Меню

Получение переменного электрического тока из постоянного

Несколько слов об инверторах, или как из постоянного тока сделать переменный

Фото 1

Преобразование одного вида тока в другой требуется довольно часто. Способ превращения переменного в постоянный прост: применяется диодный мост и сглаживающий конденсатор.

А вот как из постоянного тока сделать переменный, знают не все. Между тем, в сфере электротехники такое преобразование, как будет показано далее, также выполняется довольно часто.

Способы получения электричества

Электроток производят с помощью таких устройств:

Фото 2

  1. механические генераторы. Состоят из двух частей: неподвижного статора и вращающегося внутри него ротора. Статор — постоянный или электрический магнит, ротор содержит обмотку из провода. При вращении ротора пересекающий его обмотку магнитный поток все время меняется, что приводит, согласно закону электромагнитной индукции, к возникновению ЭДС. Ротор приводится во вращение внешней силой: двигателем (автомобиль), потоком воды (гидроэлектростанция), давлением пара (атомные и тепловые электростанции), ветром и т.д. Ток на выходе генератора будет переменным. Для получения постоянного требуется дополнительное механическое устройство — коллектор;
  2. гальванические элементы (ГЭ) и аккумуляторы. Превращают в электричество химическую энергию за счет окислительно-восстановительной реакции. Простейший ГЭ: медная и цинковая пластины, погруженные, соответственно, в растворы сернокислой меди и сульфата цинка, изолированные друг от друга пористой перегородкой (элемент Якоби-Даниэля). В результате окисления каждый атом цинка на цинковой пластине (анод) отдает 2 электрона, переходящие по электрической цепи на медную пластину (катод) и восстанавливающие на нем положительно заряженные ионы меди. ГЭ называют первичными химическими источниками тока (ХИТ). Аккумуляторы — вторичные ХИТ. Принцип работы схож, но химическую энергию им сначала нужно сообщить, подключив систему к источнику тока. Заряжать и разряжать аккумулятор можно многократно, тогда как ГЭ используется только один раз;
  3. фотоэлементы. Действие основано на способности полупроводников генерировать ток при облучении светом. В этом можно убедиться, срезав верхнюю часть корпуса транзистора и поместив его под солнечные лучи: на выводах прибора мультиметр покажет напряжение;
  4. термоэлементы. Действие основано на эффекте Зеебека: в замкнутой цепи из двух проводов, выполненных из разных металлов, при нагревании одной из двух зон контакта между ними возникает ЭДС. Такие цепи называют термопарами и в основном применяют в качестве термодатчиков. К примеру, для измерения температур от +0 0 С до +100 0 С применяют пару медь – константан, в диапазоне +100 0 С – +600 0 С — серебро и константан.

Как из постоянного сделать переменный?

Устройство, преобразующее постоянный ток в переменный, называют инвертором. Существует несколько видов этих аппаратов.

Инвертор с электродвигателем

Вал двигателя постоянного тока подсоединяется к скользящему контактному узлу, состоящему из двух частей:

Фото 3

  • вращающейся: состоит из нескольких кольцевых и сегментных пластин, упакованных в форме цилиндра;
  • неподвижной: графитовые щетки в щеткодержателях.

Одна пара щеток подключена к источнику постоянного тока, другая — к цепи переменного тока. Первая пара контактирует с кольцевыми пластинами, другая — с сегментными.

Часть последних электрически соединена с положительным кольцом, другая — с отрицательным. При вращении двигателя щетки цепи переменного тока по очереди контактируют с сегментными пластинами, в результате чего направление тока постоянно меняется. Более качественный переменный ток дает связка «двигатель постоянного тока – механический генератор», но у этого инвертора ниже КПД.

Релейный инвертор

Тут же пружина отбрасывает сердечник в исходное положение, так что к упомянутому контакту подключается катод. Такие колебания повторяются многократно, пока на катушку соленоида подается постоянный ток.

