Меню

Преобразователь напряжения импульсный трансформаторный

Особенности применения трансформаторов в импульсных преобразователях электрической энергии. Часть 1

Александр Русу, Одесса, Украина

Как известно, существует всего два электромагнитных прибора, с помощью которых параметры электрической энергии можно преобразовать с максимально возможной эффективностью: дроссель и трансформатор. С технологической точки зрения они практически одинаковы и отличаются только режимом работы: трансформатор пропускает энергию «сквозь себя», не накапливая ее в магнитном поле, а дроссель работает по принципу «взял-сохранил-отдал».

В [1] было показано, что при одной и той же преобразуемой мощности и рабочей частоте габаритные размеры трансформатора могут быть до восьми раз меньше чем у дросселя. Однако использование трансформатора приводит к усложнению схемы и проблемам при регулировке выходного напряжения, поэтому маломощные (до 150…200 Вт) преобразователи обычно строятся по схемам на основе дросселя, а мощные…

А с мощными преобразователями будем разбираться в этой статье, которая подводит итог первой части цикла об импульсном преобразовании электрической энергии, посвященного особенностям схемотехники их силовой части. Как обычно, читателю рекомендуется предварительно ознакомиться с уже опубликованными в журнале и на сайте РадиоЛоцман материалами [1 – 8], а для более глубокого понимания сути происходящих процессов – с более «тяжелыми» статьями в научных журналах [9 – 11].

Структурная схема преобразователя на основе трансформатора

Итак, изучив [1 – 7], попробуем синтезировать мощный преобразователь, основным элементом которого является трансформатор. Согласно формулам, полученным в [1], габариты трансформатора зависят от его рабочей частоты. Поскольку частота напряжения на входе и выходе преобразователей невелика (50. 400 Гц), а то и вовсе равна нулю (для DC/DC преобразователей), для того чтобы трансформатор работал на высокой частоте, необходимы два дополнительных узла: модулятор и демодулятор. Модулятор преобразует входное низкочастотное напряжение в напряжение высокой частоты, амплитуда которого пропорциональна напряжению на входе, а демодулятор выполняет обратную функцию (Рисунок 1).

Рисунок 1. Структурная схема преобразователя на основе трансформатора.

Предвидя возможную (и обоснованную) критику со стороны читателей, уже знакомых со схемотехникой мощных преобразователей, сразу обращаю внимание, что в DC/DC преобразователях, исторически появившихся первыми, эти узлы в свое время назвали, соответственно, «инвертор» и «выпрямитель», поскольку они действительно преобразовывали постоянный ток в переменный и наоборот. Однако импульсным способом можно изменять величину не только постоянного, но и переменного напряжения [8], поэтому соответствующие узлы AC/AC преобразователей, у которых на входе и выходе присутствует переменного напряжение, уже как-то технически некорректно называть инверторами или выпрямителями.

Итак, преобразователь на Рисунке 1 позволяет изменить величину напряжения на входе только на какую-то конкретную величину, однако его еще нужно как-то регулировать, ведь входное напряжение и ток нагрузки практически никогда не бывают стабильными. Можно, конечно, использовать трансформатор с отпайками (Рисунок 2), но такая схема со ступенчатой регулировкой вряд ли удовлетворит требования к качеству выходного напряжения, необходимые в большинстве приложений, да и сложность такой схемы намного больше, чем у известных решений.

Рисунок 2. Схема преобразователя с дискретной регулировкой выходного напряжения.

Из опыта построения «классических» выпрямителей на основе низкочастотных трансформаторов известно, что для точной регулировки выходного напряжения используют специальный узел – стабилизатор, устанавливаемый на выходе устройства (Рисунок 3). Именно такой принцип – двукратного преобразования напряжения (энергии) – и используется при построении мощных импульсных преобразователей: вначале система модулятор-трансформатор-демодулятор преобразовывает входное напряжение до некоторого промежуточного нестабилизированного уровня, а затем стабилизатор изменяет его до требуемого значения с необходимой точностью.

Рисунок 3. Структурная схема стабилизированного преобразователя на основе трансформатора.

