Нормирование безопасных уровней токов и напряжений прикосновения
2020-04-12
340
Безопасные значения токов, не вызывающие фибрилляцию сердца, были впервые установлены в Руководящих указаниях Американского общества инженеров электриков по защитным заземлениям переменного тока, благодаря работам лаборатории Дальзиела, его коллег и учеников в 50-х годах ХХ века:
мА,
где t – продолжительность протекания тока по организму человека, с.
Величина безопасного значения тока была установлена в лаборатории Дальзиела на основе обширного экспериментального материала, в который входили не только собственные испытания на моделирующих животных (обезьяны), но также материалы о воздействии предельных величин токов на человека по результатам казни на электрическом стуле в США и трофейные материалы нацистской Германии о измерениях предельных величин токов на пленённых людях во время Второй мировой войны 1939-1945 гг.
Исследования, проведённые различными авторами в разных странах на животных при кратковременных воздействиях тока (60 Гц) от 1/120 до 5 с (Феррис, Коувенховен и др.), показали, что ток, вызывающий фибрилляцию сердца, в значительной мере зависит от продолжительности воздействия на организм животных.
В СССР в 1965 году была создана инициативная группа учёных (Киселёв А.П., Карякин Р.Н., Найфельд М.Р., Якобс А.И. и др.), которые развернули в 1967 году на страницах журнала «Промышленная энергетика» творческую дискуссию о необходимости введения в существующие нормативные документы и правила эксплуатации электроустановок безопасных уровней величин напряжений и токов прикосновения на основе существующих исследований в области электробезопасности.
Достаточно кропотливая работа учёных и различных организаций в области определения безопасных (допустимых) токов через тело человека позволила создать первый нормативный документ системы стандартов безопасности труда в этой области ГОСТ 12.1.038-82 «ССБТ. Электробезопасность. Предельно допустимые уровни напряжений прикосновения и токов».
Нормирование предельно допустимых уровней напряжений прикосновения и токов предназначено для проектирования способов и средств защиты людей при взаимодействии с электроустановками производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц и осуществляется отдельно для каждого из следующих условий:
— нормальный (неаварийный) режим работы любой электроустановки;
— аварийный режим производственных электроустановок напряжением до 1000 В с глухозаземлённой или изолированной нейтралью и выше 1000 В с изолированной нейтралью;
— аварийный режим производственных электроустановок выше 1000 В переменного тока 50 Гц с эффективно заземлённой нейтралью;
— аварийный режим бытовых электроустановок напряжением до 1000 В переменного тока 50 Гц.
Аварийный режим электроустановки – работа неисправной электроустановки, при которой могут возникнуть опасные ситуации, приводящие к электротравмированию людей, взаимодействующих с электроустановками.
Бытовая электроустановка – электроустановка, используемая в жилых, коммунальных и общественных зданиях всех типов, например, в театрах, кинотеатрах, клубах, школах, детских садах, магазинах, больницах и т.п., с которой могут взаимодействовать как взрослые, так и дети.
Предельные уровни установлены для путей протекания тока через тело человека: ладонь – ладонь (рука – рука) и ладонь – ступни (рука – ноги).
Для нормального (неаварийного) режима работы нормы установлены, исходя из реакции ощущения (порога ощущаемого тока) и соответствуют продолжительности воздействия тока на организм человека не более 10 мин в сутки.
Предельные уровни напряжений и токов для нормального (неаварийного) режима (табл.3) должны уменьшаться в 3 раза для лиц, выполняющих работу в условиях высоких температур (выше 25 0 С) и влажности (относительная влажность более 75%).
Наибольшие допустимые напряжения прикосновения Uпр и токи Ih, проходящие через человека, при нормальном (неаварийном) режиме работы электроустановки (не более 10 мин)
Род и частота тока
Наибольшие допустимые значения
Наибольшие допустимые напряжения прикосновения Uпр и токи Ih, проходящие через человека, при аварийном режиме производственных электроустановок напряжением до 1000 В с глухозаземлённой или изолированной нейтралью и выше 1000 В с изолированной нейтралью
Род и частота тока
Продолжительность воздействия t, с
Предельно допустимые уровни напряжений прикосновения и токов при аварийных режимах производственных электроустановок установлены для путей тока через тело человека по путям: ладонь – ладонь (рука – рука) и ладонь – ступни (рука – ноги). При продолжительностях более 1 с (до 10 с) предельно допустимые токи соответствуют порогу отпускающего переменного тока и неболевого постоянного тока. Для переменных токов во всех случаях указываются действующие значения, а для выпрямленных – амплитудные (табл.4, 5).