Электронный инвертор

Фото 4

С появлением и постепенным удешевлением полупроводников электромеханические инверторы перекочевали в разряд устаревших.

В их электронном аналоге ток перенаправляется ключевыми транзисторами, управляемыми микросхемой. Именно такие инверторы применяются в инверторных сварочных аппаратах, импульсных блоках питания, ИБП и др.

При использовании особых быстро переключающихся транзисторов такой инвертор способен создать из постоянного тока переменный с частотой в десятки кГц. Это позволяет уменьшить габариты трансформатора и потери в нем (сварочные аппараты, импульсные блоки питания). Существует несколько видов электронных инверторов. Они описываются в последнем разделе.

Переменный ток и его свойства

Переменный ток циклически меняет направление и силу, характеризуется следующими параметрами:

Фото 5

  1. частота. Число циклов (периодов) в секунду. Например, частота тока в сети составляет 50 Гц;
  2. амплитуда. Максимальное отклонение напряжения и силы тока от нуля. Так, сетевое напряжение 50 раз в секунду меняет значение от -311 В до 311 В;
  3. действующее значение. Это напряжение или сила эквивалентного постоянного тока, то есть такого, который вызывает в проводнике такое же тепловыделение, как и данный переменный. К действующему значению прибегают с целью упрощения расчетов: работать с постоянно изменяющимися величинами крайне неудобно. Например, если в формуле записать действительное значение переменного сетевого напряжения, изменяющегося от -311 В до 311 В по синусоидальному закону, получится уравнение с тригонометрическими функциями либо комплексными числами. Гораздо проще оперировать постоянным действующим значением в 220 В;
  4. форма. Сетевой ток, производимый механическими генераторами, имеет синусоидальную форму. На выходе инвертора она может быть остроугольной, ступенчатой и т. д.

Переменный ток уступает постоянному в следующем:

  1. он менее качественный. Так, сварной шов получается более прочным и надежным, если сварка осуществлялась постоянным током. Качественнее работает и электроника;
  2. при частоте в 50 Гц — более опасен. Нарушения в организме вызывает уже при силе в 50 мА, тогда как постоянный — при силе в 300 мА. Однако, с повышением частоты переменный ток становится уже не таким опасным. Так, выдающийся изобретатель Никола Тесла на публичных опытах пропускал через себя переменный ток большого напряжения (светилась зажатая в руке лампа), предварительно подняв его частоту до нескольких мегагерц;
  3. сопротивление проводников переменному току выше, чем постоянному. Разъяснение этому будет дано ниже.

Но есть у переменного тока и полезная особенность: создаваемое им магнитное поле также является переменным, а значит, оно способно наводить в проводниках ЭДС (закон электромагнитной индукции).

Переменный ток делает возможным работу таких устройств:

Фото 6

  1. трансформаторы. За счет повышения напряжения значительно сокращаются потери в линиях электропередач;
  2. индукционные нагреватели;
  3. дроссельные фильтры. Дроссель — катушка. Создаваемое ею переменное магнитное поле противодействует переменному току, то есть дроссель выступает в качестве сопротивления. От индуктивности катушки зависит частота тока, которому она сильнее всего противодействует. Эта особенность позволяет глушить дросселем высокочастотные помехи в сети.

Наличием переменного магнитного поля объясняется и упомянутое выше увеличение сопротивления проводника. В нем полем также наводится ЭДС, противодействующая данному переменному току. Эта ЭДС выше в центре проводника, где сконцентрированы силовые линии поля, соответственно, носители заряда вытесняются наружу (поверхностный или скин-эффект).

В итоге вместо всего сечения проводника ток пропускает только некоторая его часть, отчего и возрастает сопротивление. Еще отличие переменного тока от постоянного — способность протекать по цепи с последовательно включенным конденсатором. Для постоянного тока разрыв между обкладками непреодолим, тогда как переменный протекает почти свободно, заряжая обкладки то с одним, то с другим знаком.

