. В том случае, если сила тока и его направление не изменяется во времени, то такой ток называют постоянным и для него выражение для силы тока можно записать в виде:

где сила тока определена, как заряд, который проходит через поверхность S в единицу времени. В системе СИ основной единицей измерения силы тока является Ампер (А).

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, по которому течет ток, малый объем dV произвольной формы. Обозначим через $\left\langle v\right\rangle $— среднюю скорость, с которой движутся носители заряда в проводнике. пусть $n_0\ $— концентрация носителей заряда. Выберем бесконечно малую площадку dS на поверхности проводника, которая перпендикулярно скорости $\left\langle v\right\rangle $ (рис.1).

Плотность тока

Построим на площадке dS очень короткий прямой цилиндр с высотой $\left\langle v\right\rangle dt.$ Все частицы, которые находились внутри этого цилиндра за время dt пройдут через площадку dS и перенесут через нее в направлении скорости $\left\langle v\right\rangle \ $заряд равный:

\[dq=n_0q_e\left\langle v\right\rangle dSdt\left(4\right),\]

где $q_e=1,6\cdot <10>^<-19>Кл$ — заряд электрона, то есть отдельной частицы — носителя тока. Разделим выражение (4) на $dSdt$ получим:

где $j$ — модуль плотности электрического тока.

\[j=n_0q_e\left\langle v\right\rangle \left(6\right),\]

где $j$ — модуль плотности электрического тока в проводнике, где заряд переносят электроны.

Если ток образуется в результате движения нескольких типов зарядов, то плотность тока можно определить как:

где i — определяет носитель заряда.

Плотность тока — векторная величина. Обратимся вновь к рис.1. Пусть $\overrightarrow$ — единичная нормаль к площадке dS. Если частицы, которые переносят заряд положительные, то переносимый ими заряд в направлении нормали больше нуля. В общем случае элементарный заряд, который переносится в единицу времени, можно записать как:

Читайте также:  Постоянный ток ржд сколько

Формула (8) справедлива и в том случае, когда площадка dS неперпендикулярная вектору плотности тока. Так как составляющая вектора $\overrightarrow$, перпендикулярная нормали, через площадку dS электричества не переносит. Таким образом, плотность тока в проводнике окончательно запишем, используя формулу (6) следующим образом:

\[\overrightarrow=-n_0q_e\left\langle \overrightarrow\right\rangle \left(9\right).\]

И так, плотность тока равна количеству электричества (заряду), который протекает за одну секунду через единицу сечения проводника. Для однородного цилиндрического проводника можно записать, что:

где S — площадь сечения проводника.

Плотность постоянного тока одинакова по всему сечению проводника. Для двух разных сечений проводника ($S_1<,S>_2$) с постоянным током выполняется равенство:

Из закона Ома для плотности токов можно записать:

где $\lambda $ — коэффициент удельной электропроводности.

Зная плотность тока, можно выразить силу тока как:

где интегрирование проводят по всей поверхности S любого сечения проводника.

Единица плотности тока $\frac<м^2>$.

Линии тока

Готовые работы на аналогичную тему

Линии, вдоль которых движутся заряженные частицы, называют линиями тока.

Направлениями линий тока являются направления движения положительных зарядов. Нарисовав линии тока, получают наглядное представление о движении электронов и ионов, которые образуют ток. Если внутри проводника выделить трубку с током, у которой боковая поверхность состоит из линий тока, то движущиеся заряженные частицы не будут пересекать боковую поверхность такой трубки. Подобную трубку называют трубкой тока. Например, поверхность металлической проволоки в изоляторе будет являться трубой тока.

Задание: Сила тока в проводнике увеличивается равномерно от 0 до 5 А в течении 20 с. Найдите заряд, который прошел через поперечное сечение проводника за это время.

За основу решения задачи примем формулу, которая определяет силу тока, а именно:

В таком случае заряд будет найден как:

В условии задачи сказано, что сила тока изменяется равномерно, это значит, что можно записать закон изменения силы тока как:

Найдем коэффициент пропорциональности в (1.3), для этого запишем закон изменения силы тока еще раз для момента времени при котором сила тока равна $I_2=$3А ($t_2$):

Подставим (1.4) в (1.3) и проинтегрируем в соответствии с (1.2), получим:

За начальный момент времени примем момент, когда сила тока равна нулю, то есть $t_1=0,$ $I_1=0\ А.$ $t_2=20,$ $I_1=5\ А.$

Задание: Найдите среднюю скорость движения электронов в проводнике молярная масса вещества, которого равна $\mu $, поперечное сечение проводника S. Сила тока в проводнике I. Считать, что на каждый атом вещества в проводнике приходится два свободных электрона.

