Меню

Получение переменного тока вращение рамки

Как получить переменный электрический ток?

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

Формула электродвижущая сила

где n – это количество витков обмоток

а соотношение B/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рамкой и магнитами

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

Читайте также:  Катушки главных полюсов статора машины постоянного тока соединяются

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Устройство асинхронного генератора

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Напряжение в трехфазной сети

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

схема синхронного генератора

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Схема инвертора

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Источник

Тема 8. Переменный ток

Получение переменного тока и его параметры.

Генераторы переменного и постоянного тока.

Трансформаторы.

Индукционная катушка.

1) Получение переменного тока и его параметры.

При вращении рамки в однородном магнитном поле с постоянной угловой скоростью w получается синосиодальный переменный ток.

В отрезках провода АВ и СД возникает ЭДС индукции E1 и E2 ,направление которых определяется по правилу Правой руки.

Угол поворота рамки α выразим формулой.

T – время одного полного оборота рамки, это и есть период изменения переменного тока.

— частота переменного тока.

е=Emax sin wt формула расчета мгновенного значения ЭДС в рамке.

Параметры переменного тока.

1) Мгновенное значение ЭДС (E) напряжения (U) силы тока (I) определяются по формулам:

2) Максимальное значение (или амплитудные) ЭДС (Еmах), напряжение (Umах) или тока (Imах)

3) эффективными или действующими значениями переменного тока являются:

Все вольтметры предназначенные для переменного тока показывают эффективные значения ЭДС и напряжения.

2. Генераторы переменного и постоянного тока.

Электрические машины в которых механическая энергия превращается в электрическую с помощью явления электромагнитной индукции называется инд. генераторами.

Основные элементы генератора:

1) индуктор создающий магнитное поле.

2) якорь, проводник в котором наводится ЭДС.

3) металлические кольца.

4) Щетки, соединяющие неподвижные проводники с вращающимися проводниками. В данном рисунке ротор – якорь подвижный статор – индуктор неподвижный. Частота вращения ротора совпадает с частотой переменного тока.

Схема устройства генератора постоянного тока отличается от схемы генератора переменного тока только тем, что здесь вместо колец используется коллектор (кольцо, разрезание на секторы, изолированные друг от друга).

Левая щетка всегда соединяется с поднимающейся стороной рамки (витка), а правая с опускающейся стороны. Коллектор создает у потребителя ток, одинаковой по направлению.

Трансформатор – прибор для изменения напряжения и силы переменного тока.

Принцип работы трансформатора основан на явлении (электромагнитной индукции, трансформатор состоит из ферромагнитного сердечника и двух обмоток (катушек)).

Первичная подсоединяется к источнику переменного напряжения, а вторичная к потребителю.

Первичная и вторичная обмотки изолированы друг от друга.

Если ключ вторичной цепи разомкнут, а на первичной обмотке w подадут переменное напряжение, то по этой обмотке пойдет ток, называемый током холостого хода.

Читайте также:  Точечная сварка из сварочного аппарата постоянного тока

Этот ток в сердечнике трансформатора создает переменный магнитный поток, который пронизывая витки первичной обмотки наводит в ней ЭДС самоиндукции, а в витках вторичной обмотки ЭДС индукции, так как вторичная и первичная обмотки находятся в одном и том же измененном магнитном поле, то наводимая ЭДС в каждом витке первичной и вторичной обмоток будет одинаковой, количество витков разное.

lw1 если не учитывать падения lw2 направления в первичной обмотке трансформатора, то можно считать u1,2

Сравним ЭДС и u в первичной и во вторичной обмотках.

kТР коэффициент трансформации

Вывод: для идеального трансформаторного напряжения в обмотках и количестве витков находится в прямой пропорциональной зависимости.

1) kтр > 1 трансформ.пониж.

Индукционная катушка является преобразователем постоянного тока низкого напряжения в изменяющий ток высокого напряжения.