Способы реализации преобразователя на основе трансформатора

Но какую схему использовать для построения стабилизатора? Использование «классических» компенсационных стабилизаторов, например 78хх/79хх, обладающих большими габаритами из-за наличия радиатора и низким КПД, сведет к нулю весь выигрыш от использования трансформатора. LDO-стабилизаторы, являющиеся разновидностью компенсационных схем, эффективны только при небольшой разнице между входным и выходным напряжением; при ее увеличении их КПД также стремительно падает. Да и большинство компенсационных схем рассчитано на использование в схемах постоянного тока и поддерживают только режим передачи [3]. Но ведь иногда необходимо преобразовать переменное напряжение или работать на нагрузку реактивного характера [3, 8].

Но почему стабилизатор обязательно должен быть компенсационным? Обратите внимание, что этот узел тоже является преобразователем напряжения, а это значит, что для его построения, теоретически, можно использовать любую из схем на основе как дросселя, так и трансформатора. Однако преобразователь на основе трансформатора в устройстве уже есть, и мы как раз пытаемся компенсировать его недостатки, поэтому остаются «дроссельные» схемы, способные в силу своего принципа работы [2, 3] плавно изменять в широких пределах коэффициент передачи, что полностью компенсирует недостаток плохо регулируемых «трансформаторных» схем.

Читайте также:  Уровни напряжения бортовой сети автомобиля

В [2] показано, что «базовой» схемой для «дроссельных» преобразователей является обратноходовая. Но в ней через магнитопровод дросселя передается вся мощность нагрузки, а это означает, что в устройстве все равно остается дроссель, габариты которого будут как минимум в 8 раз больше трансформатора. А поскольку обратноходовая схема обеспечивает гальваническую развязку и за счет изменения коэффициента трансформации дросселя [4] может работать при любом соотношении напряжений на входе и выходе, то использование трансформатора вместе с сопутствующими узлами (модулятором и демодулятором) при построении стабилизатора по обратноходовой схеме становится полностью бессмысленным.

Но есть еще три схемы «дроссельных» преобразователей, которые можно получить, соединив определенным образом вход и выход обратноходового импульсного регулятора [2] c входом и выходом преобразователя: понижающая, повышающая и инвертирующая. Инвертирующую схему можно сразу исключить, поскольку она по своим характеристикам мало чем отличается от обратноходовой, а вот на понижающую и повышающую следует обратить внимание, ведь их главный недостаток – отсутствие гальванической развязки – устраняется наличием трансформатора.

Рисунок 4. Зависимость величины относительной преобразуемой мощности от соотношения
напряжений на входе и выходе «дроссельных» преобразователей.

В [2] было показано, что при соединении входа или выхода импульсного регулятора последовательно с входом и выходом преобразователя величина преобразуемой мощности РИР (мощности, проходящей через магнитное поле магнитопровода дросселя) зависит от соотношения напряжений на входе и выходе UВХ и выходе UВЫХ преобразователя (Рисунок 4). Таким образом, если нам необходимо уменьшить (увеличить) напряжение только на 10%, то при использовании понижающей (повышающей) схемы необходим дроссель с размерами в 10 раз меньшими, чем у дросселя обратноходового преобразователя (при условии, что магнитопроводы дросселей будут выполнены из одного и того же материала и работать в одинаковых режимах [6]). В этом случае размеры дросселя уже становится соизмеримыми с размерами трансформатора, работающего на той же частоте. Но какую схему использовать для построения стабилизатора: понижающую или повышающую?

Рисунок 5. Схемы преобразователей на основе трансформатора с импульсными
стабилизаторами понижающего (вверху) и повышающего (внизу) типов.

