Меню

Применение закона полного тока в жизни человека

Закон полного тока

В радиотехнических схемах применяют трансформаторы и другие изделия, функциональность которых определена индуктивными характеристиками. В данной публикации представлен закон полного тока, который используют для предварительных расчетов и коррекций устройств с магнитными компонентами.

Для создания работоспособной конструкции нужно правильно вычислить параметры ее компонентов

Определение полного тока

Сутью данного закона является определение взаимной связи между электрическим током и образованным его протеканием магнитным полем. Эта особенность выявлена экспериментальным путем в первой половине XIX века. Позднее была создана формулировка, устанавливающая закон полного тока для магнитного поля. Классическое определение приведено ниже. Однако начинать изучение темы следует с базовых принципов.

Схематическое изображение физических параметров

На рисунке отмечены следующие компоненты:

  • I∑ – суммарный (полный) ток;
  • S – пронизываемая (dS – элементарная) площадка;
  • dL – элементарный линейный участок.
  • J∑ – плотность распределения токов;
  • L – кольцевой замкнутый контур;
  • H – напряженность магнитного поля в векторном представлении.

Магнитное напряжение вдоль контура

В представленном примере для изучения берут проводники, через которые пропускают электрический ток. В совокупности они образуют сечение с мнимой площадью (S), которая ограничена неким контуром. Пользуясь классическим правилом «буравчика», несложно установить направление вектора (di или Н). Понятно, что в данном случае рассматривается дискретная величина. Вектор магнитной напряженности и полный ток связаны следующей формулой:

Полный ток

Из приведенного соотношения видно, что сумма токов равна перемещению вектора напряженности магнитного поля по замкнутому контуру. Его циркуляция описывается интегралом приведенных выше компонентов. Из рассмотренных пропорций несложно сделать вывод о том, что полный ток будет зависеть от плотности, контура и элементарной площадки:

К сведению. В некоторых ситуациях удобнее пользоваться дифференциальной формой представления электромагнитных параметров: ∫S*J*∑ds = ∫S*rotH*ds.

Магнитодвижущая сила

Представленный закон применяют для расчета рабочих характеристик разных устройств:

  • одно,- и трехфазных трансформаторов с подключением к сети 220 (380) V, соответственно;
  • электродвигателей постоянного тока;
  • катушек с тороидальными сердечниками;
  • электрических приводов реле и клапанов;
  • аналоговых измерительных приборов и датчиков;
  • электромагнитов, которые установлены в подъемных механизмах, системах водоочистки.

Простая магнитная цепь

Для подробного изучения подойдет несложный пример. В цепи обеспечивается перемещение тока по замкнутому контуру с применением катушки индукции. Созданная магнитодвижущая сила (F) будет зависеть от силы тока (I) в проводнике и количества сделанных витков (W):

По классическим определениям, ток в цепи появляется при создании разницы потенциалов между точками подключения источника ЭДС. Подобным образом показанная выше сила F провоцирует образование магнитного потока. В данном случае аналогичным образом можно использовать не только правило буравчика, но и технологии расчета цепей. Необходимо только корректно применять отдельные понятия. Так, электрическому сопротивлению соответствует магнитный аналог.

При разделении такого контура на два сегмента справедливым будет следующее выражение:

Н1*L1 + H2*L2 = I *W,

где Н1 и H2 (L1 и L2) напряженность (длина) соответствующих частей.

Последовательным преобразованием можно получить удобную для практического применения формулу закона полного тока:

  • H1 = B1/ma1;
  • B1 = Ф/S1;
  • H2 = B2/ma2;
  • B2 = Ф/S2;
  • I*W = Ф*L1/ma1*S1 + Ф*L1/ma1*S1 = Ф*Rm1 + Ф*Rm2.

Кроме площади поперечного сечения (S), здесь приведены магнитные параметры разных участков (1 и 2):

  • Ф – поток;
  • В – индукция;
  • ma – проницаемость.

Из этого выражения нетрудно получить значение магнитного сопротивления для каждого участка:

По аналогии с формулой Ома для электрических цепей можно вычислить магнитное напряжение:

C учетом частоты питающего сигнала (w) магнитный поток будет зависеть от силы тока и суммарного сопротивления участков цепи:

К сведению. По этим же принципам допустимо применение законов Кирхгофа. Так суммарная величина входящих и выходящих магнитных потоков будет равной.

Определение закона полного тока

Важные выводы и пояснения:

  • напряженность зависит от источника тока;
  • индукция выполняет силовые функции воздействия на движущиеся по цепи заряды;
  • параметры поля формируются магнитными свойствами определенной среды.