Читайте также:  Варианты вычисление силы тока

Схемы преобразователей

Инверторы классифицируются по принципу работы, форме и схеме.

Принцип действия

По данному признаку устройства делятся на два типа: автономные и инверторы, ведомые сетью.

Фото 7

Автономные делятся на несколько подгрупп, объединяющих инверторы:

  • напряжения (ИН): устанавливаются в большинстве ИБП;
  • тока;
  • резонансные.

Инверторы, ведомые сетью иначе называются зависимыми. Применяются, к примеру, в качестве силовых преобразователей на электровозах.

Схемы

Существует несколько основных схем инверторов:

  1. мостовой ИН без трансформатора. Применяется в ИБП мощностью свыше 500 ВА и в различных устройствах, рассчитанных на 220 или 380 В;
  2. ИН с нулевым выводом трансформатора. Применяется в ИБП мощностью 250-500 ВА, в установках напряжением 12 или 24 В и мобильных радиопередатчиках;
  3. мостовой ИН с трансформатором. Используется в ИБП ответственных объектов с потребляемой мощностью от нескольких кВА до десятков.

Фото 8

Принципиальная схема преобразователя

Форма

По форме выходного напряжения инверторы делятся на:

  1. ИН с прямоугольным выходным сигналом. С целью обеспечить требуемую пропорциональность Uвых. управляющая схема варьирует относительную длительность импульсов ключами либо сдвигает по фазе сигналы управления противофазных групп ключей (зависит от конструктивных особенностей переключающего модуля);
  2. ИН со ступенчатым выходным напряжением. Обрабатывают входной сигнал в два этапа: путем высокочастотного преобразования формируется однополярный ступенчатый сигнал, близкий к синусоиде с уменьшенным вдвое периодом, а при помощи мостового преобразователя он превращается в разнополярный с требуемым периодом;
  3. ИН с синусоидальным выходным напряжением. Входной постоянный ток также обрабатывается в 2 этапа: путем высокочастотного преобразования формируется постоянное напряжение, почти равное амплитуде требуемого переменного напряжения, а затем мостовым инвертором, действующим по принципу многократной широтно-импульсной модуляции.

Полученное постоянное напряжение преобразуется в близкое к синусоидальному переменное.

Видео по теме

О том, как из постоянного тока сделать переменный и наоборот, в видео:

У каждой разновидности тока есть и преимущества, и недостатки. Потому инверторы и выпрямители применяются достаточно часто. В статье приведены только основные схемы преобразователей, всего же их довольно много.

Источник

Как из постоянного тока сделать переменный? Какой ток опаснее — постоянный или переменный?

Использование в повседневной жизни различных электрических приборов и устройств, работающих благодаря электроэнергии, обязывает нас иметь минимальные познания в области электротехники. Это знания, которые сохраняют нам жизнь. Ответы на вопросы о том, как из постоянного тока сделать переменный, какое напряжение должно быть в квартире и какой ток опасен, современный человек должен знать, чтобы избежать поражения и гибели от него.

Способы получения электричества

Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.

как из постоянного тока сделать переменный

Существует несколько способов получения электричества:

  • из тепловой энергии;
  • из энергии воды;
  • из атомной (ядерной) энергии;
  • из ветровой энергии;
  • из солнечной энергии и др.

Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.

Электричество из энергии ветра

Электрический ток — это направленное движение заряженных частиц. Самый простой способ его получения — энергия природных сил.

В данном примере от энергии ветра. Природный феномен дующего с различной силой ветра люди научились использовать давно. Укрощает ветер простой ветряк, оборудованный приводом и соединённый с генератором. Генератор и вырабатывает электрическую энергию.

преобразователь dc ac

Излишки тока при постоянном использовании ветряка можно накапливать в аккумуляторных батареях. Выработанный постоянный экологически чистый ток в быту и производстве не применяется.