Предельно допустимые уровни напряжений прикосновения и токов в аварийных режимах в бытовых электроустановках установлены значительно ниже подобных предельных уровней для промышленных электроустановок. Это объясняется тем, в этом случае электроприёмниками электроустановок могут пользоваться дети. В указанных нормируемых величинах (табл.6) значения напряжений и токов прикосновения установлены для детей с массой тела 15 кг.
Совпадение значений напряжения прикосновения в вольтах и токов в миллиамперах по абсолютной величине для значений напряжений Uпр ³ 50 В объясняется принятым расчётным значением сопротивления тела человека для этого случая Rh = 1000 Ом. При этом Uпр = 1000 Ih.
Наибольшие допустимые напряжения прикосновения при аварийном режиме производственных электроустановок переменного тока 50 Гц напряжением выше 1000 В с эффективно заземлённой нейтралью
Продолжительность воздействия тока, с | До 0,1 | 0,2 | 0,5 | 0,7 | 1,0 | Более 1,0 до 5,0 |
Наибольшее допустимое значение Uпр , В | 500 | 400 | 200 | 130 | 100 | 65 |
Наибольшие допустимые напряжения прикосновения Uпр и токи Ih, проходящие через тело человека, при аварийном режиме бытовых электроустановок переменного тока частотой 50 Гц напряжением до 1000 В
Источник
Напряжение прикосновения
При работах в электроустановках, с ручным инструментом и даже при пользовании бытовыми электроприборами возникает опасность поражения электричеством. Для этого не обязательно хвататься за оголённый участок провода, находящегося под действием электрического тока. Напряжение прикосновения может нанести вред здоровью и создать прямую угрозу для жизни.
Определение понятия
Само слово «прикосновение» выражает сущность этого понятия. Напряжение – это разность потенциалов между двумя точками. Оно возникает по причине пробоя изоляции, наведённого статического электричества или аварийной ситуации в технологическом процессе. Напряжение прикосновения – это электричество, которое появляется на человеческом теле в результате его соприкосновения с точками, имеющими разные потенциалы.
Если в каком-то месте создаются условия для одновременного прикосновения к двум токопроводящим элементам, то при появлении там живого организма можно говорить об опасности напряжения прикосновения. Эту электрическую величину можно предварительно измерить, чтобы иметь представление о её предполагаемых максимальных значениях.
Безопасно ли напряжение прикосновения
Разность потенциалов, образовавшаяся в результате различных причин, достигает порой нескольких сотен вольт. В пояснение можно привести пример, когда человек дотрагивается до заземлённой части оборудования, по каким-то причинам вдруг оказавшейся под напряжением. Один из потенциалов (ϕ1) прикладывается к ногам, второй (ϕ2) – в месте прикасания к оборудованию. Значение напряжения прикосновения будет равно:
При малых полученных значениях вреда для здоровья не будет. Однако при удалении от места заземления оборудования в этом случае значение U будет расти и достигнет максимума там, где область растекания электричества от этой точки заземления закончится.
Присутствие в области растекания тока при касании проводом земли опасно поражением человека шаговым напряжением. В случае неприятных ощущений при попытке шагнуть необходимо уменьшить расстояние шага до минимума. Выбраться из опасной зоны можно либо, прыгая на одной ноге, либо идти, не отрывая подошв от поверхности земли и ставить ступни ног как можно ближе одна к другой.
Внимание! Напряжение прикосновения выше 42 В переменного тока опасно для жизни и здоровья человека. Если постоянное электричество достигает величины 120 В и более, прикосновение к нему также представляет существенную угрозу здоровью.
Нарушение изоляции кабелей или проводов, находящихся под напряжением, и одновременное касание тела человека заземлённых металлических конструкций и участка с повреждённой изоляцией приведут к электротравме.
Пути снижения опасности
ГОСТ 12.1.038-82 (2001) от 01.03 2018 г. является основным нормативным документом, на который ориентируются при принятии необходимых мер. Этот ГОСТ рассматривает нормы максимально возможных значений напряжения прикосновения.