На практике усиление тока сопровождается пропорциональным изменением поля (магнитной индукции). Базовое правило справедливо при рассмотрении цепей, созданных из серебра, влажного или сухого воздуха, других материалов.

Измененные правила действуют в железе или иной среде с выраженными ферромагнитными свойствами. Именно такие решения применяют при создании трансформаторов и других изделий для улучшения потребительских характеристик.

Для упрощения следует начать изучение физических величин и расчетов на примере нейтральной среды. При отсутствии ферромагнитных параметров можно изобразить магнитное поле несколькими замкнутыми линиями длиной L. В этом случае полный ток (I) будет зависеть от индукции (B) следующим образом:

Здесь m – магнитная постоянная, которая в стандартной системе единиц измерения приблизительно равна 1,257*10-7 Генри на метр (Гн/м).

Важно! В действительности подобные идеальные условия встречаются редко, когда индукция сохраняет одинаковые параметры вдоль всей линии контура.

Прямой проводник и тороид

Поле формируется перпендикулярно прямому длинному проводнику. Его линии образуют набор из множества окружностей. Центр каждой из них соответствует продольной оси проводника. Расстояние от нее до кольца – r. Длину (L) вычисляют по стандартной геометрической пропорции:

Если разместить витки симметрично на тороидальном сердечнике из электрически нейтрального фарфора для устранения искажений, линии магнитного поля будут проходить внутри равномерно. Кольца, как показано на рисунке с вырезанным сегментом, образуют замкнутые контуры. В такой конструкции обеспечивается неизменность индукции. Для каждой отдельной линии можно пользоваться формулой:

Суммарное значение (полный ток) получают умножением на количество витков (N).

На основе приведенных данных нетрудно вычислить индукцию, которая будет создана внутри нейтрального тороидального кольца при определенной силе тока:

Эта пропорция позволяет сделать определение удельного полного тока:

Зная размеры тора и другие исходные параметры, вычисляют индукцию у внутреннего и наружного края. При необходимости делают коррекции с помощью изменения толщины кольца, количества витков.

Намагничивание железного кольца

Если на основу из ферромагнитного материала намотать две обмотки (изолированные), будут создан наглядный образец для измерений. Изменяя силу тока в одном проводнике, можно наблюдать за изменением электродвижущей силы по подключенному к другой паре выводов прибору.

На графике приведены результаты эксперимента при использовании кольца, сделанного из железа с минимальным количеством примесей. Если применить закон полного тока для рассмотренного выше примера с нейтральным сердечником в точке «а», должно получиться приблизительно 5*10-4 Тл. Между тем в действительности напряженность составляет для этой силы тока 1,2 Тл при одинаковых размерах тока и количестве сделанных витков.

Корректируют вычисления с учетом поправочного коэффициента – магнитной проницаемости. Следует подчеркнуть, что это параметр не линейный. Максимальный полезный эффект наблюдается при относительно небольших значениях силы тока. Значительный спад после порогового уровня насыщения ограничивает практическое применение рассмотренных свойств.

Формула закона полного тока

В этом разделе приведены формулы для уточненных расчетов и примеры типовых конструкций. Для интегральных вычислений вполне подходит закон Гаусса, который применяют в электростатике.

Читайте также:  Примеры источников тока физика 8 класс

Интегральная формула закона полного тока

Пояснения:

  • L – обозначает замкнутый контур, созданный по произвольной траектории;
  • векторы В и r направлены перпендикулярно;
  • dl (dl0) – элементы произвольной части (силовой линии), соответственно;
  • ϕ – угол между элементами.

Из формулы на рисунке понятно, что циркуляция вектора индукции не равняется нулю. Такие поля называют «соленоидальными» или вихревыми. В отличие от электродинамики, в данном случае отсутствуют потенциальные характеристики. Как и в базовом определении, полный ток определяется циркуляцией магнитной индукции (векторное выражение) по контуру произвольной формы, окружающему сумму токов.

Формула для расчета индуктивности, которую создает длинный соленоид

В этом примере n – число витков обмотки на единицу длины основы.

Расчет параметров поля внутри тороида

Параметры:

  • количество сделанных витков – N;
  • внешний, внутренний и произвольный радиусы – R1, R2 и r.

Следует помнить! Вне тороида магнитное поле равно нулю.

Рассмотренные методики расчетов применяют с учетом реальных условий. Особое значение при выборе компонентов конструкций уделяют ферромагнитным свойствам сердечника. Проводники для обмоток выбирают с запасом, учитывая максимальную силу тока источника.