На первый взгляд оба варианта (Рисунок 5) идентичны. В общем случае в этих схемах трансформатор и стабилизатор могут работать в асинхронном режиме на разных частотах и быть совершенно независимыми узлами. Даже если трансформатор и дроссель стабилизатора будут работать синхронно на одной частоте, использование такого подхода уже даст неплохой выигрыш в габаритах индуктивных элементов по сравнению с дросселем «базовой» обратноходовой схемы: трансформатор будет меньше в 8 раз, а дроссель – в 5…10 раз (при использовании оптимальных режимов работы магнитопровода [6]). Это в итоге позволит уменьшить общую массу и габариты индуктивных элементов такого устройства как минимум вдвое. Однако сложность такой схемы теперь становится очень высокой – только наличие двух контроллеров, даже работающих в синхронном режиме, уже может создать множество проблем для разработчика, ну а наличие шести силовых ключей приведет к уменьшению КПД и увеличению, за счет дополнительных радиаторов, габаритов и стоимости преобразователя.

Источник



Импульсный преобразователь: определение, назначение, описание, виды, особенности работы и применения

Функцию преобразования электроэнергии в параметре напряжения могут выполнять разные приборы наподобие генераторов, зарядных и трансформаторных устройств. В той или иной степени все они способны менять характеристики энергии, но не всегда их применение себя оправдывает уже по техническим и эргономическим качествам. Отчасти это связано с тем, что задача трансформации тока для большинства регуляторов не является ключевой – во всяком случае, если говорить и о постоянном, и о переменном токе. Именно эти ограничения мотивировали производителей электротехнического оборудования разработать импульсный преобразователь, который выгодно отличается компактными размерами и точностью стабилизации напряжения.

Определение устройства

Многочисленные радиотехнические приборы, средства автоматизации и обеспечения связи редко обходятся без силовых однофазных и трехфазных аппаратов для трансформации тока в диапазонах от единиц до сотен вольт-ампер. Импульсные же устройства служат для более узких задач. Электротехнический преобразователь импульсного типа – это прибор, который трансформирует напряжение в небольших временных промежутках длительностью порядка 1-2 мк/сек. Импульсы напряжения при этом имеют прямоугольную форму и повторяются с частотой 500-20 000 Гц.

Традиционные преобразователи с возможностью регулировки напряжения на выходе обычно контролируют показатель сопротивления устройства. Это может быть тиристор или транзистор, через который в непрерывном режиме проходит ток. Именно его энергия заставляет устройство контроллера нагреваться, из-за чего теряется часть мощности. На этом фоне импульсный преобразователь напряжения выглядит привлекательнее по своим технико-эксплуатационным свойствам, так как в его конструкции предусматривается минимум частей, что обуславливает снижение электропомех. Регулировочным элементом преобразователя выступает ключ, работающий в разных режимах – например, в открытом и закрытом состоянии. И в обоих случаях выделяется минимальный объем тепловой энергии в процессе работы, что повышает и производительность аппаратуры.

Читайте также:  Увеличение напряжения системы зажигания

Назначение преобразователя

Всюду, где требуется изменение параметров электроэнергии, в той или иной эксплуатационной конфигурации задействуются импульсные трансформаторы. На первом этапе широкого распространения их задействовали преимущественно в импульсной технике – например, в триодных генераторах, газовых лазерах, магнетронах и дифференцирующей радиоаппаратуре. Далее по мере совершенствования устройства они стали применяться и в большинстве типовых представителей электрооборудования. Причем это не обязательно была специализированная техника. Опять же, в разных исполнениях импульсный преобразователь может присутствовать и в компьютерах, и в телевизорах, в частности.

Еще одна, но уже менее известная функция трансформаторов данного типа – защитная. Сама по себе импульсная регуляция может рассматриваться как защитная мера, но цели у корректировки параметров напряжения изначально стоят другие. Тем не менее специальные модификации обеспечивают защиту аппаратуры от замыканий под нагрузкой. Это особенно касается оборудования, работающего в режимах холостого хода. Также существуют импульсные устройства, предотвращающие перегревы и чрезмерные повышения напряжения.

Конструкция прибора

Преобразователь состоит из нескольких обмоток (минимум – двух). Первая и основная подключается к сети, а вторая направляется к целевому прибору. Обмотки могут выполняться из алюминиевого или медного сплавов, но в обоих случаях, как правило, используется дополнительная лаковая изоляция. Провода наматываются на изоляционную основу, которая фиксируется на сердечнике – магнитопроводе. В низкочастотных преобразователях сердечники изготавливаются из трансформаторной стали или магнитно-мягкого сплава, а в высокочастотных – на основе феррита.