При размыкании ключа (к) ток проходит через винт (В). Стальной молоточек (m) первичной катушки (w1) с сердечником так как сердечник при этом намагничивается, то молоточек (м) притягивается к нему и цепь размыкается, затем сердечник размагничивается молоточек выпрямляется и основа замыкает цепь через винт (В) вокруг первичной катушки создается переменное магнитное поле которое наводит ЭДС и во вторичной катушке имеющей большее число витков индукционная катушка позволяет получить напряжение конт. вторичной обмотки до 10 000 В.

Источник



Вращение рамки в магнитном поле

date image2015-10-22
views image16168

facebook icon vkontakte icon twitter icon odnoklasniki icon

Явление электромагнитной индукции применяется для преобразования механической энергии в энергию электрического тока. Для этой цели используются генераторы, принцип действия которых можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле

Предположим, что рамка вращается в однородном магнитном поле (В = const) равномерно с угловой скоростью ω = const. Магнитный поток, сцепленный с рамкой площадью S, в любой момент времени t, согласно (11.3), равен Ф =BnS = BS cosα =BS cosωt , где α =ωt – угол поворота рамки вмомент времени t (начало отсчета выбрано так, чтобы при t = 0 α = 0). При вращении рамки в ней будет возникать переменная э.д.с. индукции

Рис.18. Ei = – dФ/dt=BSω sinωt, (16.1)

изменяющаяся со временем по гармоническому закону. При sinωt=1, Ei максимальна, т.е. Emax=BSω определяет максимальные значения, достигаемые колеблющейся эдс.

Таким образом, если в однородном магнитном поле равномерно вращается рамка, то в ней возникает переменная э.д.с., изменяющаяся по гармоническому закону

Ei = Emax sinωt. (16.2)

Если вращать не один виток, а N витков, соединенных последовательно, то тем самым увеличивается S (S=NS1), т.е. в N раз увеличивается снимаемое напряжение.

Процесс превращения механической энергии в электрическую обратим. Если через рамку, помещенную в магнитное поле, пропускать электрический ток, то в соответствии с (1.2) на нее будет действовать вращающий момент и рамка начнет вращаться. На этом принципе основана работа электродвигателей, предназначенных для превращения электрической энергии в механическую.

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных впеременное магнитное поле. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми. Их также называют токами Фуко – по имени первого их исследователя. Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего вихревые токи. Например, если между полюсами невключенного электромагнита массивный медный маятник совершает практически незатухающие колебания, то при включении тока он испытывает сильное торможение и очень быстро останавливается. Это объясняется тем, что возникшие токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника. Этот факт используется для успокоения (демпфирования) подвижных частей различных приборов. Если в описанном маятнике сделать радиальные вырезы, то вихревые токи ослабляются и торможение почти отсутствует.

Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. Поэтому для уменьшения потерь на нагревание якоря генераторов и сердечники трансформаторов делают не сплошными, а изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, и устанавливают их так, чтобы вихревые токи были направлены поперек пластин. Джоулева теплота, выделяемая токами Фуко, используется в индукционных металлургических печах. Индукционная печь представляет собой тигель, помещаемый внутрь катушки, в которой пропускается ток высокой частоты. В металле возникают интенсивные вихревые токи, способные разогреть его до плавления. Такой способ позволяет плавить металлы даже в вакууме, в результате чего получаются сверхчистые материалы.

Читайте также:  Как определить направление напряжения в источнике тока

Вихревые токи возникают и в проводах, по которым течет переменный ток. Направление этих токов можно определить по правилу Ленца — направление вихревых токов таково, что они противодействуют изменению первичного тока внутри проводника и способствуют его изменению вблизи поверхности. Таким образом, вследствие возникновения вихревых токов быстропеременный ток оказывается распределенным по сечению провода неравномерно – он как бы вытесняется на поверхность проводника. Это явление получило название скин-эффекта. Так как токи высокой частоты практически текут в тонком поверхностном слое, то провода для них делаются полыми.

Если сплошные проводники нагревать токами высокой частоты, то в результате скин-эффекта происходит нагревание только их поверхностного слоя. На этом основан метод поверхностной закалки металлов. Меняя частоту поля, он позволяет производить закалку на любой требуемой глубине.