Видео

Источник

Применение закона Ома на практике

Применение закона Ома на практикеПринцип работы одного из основополагающих законов электротехники хочется начать объяснять с аллегории — показа небольшого карикатурного изображения 1 из трех человечков под именами «Напряжение U», «Сопротивление R» и «Ток I».

На нем видно, что «Ток» пытается пролезть через сужение в трубе, которое «Сопротивление» усердно затягивает. В то же время «Напряжение» прилагает максимально возможное усилие для прохождения, проталкивания «Тока».

Этот рисунок напоминает, что электрический ток — это упорядоченное движение заряженных частиц в определенной среде. Передвижение их возможно под действием приложенной внешней энергии, создающей разность потенциалов — напряжение. Однако, внутренние силы проводников и элементов схемы уменьшают величину тока, оказывают сопротивление его перемещению.

закон Ома

Рассмотрим простую схему 2, поясняющую действие закона Ома для участка электрической цепи постоянного тока.

Схема участка цепи

В качестве источника напряжения U используем аккумуляторную батарею, которую подключим к сопротивлению R толстыми и одновременно короткими проводами в точках А и В. Допустим, что провода не влияют на величину прохождения тока I к резистору R.

Формула (1) выражает соотношения между сопротивлением (омы), напряжением (вольты) и током (амперы). Ее называют законом Ома для участка цепи. Кружок под формулой облегчает ее запоминание и пользование для выражения каждого из составляющих параметров U, R или I (U расположено сверху над черточкой, а R и I — снизу).

Если надо определить один из них, то мысленно закрываем его и работаем с двумя оставшимися, выполняя арифметические действия. Когда величины расположены на одной строчке, то их перемножаем. А в случае расположения их на разных уровнях выполняем деление верхнего на нижний.

Эти соотношения показаны на формулах 2 и 3 рисунка 3 ниже.

Схема участка цепи

В этой схеме для измерения тока используется амперметр, который соединен последовательно с нагрузкой R, а напряжения — вольтметр, подключенный параллельно точкам 1 и 2 резистора. Учитывая конструктивные особенности приборов, допустим, что амперметр не влияет на величину тока в схеме, а вольтметр — напряжения.

Определение сопротивления с помощью закона Ома

Пользуясь показаниями приборов (U=12 В, I=2,5 А) можно по формуле 1 определить величину сопротивления R=12/2,5=4,8 Ом.

На практике этот принцип заложен в работу измерительных приборов — омметров, определяющих активное сопротивление различных электрических устройств. Поскольку они могут быть настроены на замеры различных диапазонов величин, то их соответственно подразделяют на микроомметры и миллиомметры, работающие с малыми сопротивлениями и тера-, гиго- и мегаомметры — измеряющие очень большие значения.

Для конкретных условий эксплуатации их выпускают:

Принцип работы омметра

Для выполнения замеров обычно используются магнитоэлектрические приборы, хотя в последнее время широко внедряются электронные (как аналоговые, так и цифровые).

Принцип измерений омметра

В омметре магнитоэлектрической системы используется токоограничивающий резистор R, пропускающий через себя только миллиамперы и чувствительная измерительная головка (миллиамперметр). Она реагирует на протекание малых токов через прибор за счет взаимодействия двух электромагнитных полей от постоянного магнита N-S и поля, создаваемого током, проходящим через обмотку катушки 1 с токопроводящей пружинкой 2.

В результате взаимодействия сил магнитных полей происходит отклонение стрелки прибора на определенный угол. Шкала головки для облегчения работы сразу проградуирована в омах. При этом используется выражение сопротивления через ток по формуле 3.

У омметра для обеспечения точных замеров должно поддерживаться стабилизированное значение подаваемого напряжения от батареи питания. С этой целью применяется калибровка посредством использования добавочного регулировочного резистора R рег. С его помощью до начала измерения на схему ограничивается подача излишнего напряжения от источника, выставляется строго стабильная, нормируемая величина.

Определение напряжения с помощью закона Ома

Во время работ с электрическими схемами бывают случаи, когда необходимо узнать падение напряжения на каком-то элементе, например, резисторе, а известно его сопротивление, которое обычно маркируется на корпусе, и проходящий сквозь него ток. Для этого не обязательно подключать вольтметр, а достаточно воспользоваться расчетами по формуле 2.

В нашем случае для рисунка 3 проведем расчеты: U=2,5·4,8 =12 В.