Чтобы обеспечить электрическую безопасность для людей, применяют следующие шаги:
- монтаж защитных заземляющих устройств;
- зануление рабочего оборудования;
- монтаж систем уравнивания потенциалов (ОСУП);
- ограждение и установка защитных щитов на оборудование, находящееся под напряжением;
- применение в работе пониженного напряжения в помещениях с повышенной опасностью и особо опасных;
- обеспечение персонала предметами коллективной и индивидуальной защиты: изолированным электроинструментом и диэлектрическими средствами;
- использование устройств защитного отключения (УЗО) и сигнализации.
Заземляющие устройства предназначены для защиты от короткого замыкания фазы на корпус. Они монтируются для уменьшения напряжения между землёй и токоведущими частями электроустановок.
Важно! Обязательному заземлению подлежат все металлические части установок, двигателей, щиты, пульты, металлические корпуса электроинструмента и иные доступные прикосновению элементы, способные проводить ток.
Для защиты от постороннего напряжения в местах, где подключение к контуру заземления невозможно, применяется зануление. С помощью отдельного проводника корпус устройства соединяется с заземлённым нулём. При попадании на него фазы через этот проводник срабатывает устройство защиты от КЗ.
В производственных и бытовых помещениях для снижения опасности поражения людей электрическим током оборудуются системы уравнивания потенциалов (СУП). Они бывают основные (ОСУП) и дополнительные (ДОСУП). Основная система является самостоятельной и обеспечивает уравнивание потенциалов на доступных металлических поверхностях оборудования. ДОСУП осуществляет дополнительные меры по снижению уровня разности потенциалов в частных случаях.
Выполнение защитных ограждений и установка щитов защищают человека от случайного контакта с токоведущими частями. В виде дополнительных мер на ограждения вывешиваются предупреждающие плакаты.
В местах с повышенной опасностью и особо опасных работы могут производиться только с электроинструментом, напряжение питания которого не выше 42 В. Для этого используют понижающие трансформаторы.
Информация. К помещениям с повышенной опасностью относятся такие, где присутствуют: химически агрессивная среда, повышенная влажность (более 70%), повышенная температура (выше 500С), доступность контакта с металлическими частями или бетонные полы.
К средствам коллективной и индивидуальной защиты (СИЗ) относятся: диэлектрические коврики и подставки, боты, галоши, перчатки и инструмент с изолирующими рукоятками. Применение подобных защитных комплектов уменьшает опасность напряжения прикосновения.
УЗО – устройства защитного отключения, смонтированные в квартире, позволяют контролировать возникновение утечек тока и опасного вольтажа в местах с повышенной опасностью (кухня, ванная комната). При появлении опасных величин устройство отключает подачу электроэнергии до устранения причины их возникновения.
Расчет напряжения прикосновения
Выполняя расчёты, определяют возможное значение тока в случае касания. Для расчётов рассматриваются две схемы электросетей:
- схема с глухозаземлённой нейтралью;
- система с изолированной нейтралью.
В первом случае, при влиянии на человека фазного напряжения (220 В), величина тока через него сдерживается сопротивлением цепи: фаза – тело – обувь – пол (грунт). Исходя из этого, формула имеет вид:
Iч = Uф/(Rч + Rоб + Rп + R0) ≈ Uф / Rч,
где:
- R0 – сопротивление защитного проводника нейтрали трансформатора, R0 ≤ 10 Ом;
- Uф – фазное напряжение;
- Rч – сопротивление человека;
Для линейного напряжения ток протекания рассчитывают, применяя формулу:
Iч = Uл/√3*( Rч + Rоб + Rп + R0).
Во втором случае, где нейтраль изолирована, работают с формулами:
- Iч = Uл/ Rч – для момента двухфазного касания;
- Iч = 3Uф/(3Rч + Rиз) – вариант однофазного контактирования, где Rиз – это сопротивление изоляции фазных проводов по отношению к земле.
Обратите внимание! Если заземлитель в единственном числе, то прикосновение к корпусу наиболее удалённого от него прибора будет самым опасным.
Способы измерения
Измерения производятся выездной бригадой специальной лаборатории, имеющей лицензию на выполнение подобных замеров. Измеряются рабочие и нерабочие места. Измерения проводятся при температуре окружающей среды 5-400С и влажности воздуха 35-80%.
Внимание! Рабочим местом называется зона действия оперативного персонала в рамках штатного рабочего процесса. Нерабочим местом называется зона, где могут находиться люди, не выполняющие служебные обязанности по работам в электроустановках.