Полученный и преобразованный в переменный ток, он идет для бытового использования. Накопленные излишки электричества хранятся в аккумуляторных батареях. При отсутствии ветра запасы электричества, хранящиеся в аккумуляторах, преобразуются и поступают на нужды человека.

Электроэнергия из воды

К большому сожалению, этот вид природной энергии, дающий возможность получать электричество, не везде имеется. Рассмотрим способ получения электричества там, где воды много.

Простейшая ГЭС, сделанная из дерева по принципу мельницы, размер которой порядка 1,5 метров, способна обеспечить электричеством, используемым и на отопление, частное подсобное хозяйство. Такую бесплотинную ГЭС сделал русский изобретатель, уроженец Алтая — Николай Ленев. Он создал ГЭС, перенести которую могут два взрослых мужчины. Все дальнейшие действия аналогичны получению электричества от ветряка.

Вырабатывают электричество и крупные электростанции и гидростанции. Для промышленного получения электричества применяют огромные котлы, дающие пар. Температура пара достигает 800 градусов, а давление в трубопроводе поднимается до 200 атмосфер. Этот перегретый пар с высокой температурой и огромным давлением поступает на турбину, которая начинает вращаться и вырабатывать ток.

То же самое происходит и на гидроэлектростанциях. Только здесь вращение происходит за счёт больших скорости и объема воды, падающей с огромной высоты.

схема преобразователя

Обозначение тока и применение его в быту

Постоянный ток обозначается DC. На английском языке пишется как Direct Current. Он в процессе работы со временем не меняет своих свойств и направления. Частота постоянного тока равна нулю. Обозначают его на чертежах и оборудовании прямой короткой горизонтальной черточкой или двумя параллельными черточками, одна из которых пунктирная.

Используется постоянный ток в привычных нам аккумуляторах и батарейках, используемых в огромном числе различного типа устройств, таких как:

  • счетные машинки;
  • детские игрушки;
  • слуховые аппараты;
  • прочие механизмы.

Все ежедневно пользуются мобильным телефоном. Зарядка его происходит через блок питания, компактный преобразователь DC/AC, включаемый в бытовую розетку.

Электрические приборы потребляют переменный однофазный ток. Электроприборы заработают только с подключением трансформатора и выпрямителя тока. Многие производители устанавливают преобразователь DC/AC непосредственно в сам агрегат. Это намного упрощает эксплуатацию электрооборудования.

Как из постоянного тока сделать переменный?

Выше говорилось, что все аккумуляторы, батарейки для фонариков, пультов телевизоров имеют постоянный ток. Чтобы преобразовать ток, существует современное устройство под названием инвертор, он с легкостью из постоянного тока сделает переменный. Рассмотрим, как это применимо в повседневности.

однофазный переменный ток

Бывает, что во время нахождения в автомашине человеку необходимо срочно распечатать на ксероксе документ. Ксерокс имеется, машина работает и, включив в прикуриватель переходник на инвертор, он может подключить к нему ксерокс и распечатать документы. Схема преобразователя достаточно сложна, особенно для людей, которые имеют отдаленное понятие о работе электричества. Поэтому в целях безопасности лучше не пытаться самостоятельно соорудить инвертор.

Переменный ток и его свойства

Протекая, переменный ток в течение одной секунды меняет направление и величину 50 раз. Изменение движения тока — это его частота. Обозначается частота в герцах.

Читайте также:  Исследование работы инвертора тока

У нас частота тока 50 герц. Во многих странах, например США, частота равна 60 герц. Также бывает трёхфазный и однофазный переменный ток.

Для бытовых нужд приходит электричество, равное 220 вольтам. Это действующее значение переменного тока. Но амплитуда тока максимального значения будет больше на корень из двух. Что в итоге даст 311 вольт. То есть фактическое напряжение бытовой сети составляет 311 вольт. Для изменения постоянного тока на переменный применяются трансформаторы, в которых используются различные схемы преобразователей.