Определение тока с помощью закона Ома

Этот случай описывает формула 3. Его используют для расчета нагрузок в электрических схемах, выбора сечений проводников, кабелей, предохранителей или защитных автоматов.

В нашем примере расчет выглядит так: I=12/4,8=2,5 А.

Этот способ в электротехнике используют для исключения работы определенных элементов из схемы без их демонтажа. Для этого на ненужном резисторе замыкают накоротко проводником входящую и отходящую клеммы (на рисунке 1 и 2) — шунтируют.

Схема участка цепи

В результате ток схемы выбирает для себя путь с меньшим сопротивлением через шунт и резко возрастает, а напряжение зашунтированного элемента падает до нуля.

Этот режим является частным случаем шунтирования и, в общем-то, показан на рисунке выше, когда закоротка устанавливается на выходные клеммы источника. При его возникновении создаются очень опасные большие токи, способные поражать людей и сжигать не защищенное электрооборудование.

Для борьбы со случайно возникающими замыканиями в электрической сети используют защиты. На них выставляют такие уставки, которые не мешают работать схеме в нормальном режиме. Они отключают питание только при аварийных случаях.

Например, если ребенок по неосторожности всунет в домашнюю розетку проволоку, то правильно настроенный автоматический выключатель вводного квартирного щита практически моментально отключит электроснабжение.

Все, что описано выше, относится к закону Ома для участка цепи постоянного тока, а не полной схемы, где процессов может быть значительно больше. Следует представлять, что это только небольшая часть применения его в электротехнике.

Закономерности, выявленные знаменитым ученым Георгом Симоном Омом между током, напряжением и сопротивлением по-разному описываются в различных средах и цепях переменного тока: однофазных и трехфазных.

Читайте также:  Какова мощность потребляемая электрической плиткой если плитка берет из сети ток 5а

Вот основные формулы, выражающие соотношения электрических параметров в металлических проводниках.

соотношения электрических параметров в металлических проводниках

Более сложные формулы для проведения специальных расчетов закона Ома на практике.

закон ОМА

Как видим, исследования, которые провел гениальный ученый Георг Симон Ом, имеют огромное значение даже в наше время бурного развития электротехники и автоматики.

Если Вам понравилась эта статья, поделитесь ссылкой на нее в социальных сетях. Это сильно поможет развитию нашего сайта!

Не нашли, то что искали? Используйте форму поиска по сайту

Не пропустите обновления, подпишитесь на наши соцсети:

Источник



Законы Ома и их качественное объяснение

  • Закон Ома: кто придумал, определение
    • Формулировки и основные формулы
  • Объяснение закона Ома в классической теории
  • Закон Ома для полной (замкнутой) цепи
  • Использование закона Ома при параллельном и последовательном соединении
  • Закон Ома для переменного и постоянного тока
  • Закон Ома для однородного и неоднородного участка цепи
  • Закон Ома: кто придумал, определение
    • Формулировки и основные формулы
  • Объяснение закона Ома в классической теории
  • Закон Ома для полной (замкнутой) цепи
  • Использование закона Ома при параллельном и последовательном соединении
  • Закон Ома для переменного и постоянного тока
  • Закон Ома для однородного и неоднородного участка цепи

Есть такие формулы и законы, которые люди узнают еще в школе, а помнят всю жизнь. Обычно это несложные уравнения, состоящие из двух-трех физических величин и объясняющие какие-то фундаментальные вещи в науке, основу основ. Закон Ома как раз такая штука.

Закон Ома: кто придумал, определение

Закон Ома — это основной закон электродинамики, который выводит взаимосвязь между ключевыми понятиями электрической цепи: силой тока, напряжением и сопротивлением.

Данную взаимозависимость выявил немецкий физик Георг Симон Ом в 1826 году. Несмотря на то, что этот закон является истинным законом природы, точность которого была многократно проверена и доказана позже, публикация работы Ома в 1827 году прошла незамеченной для научной общественности. И лишь в 1830-х гг., когда французский физик Пулье пришел к тем же самым выводам, что и Ом, работа немецкого ученого была оценена по достоинству.

Установление закономерностей между основными параметрами электроцепи имеет огромное значение для науки. Ведь оно позволило количественно измерить свойства электрического тока.

Георг Симон Ом

Формулировки и основные формулы

Закон Георга Ома формулируется так: сила тока в проводнике прямо пропорциональна напряжению в проводнике и обратно пропорциональна сопротивлению этого проводника.