Перед производством измерений отсоединяют от щита нулевой проводник для предварительного замера сопротивления заземляющего контура. Далее при сборке схемы измерения один выход прибора присоединяют к шине защитного заземления, второй – к токовому электроду. Выдерживая расстояние более 25 м от заземлителя, забивают штырь в грунт и устанавливают пластину, на которую укладывают нагрузку 50 кг. Это имитация ноги человека. Грунт под пластиной увлажняется. Вольтметр V контролирует напряжение прикосновения, сопротивление R = 1 кОм является эквивалентом сопротивления человеческого тела.
Выполняя измерения на нерабочих местах, вывод прибора Т2 необходимо подключать к точке заземления корпуса оборудования, расположенного поблизости.
Размещение токового электрода должно быть выполнено так, чтобы искусственное воспроизведение цепи замыкания на землю фазного напряжения было как можно точнее.
Ещё один способ измерения – схема с использованием вольтметра и амперметра.
Первый тестирует напряжение касания, второй показывает величину тока, протекающую через заземлитель. Источником питания измерительной цепи является трансформатор с выходным напряжением 500 В и номинальной мощностью от 100 кВа.
Одиночное заземление
Это простейший вид заземления оборудования, при котором не нужно сооружать специальный контур. Тем не менее, очень эффективный защитный компонент, позволяющий обеспечить срабатывание защитного отключения и «зашунтировать» попавшего под напряжение человека.
Одиночное защитное заземление включает в себя:
- заземляющий электрод длиной 2500 мм – угловую сталь 50*50*0,5 мм или трубу диаметром не менее 4 мм;
- заземляющий проводник – стальная проволока «катанка» диаметром не менее 0,8 мм на улице и 0,6 внутри помещения или стальная полоса шириной 25 мм и толщиной 0,5 мм;
- место подключения заземляющего проводника – болт для присоединения на корпусе электроустановки.
В качестве заземляющего проводника внутри помещения допустимо использовать гибкий многожильный медный провод жёлто-зелёной окраски, сечением не менее 2,5 мм. Все соединения выполняются при помощи электросварки. Швы имеют длину не менее 10-15 мм. Места сварки и металлические части заземления (кроме вбитого в землю электрода) окрашиваются чёрной краской для защиты от коррозии.
Важно! Минимальное сопротивление заземления для сети 220 В должно быть не более 8 Ом, для трёхфазной линии на 380 В минимальное значение R ≤ 4 Ом.
Заземлитель забивается или закапывается в грунт так, чтобы его верхняя часть была ниже уровня земли на 0,4-0,5 м.
Групповое заземление
Из одиночных заземлителей формируют заземляющий контур. Их располагают в один ряд или в виде геометрической фигуры для уменьшения общего сопротивления конструкции. Предварительно делаются расчеты, в результате которых выявляют необходимое количество элементов в контуре.
Информация. Расстояние между соседними электродами в контуре выдерживают равным длине электрода. Это обусловлено тем, что максимальная эффективность одиночного заземлителя (90%) достигается зоной его действия. В зону входят все равноудалённые от него точки на расстоянии его длины. Зоны действия ближайших заземлителей не должны пересекаться.
Меры защиты
Защита от напряжений прикосновения – это целый комплекс мер, согласно которому можно снизить не только разность потенциалов, но и обезопасить человека от их высоких значений. Правильная конструкция заземления, пользование СИЗ и знание способов выхода из зоны шагового напряжения –всё это сохранит жизнь и здоровье работников.
Типы электротравм
Травмы от электричества наступают по причине действия дуги или тока. Различают местное или общее поражение организма.
При местном воздействии электричества на тело человека могут возникнуть:
- ожоги;
- металлизация кожных покровов;
- электрические знаки;
- ожог роговицы глаз;
- механические травмы кожи и мягких тканей.
Опасности для жизни они не вызывают, требуется лечение локальных поражённых участков тела. Исключение составляют ожоги – если процент повреждения поверхности кожи слишком высокий, возможен летальный исход.
Степень поражения электрическим током зависит от того, по какому пути пройдёт электричество через тело пострадавшего. Различают пять степеней электрического удара током, в результате которого происходят следующие последствия:
- слабое, непроизвольное сокращение мышц – судороги едва ощутимы;
- судороги с сильным болевым синдромом;
- отсутствие сознания без сбоя работы сердца и органов дыхания;
- отсутствие сознания с потерей дыхания и сердечных сокращений;
- клиническая смерть.