преобразователь переменного тока

Передача тока по высоковольтным линиям

Все электрические наружные сети несут по своим проводам переменный ток различного напряжения. Оно может колебаться от 330000 вольт до 380 вольт. Передача осуществляется только переменным током. Данный способ транспортировки — самый простой и дешёвый. Как из переменного тока сделать постоянный, давно известно. Поставив трансформатор в нужном месте, получим необходимое напряжение и силу тока.

Схемы преобразователей

Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.

как из переменного тока сделать постоянный 220

Вторая схема преобразователя переменного тока — это параллельное подключение на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.

Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.

Какой электрический ток опаснее – постоянный или переменный?

В повседневной жизни мы постоянно сталкиваемся на работе и в быту с электроприборами, подключенными в розетки. Ток, бегущий от электрического щита до розетки, однофазный переменный. Происходят случаи поражения электрическим током. Меры безопасности и знания о поражении током необходимы.

какой электрический ток опаснее постоянный или переменный

В чем принципиальная разница между попаданием под напряжение переменным током и постоянным? Имеется статистика, что переменный DC однофазный ток в пять раз опаснее постоянного AC тока. Поражение током, вне зависимости от его типа, само по себе отрицательный факт.

Последствия от поражения током

Небрежность в обращении с электроприборами может, мягко говоря, негативно сказаться на здоровье человека. Поэтому не стоит экспериментировать с электричеством, если на то нет специальных навыков.

как из постоянного тока сделать переменный

Действие тока на человека зависит от нескольких факторов:

  • сопротивления тела самого потерпевшего;
  • напряжения, под которое попал человек.
  • от силы тока на момент контакта человека с электричеством.

С учетом всего перечисленного можно сказать, что действие переменного тока намного опаснее, чем постоянного. Имеются данные экспериментов, подтверждающие факт, что для получения равного результата при поражении сила постоянного тока должна быть в четыре — пять раз выше, чем переменного.

Сама природа переменного тока отрицательно сказывается на работе сердца. При поражении током происходит непроизвольное сокращение сердечных желудочков. Это может привести к его остановке. Особенно опасно соприкосновение с оголенными жилами людям, имеющим сердечный стимулятор.

У постоянного тока частота отсутствует. Но высокие напряжение и сила тока могут привести также к летальному исходу. Выйти из под контакта с постоянным электрическим током проще, чем из-под контакта с переменным.

как из постоянного тока сделать переменный

Этот небольшой обзор природы электрического тока, его преобразования должен быть полезен людям, далеким от электричества. Минимальные познания в области происхождения и работы электроэнергии помогут понять суть работы обычных бытовых приборов, которые так необходимы для комфортной и спокойной жизни.

Источник



Получение переменного электрического тока

Переменным током, в традиционном понимании, называется ток, получаемый благодаря переменному, гармонически изменяющемуся (синусоидальному) напряжению. Переменное напряжение генерируется на электростанции, и постоянно присутствует в любой настенной розетке.

Для передачи электроэнергии на большие расстояния также используется именно переменный ток, поскольку переменное напряжение легко повышается при помощи трансформатора, и таким образом электрическую энергию можно передать на расстояние с минимальными потерями, а затем обратно понизить с помощью трансформатора до приемлемого для бытовой сети значения.

Получение переменного электрического тока

Генерация переменного напряжения (и соответственно тока) осуществляется на электростанции, где промышленные генер аторы переменного тока приводятся во вращение от турбин, движимых паром высокого давления. Пар получается из воды, которая сильно разогревается теплом, выделяемым в процессе ядерной реакции или при сжигании ископаемого топлива, в зависимости от типа конкретной электростанции. В любом случае, вращение генератора переменного тока — это и есть причина образования переменного напряжения и тока.