Источник

Получение переменного синусоидального тока

Метод получения переменного тока

Преимущество переменного тока перед постоянным током состоит в:

    1. Его достаточно легко перемещать на большие расстояния с минимальными потерями.
    2. Величину напряжения можно изменять с помощью трансформатора.
    3. Электродвигатели переменного тока простые в эксплуатации, конструкции и имеют небольшой вес.

Если рамку из медной проволоки поместить в электромагнитное поле и начать вращать, то на ее концах появится разность потенциалов. И если рамку замкнуть через нагрузку тогда потечёт электрический переменный синусоидальный ток. Величина и полярность переменного тока будет зависеть от положения рамки в электромагнитном поле, и при равномерном ее вращении получим переменный синусоидальный ток.

Вращение рамки

Вращение рамки в электромагнитном поле

В зависимости от частоты вращения рамки получим различную частоту переменного тока. Чтобы увеличить значение ЭДС добавляют число витков, и получается многовитковая катушка. Для генерации переменного тока применяют синхронные генераторы. Синхронный генератор переменного тока хорошо выдерживает большие токовые перегрузки, легко стабилизирует частоту переменного тока и э.д.с.

Электростанции работают на трехфазных генераторах, вырабатывающих трёхфазное напряжение. Такое напряжение считается экономически выгодным, а с технической стороны хорошим решением для работы электрических генераторов. Для генераторов, ротор которого имеет частоту вращения 3000 об/ мин с частотой 50 Гц необходимо всего два полюса, а при 1500 об/ мин генератор имеет четыре полюса.

Синхронный генератор содержит статор с обмотками, ротор с катушкой возбуждения и щётки. Щётки скользят по кольцам и, поэтому электромагнитное поле не меняет знак и направление. Есть возможность менять величину тока возбуждения и автоматически поддерживать режим работы синхронного генератора.

Генератора

Устройство генератора

В промышленных объемах электроэнергию вырабатывают трехфазными синхронными генераторами. В частном случае используют однофазные и трехфазные генераторы. Для электроинструмента с большими пусковыми токами используют синхронные генераторы, которые хорошо выдерживают большие кратковременные токовые перегрузки. Для частных домов, где нет больших перегрузок, применяют асинхронные генераторы.

Катушки трехфазного генератора могут иметь два вида соединений, как и для трехфазной нагрузки-это соединения “звезда” и “треугольник”. В генераторах электрический ток получают в трех обмотках соединенных по схеме ”звезда”. Такой вид соединения более экономный, так как не имеет четвертого провода.

Из общей точки соединения обмоток, при одинаковых напряжениях и нагрузках на 3 фазах, провод не выводится. Так в симметричных сетях при одинаковых нагрузках общий провод не обязателен. В электрических низковольтных сетях, для однофазных нагрузок равномерная нагрузка невозможна, поэтому здесь используют четырех проводные сети с глухозаземленной нейтралью.

Напряжение между фазами называют линейным напряжением, а между фазой и центральным проводом – фазным напряжением. В электростанциях и подстанциях применяют схему соединения “звезда”. Для низковольтных сетей до 1000 В линейное напряжения (между фазами) составляет 380 В, а напряжение между фазой и нейтралью (фазное) 220 В.

Сети до 1000 В с использованием различных нагрузок в разных фазах могут иметь перекос фаз. По правилам ПУЭ сети до 1000 В должны быть четырех проводными с глухозаземленной нейтралью. Таким образом, на понижающей подстанции нулевой провод с вторичной обмотки трансформатора, соединяется с заземляющим устройством и четвертым проводом идет к потребителям.

вторичная обмотка подстанции Четырех проводная вторичная обмотка подстанции

Не всегда рационально использовать синхронные генераторы. Иногда возникает необходимость получить переменное напряжение из постоянного 12-220 В или 24-220 В. В этом случае используют электронные преобразователи. В дешёвых вариантах электронных преобразователей синусоида переменного тока нечистая. Поэтому они подходят для активной нагрузки (лампы накаливания, тэны, различные обогреватели). Для индуктивной нагрузки (электродвигатели) нужна чистая синусоида переменного напряжения. Такие электронные преобразователи значительно дороже.

Источник