Силу тока (I) в проводнике можно считать постоянной и соответственно записать, что:

где заряд q найдем как произведение числа электронов проводимости в проводнике, на заряд одного электрона $q_e$, который является известной величиной. $\triangle t$ — промежуток времени за который через поперечное сечение проводника проходит заряд q.

Найти N можно, если использовать известное соотношение из молекулярной физики:

где $N’$- количество атомов в проводнике объем, которого V, плотность $\rho $, молярная масса $\mu $. $N_A$ — число Авогадро. По условию задачи $N=2N’$.

Найдем из (2.2) число свободных электронов:

Подставим (2.3) в (2.1), получим:

где объем проводника найден как $V=Sl$, где $l$ — длина проводника. Выразим ее.

Среднюю скорость движения электронов можно найти как:

Ответ: $\left\langle v\right\rangle =\frac<\mu I><2\rho q_eN_AS>.$

Источник



Плотность тока формула

Электрическое поле воздействует на заряды, в результате, они начинают упорядоченно перемещаться. Такое перемещение получило определение электрического тока. Как правило, заряды двигаются в какой-либо среде, называемой проводником, и являются носителями тока. Одной из основных характеристик движения зарядов является плотность тока, формула которого описывает электрический заряд, переносимый за 1 секунду через сечение проводника, которое перпендикулярно направлению этого тока.

Чем определяется плотность тока

Понятие плотности тока определяется количеством электричества, протекающим через сечение проводника в течение одной секунды. Направление электротока является перпендикулярным сечению проводника.

Плотность тока формула

Если взять однородный проводник цилиндрической формы, в котором ток имеет равномерное распределение по всему сечению, то его плотность будет выражаться в виде формулы: J = I / S, где I является силой тока, а S – площадью поперечного сечения. Единицей измерения этой величины служит А/м2 (ампер на метр квадратный). Данная величина является векторной. Ее направление совпадает с направлением напряженности электрического поля.

Использование плотности тока на практике

Очень часто возникает вопрос о возможности использования конкретного провода для тех или иных целей. То есть, способен ли он выдержать определенную нагрузку. В этих случаях, очень важно определить плотность электротока с допустимой величиной.

Данный показатель очень важен, поскольку в каждом проводнике возникает сопротивление току, протекающему через него. Происходят потери тока, из-за чего проводник начинает нагреваться. При слишком больших потерях, наступает критическое нагревание, вызывающее расплавление проводника. Чтобы исключить подобные ситуации, каждому прибору или потребителю устанавливается наиболее оптимальная плотность тока, формула которой позволит рассчитать нужное сечение провода.

Когда возникает необходимость выбрать нужное сечение провода или кабеля, необходимо учитывать допустимое значение плотности электротока. Для практических расчетов во время проектирования используются специальные таблицы и формулы, позволяющие получить желаемый результат.

Для разных металлов существуют различные значения плотности. В настоящее время используются только медные провода, в которых плотность электротока не должна превышать 6-10 А/мм2. Это особенно актуально для долговременной эксплуатации, когда проводке обеспечивается облегченный режим. Допускается эксплуатация и при повышенных нагрузках, только на очень короткое время.

Читайте также:  Ток в симметричной линией питания

Что такое плотность тока

Формула для закона Ома

Плотность энергии магнитного поля

Формула удельного сопротивления

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Источник

Электрический ток и его плотность

ads

Электрическим током называют направленное движение свободно заряженных частиц под действием электрического поля.

Как правило движение зарядов происходит в некоторой среде (веществе или вакууме), являющейся проводником для электрического тока. Движущимися в среде заряженными частицами могут быть электроны (в металлах, полупроводниках) или ионы (в жидкостях и газах).

Упорядочное движение носителей заряда под действием электрического поля

Рис. 1 Электрический ток

Для возникновения и протекания электрического тока в любой токопроводящей среде необходимо выполнение двух условий:

  1. Наличие в среде свободных носителей заряда;
  2. Наличие электрического поля.

Для поддержания электрического поля, например в проводнике, к его концам необходимо подключить какой-либо источник электрической энергии (батарейку или аккумулятор). Поле в проводнике создается зарядами, которые накопились на электродах источника тока под действием сил (химических, механических и т.д.).