Для ответа на вопрос, как в генераторе образуется переменный ток, достаточно рассмотреть элементарную модель, состоящую из куска провода, и магнита, попутно вспомнив силу Лоренца и закон электромагнитной индукции. Допустим, провод длиной 10 см лежит на столе, а у нас в руке сильный неодимовый магнит, размер которого немного меньше провода. Присоединим к концам провода чувствительный гальванометр или стрелочный вольтметр.

Модель

Поднесем магнит одним из полюсов близко к проводу, на расстояние менее 1 см, и быстро проведем магнитом над проводом поперек него слева направо — пересечем магнитным полем магнита проводник. Стрелка гальванометра резко отклонится в определенную сторону, затем вернется в исходное положение.

Перевернем магнит другим полюсом к проводу. И снова, движением руки слева на право, быстро пересечем магнитным полем экспериментальный проводник. Стрелка гальванометра резко отклонилась в другую сторону, затем вернулась в исходное положение. Вместо того чтобы переворачивать магнит, можно сначала совершить движение слева направо, а потом — справа налево, эффект смены направления генерируемого тока получится аналогичным.

Эксперимент показал, что для получения переменного напряжения нам необходимо либо двигать магнит поперек провода вправо-влево, либо пересекать проводник чередующимися магнитными полюсами. В генераторе на электростанции (и во всех традиционных генераторах переменного тока) применен второй вариант.

Получение переменной электродвижущей силы

Принцип действия генератора — получение переменной электродвижущей силы (напряжения)

Получение синусоидального напряженияПеременное синусоидальное напряжение

Генератор переменного тока на электростанции состоит из ротора и статора. Механическая энергия вращающейся турбины передается ротору. Магнитное поле ротора сконцентрировано на его полюсных наконечниках, и создается либо закрепленными на нем постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора.

Обычно обмотка статора состоит из трех отдельных обмоток, смещенных относительно друг друга в пространстве, что приводит к возникновению переменного напряжения и тока в каждой из трех обмоток. Таким образом, каждая из трех обмоток статора является источником переменного напряжения, причем мгновенные значения напряжений смещены по фазе относительно друг друга на 120 градусов. Это и называется трехфазный переменный ток.

Получение трехфазного переменного напряжения и тока

Получение трехфазного переменного напряжения и тока

Ротор генератора с двумя магнитными полюсами, вращающийся с частотой 3000 оборотов в минуту, дает 50 пересечений каждой фазы обмотки статора за секунду. А поскольку между магнитными полюсами имеется нулевая точка, то есть место, где индукция магнитного поля равна нулю, то во время каждого полного оборота ротора наведенное в обмотке напряжение переходит через ноль, затем изменяет полярность. В результате напряжение на выходе имеет форму синусоиды и частоту 50 Гц.

Читайте также:  Опасность трансформатора тока холостой ход

Когда источник переменного напряжения соединен с нагрузкой, в цепи получается переменный ток. Напряжение и максимально допустимый ток статора тем больше, чем сильнее магнитное поле ротора, т.е. чем больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу основного генератора.

Источник

Как получают переменный электрический ток

Электромагнитная индукция и закон Фарадея

Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки. Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась. Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.

Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.

Диск Фарадея

Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.

ЭДС индукции

Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.

На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.

e = B*l*v*sinα

Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.

Ф=B*S*cosα

Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.

Способы получения переменного тока

Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.

Вращение рамки в магнитном поле

Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше. При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков. Таким образом получается не рамка, а катушка.

Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.

По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.

В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.

Устройство генератора переменного тока

На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока – ГПТ) или от полупроводникового возбудителя через щеточный аппарат. Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя. Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.

Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз. Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи. Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.

Электронные преобразователи

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Схема преобразователя

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Чистая и модифицированная синусоида

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В. Его можно использовать для питания различных нагревателей и ламп накаливания.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX – первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

Источник