Обратите внимание! Исход зависит от того, как быстро человека освободят от воздействия электричества, и как успешно будет оказана медицинская помощь.
Профилактика
Своевременно, не реже 2 раз в год, нужно производить измерения защитного заземления и петли «фаза – нуль» на рабочих местах.
Исключить следующие причины возникновения электротравм:
- несоблюдение техники безопасности;
- нахождение рядом с оборвавшимся проводом;
- контакт с оголёнными частями электроустановок, находящихся под питанием;
- касание частей оборудования, внезапно попавших под напряжение;
- задевание элементов электроприборов с поврежденной изоляцией.
На рабочих местах необходимо проводить обучающие мероприятия по электробезопасности.
Погодные и внешние условия
Заземления тестируют зимой в период наибольшего промерзания почвы и летом в момент наибольшего пересыхания грунта в местах расположения защитных контуров. От состояния почвы зависит величина сопротивления заземляющего устройства, значит, его эффективность. Если учесть, что разность потенциалов от статического электричества в момент грозы может достигать величины выше тысячи вольт, то система уравнивания потенциалов (ОСУП) должна выдерживать такие нагрузки.
Полного исключения разности потенциалов добиться невозможно. Всегда существует опасность воздействия напряжения прикосновения. Соблюдение мер предосторожности и комплекс защитных мероприятий помогут свести риск поражения электротоком к минимуму.
Видео
Источник
Предельно допустимые напряжения прикосновений с электрическим током
Система стандартов безопасности труда
Предельно допустимые значения напряжений прикосновения и токов
Occupational safety standards system. Electric safety.
Maximum permissible valuies of pickp voltages and currents
Дата введения 1983-07-01
ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30.07.82 N 2987
Ограничение срока действия снято по протоколу N 2-92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2-93)
* ПЕРЕИЗДАНИЕ (июнь 2001 г.) с Изменением N 1, утвержденным в декабре 1987 г. (ИУС 4-88)
Настоящий стандарт устанавливает предельно допустимые значения напряжений прикосновения и токов, протекающих через тело человека, предназначенные для проектирования способов и средств защиты людей, при взаимодействии их с электроустановками производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц.
Термины, используемые в стандарте, и их пояснения приведены в приложении.
(Измененная редакция, Изм. N 1).
1. ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ НАПРЯЖЕНИЙ
ПРИКОСНОВЕНИЯ И ТОКОВ
1.1. Предельно допустимые значения напряжений прикосновения и токов установлены для путей тока от одной руки к другой и от руки к ногам.
(Измененная редакция, Изм. N 1).
1.2. Напряжения прикосновения и токи, протекающие через тело человека при нормальном (неаварийном) режиме электроустановки, не должны превышать значений, указанных в табл.1.
Источник
3. Нормирование напряжений прикосновения и токов через тело человека
Для правильного проектирования способов и средств защиты людей от поражения электрическим током необходимо знать допустимые уровни напряжений прикосновения и значений токов, протекающих через тело человека.
Напряжением прикосновения называется напряжение между двумя точками цепи тока, которых одновременно касается человек. Предельно допустимые значения напряжений прикосновения UПД и токов IПД, протекающих через тело человека по пути «рука – рука» или «рука – ноги» при нормальном (неаварийном) режиме электроустановки, согласно ГОСТ 12.1.038-82* приведены в табл. 1.
При аварийном режиме производственных и бытовых приборов и электроустановок напряжением до 1000 В с любым режимом нейтрали предельно допустимые значения UПД и IПД не должны превышать значений, приведенных в табл. 2. Аварийный режим означает, что электроустановка неисправна, и могут возникнуть опасные ситуации, приводящие к электротравмам.
При продолжительности воздействия более 1 с величины UПД и IПД соответствуют отпускающим значениям для переменного и условно неболевым для постоянного токов.
Предельно допустимые значения напряжений прикосновения и токов
в нормальном режиме работы электроустановки
Род и частота тока
Переменный, 50 Гц
Не более 10 минут в сутки
Переменный, 400 Гц
Примечание. Напряжения прикосновения и токи для лиц, выполняющих работу в условиях высоких температур (выше 25 С) и влажности (относительная влажность более 75 %), должны быть уменьшены в 3 раза.