За направление тока условно принято принимать направление движения положительных зарядов. Следовательно, условно принятое направление тока обратно направлению движения электронов – основных отрицательных электрических носителей заряда в металлах и полупроводниках.

Понять явление электрического тока достаточно сложно так как его невозможно увидеть глазами. Для лучшего понимания процессов в электронике проведем аналогию между электрическим током в проводнике и водой в тонкой трубочке. В трубочке есть вода (носители заряда в проводнике), но она неподвижна, если трубочка лежит на горизонтальной поверхности и уровень высот ее концов (значения потенциалов электрического поля) одинаковый. Если трубочку наклонить так, что один конец станет выше другого (появится разность потенциалов), вода потечет по трубочке (электроны придут в движение).

Способность вещества проводить электрический ток под действием электрического поля называется электропроводностью. Каждому веществу соответствует определенная степень электропроводности. Ее значение зависит от концентрации в веществе носителей заряда – чем она выше, тем больше электропроводность. В зависимости от электропроводности все вещества делятся на три большие группы: проводники, полупроводники и диэлектрики.

Электрический ток может менять направление и величину во времени (переменный ток) или оставаться неизменным (постоянный) (рисунок 2).

Рис. 2. Постоянный и переменный электрические токи

Рис. 2. Постоянный и переменный электрические токи

Количественной мерой электрического тока служит сила тока I, которая определяется числом электронов (зарядов) q, проходящих через импровизированное поперечное сечение проводника в единицу времени t (рисунок 3).

Формула силы тока

Рис. 3. Сила тока в проводнике

Рис. 3. Сила тока в проводнике

Для постоянного тока представленное выше выражение можно записать в виде

Сила тока

Ток в системе СИ измеряется в амперах, [А]. Току в 1 А соответствует ток, при котором через поперечное сечение за 1 секунду проходит электрический заряд, равный 1 Кл.

Плотность электрического тока

Под плотностью тока j понимается физическая величина, равная отношению тока I к площади поперечного сечения S проводника. При равномерном распределении тока по поперечному сечению проводника.

J = I/S

Плотность тока в системе СИ измеряется в амперах на миллиметр квадратный, [А/мм 2 ].

Рассмотрим плотность тока в проводнике с разным поперечным сечением. Например, соединены два проводника с различными сечениями: первый толстый провод с большим поперечным сечением S1 второй тонкий провод с сечением S2. К концам которых приложено постоянное напряжение (рисунок 5) в следствии чего через них протекает постоянный ток с одинаковой силой тока.

Рис.5 Плотность тока в проводниках с различными сечениями.

Рис.5 Плотность тока в проводниках с различными сечениями.

Предположим, что сила тока через поперечное сечение толстого проводника S1 и тонкого провода S2 различная. Из этого предположения вытекает, что за каждую единицу времени через сечения S1 и S2 протекают различные значения электрического заряда. Следовательно, в объёме провода, расположенного между двумя указанными сечениям происходит непрерывное скапливание зарядов, и напряженность электрического поля изменялась бы, чего не может быть, так как при изменении электрического поля ток был бы непостоянен. В проводах с различным сечением при одном и том же токе плотность тока обратно пропорциональна площади поперечного сечения.

Плотность тока — векторная величина.

Формула пдотности тока

Рис. 4. Графическая интерпретация плотности тока j

Рис. 4. Графическая интерпретация плотности тока j

Направление вектора Вектор плотность тока совпадает с направлением положительно заряженных зарядов и, следовательно, с направлением самого тока I.

Если концентрация носителей тока равна n, каждый носитель имеет заряд e и скорость его движения в проводнике равна v (рисунок 3), то за время dt через поперечное сечение S проводника переносится заряд

Формула плотности тока

В этом случае величину силы тока I можно представить в виде зависимости

Формула силы тока

а плотность тока

Сила тока через произвольную поверхность определяется через поток вектора плотности тока, как интеграл по произвольной (в общем случае) поверхности S (рисунок 6)

Формула плотность тока

Рис. 6. Сила тока через произвольную поверхность S

Рис. 6. Сила тока через произвольную поверхность S

От величины плотности тока зависит важный показатель – качество электропередачи. Фактически этот показатель зависит от степени нагрузки проводника (хотя и не только от нее). В зависимости от значения плотности тока принято выбирать сечение проводов – это связано с наличием у проводников сопротивления, в результате которого происходит нагрев жил проводника вплоть до его расплавления и выхода из строя.

Источник