Сам низкочастотный магнитопровод формируется наборами пластин Ш, Г или П-образной формы. Ферритовые сердечники обычно выполняются цельными – такие детали присутствуют в составе сварочных инверторов и трансформаторов гальванической развязки. Маломощные высокочастотные трансформаторы и вовсе обходятся без сердечника, так как его функцию выполняет воздушная среда. Для интеграции в электротехнические приборы конструкция магнитопровода обеспечивается каркасом. Это так называемый блок импульсного преобразователя, который закрывается защитной крышкой с маркировкой и предупреждающими надписями. Если в процессе ремонта потребуется включить аппарат со снятой крышкой, эту операцию выполняют через УЗО или развязывающий трансформатор.

Если говорить о преобразователях, которые используются в современной радио- и электротехнике, то между ними и классическими трансформаторами напряжения будет существенная разница. Наиболее ощутимо снижение габаритов и массы. Импульсные устройства могут весить несколько граммов, причем эксплуатационные характеристики сохраняются на том же уровне.

Особенности эксплуатационных процессов

Как уже отмечалось, для регуляции тока в импульсных трансформаторах применяются ключи, которые сами собой могут становиться источниками высокочастотных помех. Это характерно для стабилизирующих моделей, которые работают в режиме коммутации тока.

В моменты коммутации могут возникать чувствительные перепады тока и напряжения, которые создают условия для противофазных и синфазных помех на входе и выходе. По этой причине импульсный преобразователь питания с функцией стабилизатора предусматривает использование фильтров, устраняющих помехи. Для минимизации нежелательных электромагнитных факторов коммутация ключа выполняется в моменты, когда ключ не проводит ток (при размыкании). Такой способ борьбы с помехами применяется и в резонансных преобразователях.

Еще одной особенностью рабочего процесса рассматриваемых приборов можно назвать отрицательное дифференциальное сопротивление на входе при стабилизации напряжения под нагрузкой. То есть в условиях повышения напряжения на входе ток уменьшается. Данный фактор необходимо брать во внимание для обеспечения устойчивости работы преобразователя, который подключается к источникам с высоким показателем внутреннего сопротивления.

Сравнение с линейным преобразователем

В отличие от линейных устройств, импульсные адаптеры выгодно отличаются более высокой производительностью, компактными размерами и возможностью гальванической развязки цепей на входе и выходе. Для обеспечения дополнительного функционала с привязкой сторонних приборов не требуется применение сложных схем подключения. Но есть и слабые места у импульсного преобразователя в сравнении с линейными трансформаторами. К ним относятся следующие недостатки:

  • В условиях изменения входного тока или напряжения под нагрузкой отмечается нестабильность выходного сигнала.
  • Наличие уже упомянутых импульсных помех на выходных и входных цепях.
  • После резких изменений в параметрах напряжения и тока система дольше восстанавливается при переходных процессах.
  • Риск автоколебаний, которые могут повлиять на работоспособность аппаратуры. Причем колебания такого рода связаны не с сетевой нестабильностью источника, а с конфликтами внутри стабилизационной схемы.
Читайте также:  Бесконтактные индикаторы напряжения до 1000в

Преобразователь DC/DC

Все разновидности импульсных аппаратов системы DC/DC характеризуются тем, что ключи активизируются в процессе трансляции специальных импульсов в направлении транзистора. В дальнейшем по причине растущего напряжения происходит логичное запиранием транзисторов, причем на фоне перезарядки конденсатора. Именно эта особенность отличает устройство коммутации импульсных преобразователей DC-DC от аналогичных приборов в независимом инверторном оборудовании.