Предельно допустимые значения напряжения прикосновения
и токов в аварийном режиме работы электроустановки
Продолжительность действия электрического тока, с
4. Электрическое сопротивление тела человека
Значение тока через тело человека сильно влияет на тяжесть электротравм. В свою очередь, сам ток согласно закону Ома определяется сопротивлением тела человека и приложенным к нему напряжением, т.е. напряжением прикосновения.
Проводимость живых тканей обусловлена не только физическими свойствами, но и сложнейшими биохимическими и биофизическими процессами, присущими лишь живой материи. Поэтому сопротивление тела человека является комплексной переменной величиной, имеющей нелинейную зависимость от множества факторов, в том числе от состояния кожи, окружающей среды, центральной нервной системы, физиологических факторов. На практике под сопротивлением тела человека понимают модуль его комплексного сопротивления.
Электрическое сопротивление различных тканей и жидкостей тела человека не одинаково: кожа, кости, жировая ткань, сухожилия имеют относительно большое сопротивление, а мышечная ткань, кровь, лимфа, нервные волокна, спинной и головной мозг – малое сопротивление.
Сопротивление тела человека, т.е. сопротивление между двумя электродами, наложенными на поверхность тела, в основном определяется сопротивлением кожи. Кожа состоит из двух основных слоев: наружного (эпидермис) и внутреннего (дерма).
Эпидермис можно условно представить состоящим из рогового и росткового слоев. Роговой слой состоит из мертвых ороговевших клеток, лишен кровеносных сосудов и нервов и поэтому является слоем неживой ткани. Толщина этого слоя колеблется в пределах 0,05 – 0,2 мм. В сухом и незагрязненном состоянии роговой слой можно рассматривать как пористый диэлектрик, пронизанный множеством протоков сальных и потовых желез и обладающий большим удельным сопротивлением. Ростковый слой примыкает к роговому слою и состоит в основном из живых клеток. Электрическое сопротивление этого слоя благодаря наличию в нём отмирающих и находящихся на стадии ороговения клеток может в несколько раз превышать сопротивление внутреннего слоя кожи (дермы) и внутренних тканей организма, хотя по сравнению с сопротивлением рогового слоя оно невелико.
Дерма состоит из волокон соединительной ткани, образующих густую, прочную, эластичную сетку. В этом слое находятся кровеносные и лимфатические сосуды, нервные окончания, корни волос, а также потовые и сальные железы, выводные протоки которых выходят на поверхность кожи, пронизывая эпидермис. Электрическое сопротивление дермы, являющейся живой тканью, невелико.
Полное сопротивление тела человека есть сумма сопротивлений тканей, расположенных на пути протекания тока. Основным физиологическим фактором, определяющим величину полного сопротивления тела человека, является состояние кожного покрова в цепи тока. При сухой, чистой и неповрежденной коже сопротивление тела человека, измеренное при напряжении 15 — 20 В, колеблется от единиц до десятков кОм. Если на участке кожи, где прикладываются электроды, соскоблить роговой слой, сопротивление тела упадет до 1 – 5 кОм, а при удалении всего эпидермиса – до 500 – 700 Ом. Если под электродами полностью удалить кожу, то будет измерено сопротивление внутренних тканей, которое составляет 300 – 500 Ом.
Для приближённого анализа процессов протекания тока по пути «рука – рука» через два одинаковых электрода может быть использован упрощённый вариант эквивалентной схемы цепи протекания электрического тока через тело человека (рис. 1).
Рис. 1. Эквивалентная схема сопротивления тела человека
На рис. 1 обозначено: 1 – электроды; 2 – эпидермис; 3 – внутренние ткани и органы тела человека, включая дерму; İh – ток, протекающий через тело человека; Ůh – напряжение, приложенное к электродам; RН – активное сопротивление эпидермиса; CН – ёмкость условного конденсатора, обкладками которого являются электрод и хорошо проводящие ток ткани тела человека, расположенные под эпидермисом, а диэлектриком – сам эпидермис; RВН – активное сопротивление внутренних тканей, включая дерму.
Из схемы рис. 1 следует, что комплексное сопротивление тела человека определяется соотношением
,
где ZН = (jСН) -1 = -jХН – комплексное сопротивление емкости СН;
ХН – модуль ZН; f , f – частота переменного тока.
В дальнейшем под сопротивлением тела человека будем подразумевать модуль его комплексного сопротивления:
. (1)
На высоких частотах (больше 50 кГц) ХН=1/(CН) 3 / 5 3 4 5 > Следующая > >>
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
Источник