Обычно такие устройства выполняют контроль постоянного напряжения под нагрузкой в процессе подведения постоянного тока к сети. Достигается управление такого рода за счет регулировки напряжения на открытом ключе. Небольшие значения тока дают возможность фиксации высокого уровня производительности, при котором КПД может достигать 95 %. Установка пиковых показателей работоспособности системы является существенным плюсом импульсных преобразователей тока, однако реализация схемы DC-DC возможна далеко не в каждой конструкции. В устройстве изначально в качестве источника должна выступать контактная сеть – в частности, данный принцип используется в аккумуляторах и батарейках.

Повышающий преобразователь

С помощью этого трансформатора производится повышение напряжения от 12 до 220 В. Используют его в ситуациях, когда источник с подходящими параметрами питания отсутствует, но нужно обеспечить энергоснабжение прибора от стандартной сети. Иными словами, должен быть введен переходник от источника с одними характеристиками к потребителю с другими требованиями к питанию. Схематические конструкции импульсных преобразователей напряжения 12-220 В допускают подключение приборов, которые работают на частоте 50 Гц. Причем мощность оборудования не должна превышать максимальный силовой показатель трансформатора. И даже в случае соответствия параметров напряжения потребляющее устройство должно иметь защиту от сетевых перегрузок. У такого способа коррекции напряжения есть несколько преимуществ:

  • Возможность длительного рабочего сеанса при максимальной загрузке без перерывов.
  • Автоматическая регулировка выходной мощности.
  • Повышенный КПД обеспечивает и стабильность рабочего режима прибора, и высокую надежность функции электротехнической цепи.

Понижающий импульсный преобразователь

При использовании низкочастотного или маломощного оборудования вполне закономерно может возникнуть и потребность в понижении показателя напряжения. Например, эта задача нередко встречается при подключении светотехнических устройств – например, светодиодной подсветки. Для понижения преобразователь замыкает регулирующий коммутационный ключ, после чего в нем накапливается «лишняя» энергия. Специальный диод в цепи не пускает ток от питающего источника к потребителю. При этом в системах самоиндукции диоды выпрямителей могут пропускать импульсы отрицательного напряжения. В работе импульсных преобразователей 24-12 В особенно важна функция стабилизации на выходе. Задействоваться могут и линейные, и непосредственно импульсные стабилизаторы. Выгоднее использовать устройства второго типа с широтной или частотной модуляцией. В первом случае будет корректироваться продолжительность контролирующих импульсов, а во втором – частота их появления. Также существуют и стабилизаторы со смешанным управлением, при котором оператор сможет при необходимости менять конфигурации регулировки импульсов по частоте и длительности.

Широтно-импульсный преобразователь

В процессе работы используется устройство, накапливающее энергию в результате трансформации. Оно может входить в базовую структуру или же подключаться напрямую к входному напряжению без привязки к преобразователю. Так или иначе, на выходе будет усредненный показатель напряжения, определяемый значением входного напряжения и скважностью импульсов от коммутационного ключа. На операционном усилителе находится специальный вычислитель, который оценивает параметры входного и выходного сигналов, регистрируя разность между ними. Если напряжение на выходе меньше опорного, то к регуляции подключается модулятор, повышающий длительность открытого состояния коммутационного ключа относительно времени действия тактового генератора. По мере изменения входного напряжения импульсный преобразователь корректирует схему управления ключом так, чтобы разность между выходным и опорным показателями напряжения сводилась к минимуму.

Заключение

В чистом виде без подключения вспомогательных устройств наподобие выпрямителей и стабилизаторов функции преобразователя значительно сужаются, хотя эффективность остается на высоком уровне. К устройствам трансформации, которые редко обходятся без дополнительного оборудования, можно отнести регуляторы в сетях переменного тока. Как минимум в этом случае придется устанавливать сглаживающий фильтр и выпрямитель на входе. И напротив, импульсные преобразователи постоянных электрических токов и на входе, и на выходе могут автономно поддерживать свою основную функцию. Но и в таких системах важно, чтобы устройство могло выполнять задачу стабилизации напряжения. Также не стоит забывать о возможных помехах при активном использовании коммутационных ключей в системе стабилизатора. В таких схемах без заземления к блоку преобразователя рекомендуется подключать помехозащитный фильтр.

Источник