Пояснения к закону:

  1. Чем выше напряжение в проводнике, тем выше будет и сила тока в этом проводнике.
  2. Чем выше сопротивление проводника, тем меньше будет сила тока в нем.

Обозначение основных параметров, характеризующих электроцепь, известны всем с уроков физики в школе:

  • I — сила электротока;
  • U — напряжение;
  • R — сопротивление.

Объяснение закона Ома в классической теории

Формула закона, известная всем со школьных лет, выглядит так:

Из нее легко выводятся формулы для определения \(U\) :

и для определения \(R\) :

Единицами измерения силы тока являются амперы, напряжения — вольты, сопротивление измеряется в омах.

Данный закон верен для линейного участка цепи, на котором зафиксировано стабильное сопротивление.

Закон Ома

Закон Ома для полной (замкнутой) цепи

Замкнутой или полной называется такая электрическая цепь, по которой проходит электроток.

Описание формулы этого закона для полной цепи выглядит так:

где \(\epsilon\) — это электродвижущая сила или напряжение источника питания, которое не зависит от внешней цепи;

\(R\) — сопротивление внешней цепи;

\(r\) — внутреннее сопротивление источника.

Закон Ома для полной цепи

Использование закона Ома при параллельном и последовательном соединении

При последовательном соединении элементы цепи подключаются друг за другом последовательно. Так как такая электрическая цепь является неразветвленной, сила тока на каждом ее участке будет одинаковая. Пример последовательного соединения — лампочки в новогодней гирлянде.

При последовательном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

  • Сила тока по формуле:

Где \(I\) — общая сила тока в электроцепи, \(I_1\) — сила тока первого участка, \(I_2\) — сила тока второго участка, \(I_3\) — сила тока третьего участка.

  • Напряжение по формуле:

Где \(U\) — общее напряжение, \(U_1\) — напряжение первого участка, \(U_2\) — напряжение второго участка, \(U_3\) — напряжение третьего участка.

  • Сопротивление согласно формуле:

Где \(R\) — общее сопротивление в цепи, \(R_1\) — сопротивление первого участка, \(R_2\) — сопротивление второго участка, \(R_3\) — сопротивление третьего участка.

Подключая элементы в цепь параллельно, получают разветвленную электрическую цепь. Примером такого соединения является стандартная разводка электричества по квартире, когда в комнате одновременно можно включить несколько предметов бытовой техники и верхнее освещение.

При параллельном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

Где \(I\) — общая сила тока в электроцепи, \(I_1, I_2, I_3\) — сила тока первого, второго и третьего участков соответственно.

Где \(U\) — общее напряжение, \(U_1, U_2, U_3\) — напряжение первого, второго и третьего участков соответственно.

Где \(R\) — общее сопротивление в цепи, \(R_1, R_2, R_3\) — сопротивление первого, второго и третьего участков соответственно.

Закон Ома для переменного и постоянного тока

Для цепи постоянного тока правильными будут уже озвученные нами взаимосвязи основных параметров электроцепи:

Закон Ома для постоянного тока

При подключении к электроцепи источника переменного тока, сила электротока в цепи будет определяться по формуле:

где \(Z\) — полное сопротивление или импеданс, который состоит из активной \((R)\) и реактивных составляющих ( \(X_C\) — сопротивление емкости и \(X_L\) — сопротивление индуктивности).

Реактивное сопротивление цепи зависит:

  • от значений реактивных элементов,
  • от частоты электротока;
  • от формы тока в цепи.

Закон Ома переменный ток

Закон Ома для однородного и неоднородного участка цепи

Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:

В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.

Поэтому \(R\) зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:

где \(p\) — удельное сопротивление, \( l\) — это длина проводника, а \(S\) — площадь его сечения.

Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.

Закон Ома неоднородный участок

Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому. Если столкнулись с трудностями в учебе и сложными для понимания темами, обращайтесь за помощью к образовательному ресурсу Феникс.Хелп. Квалифицированные эксперты помогут сдать в срок самую сложную работу.

Читайте также:  Водный раствор органического вещества проводит электрический ток

Источник

Закон полного тока для магнитного поля

В электрических цепях всегда присутствует магнитное поле, которое оказывает электромагнитное взаимодействие с токами этих цепей. Данный фактор учитывается при расчетах цепей, а закон полного тока для магнитного поля является инструментом для подобных вычислений.

Если поднести магнитную стрелку к проводнику, по которому течёт ток, её положение изменится. Это говорит о наличии вокруг проводника кроме электрического ещё и магнитного поля. В результате многочисленных исследований электромагнитных явлений установлено, что существует взаимное влияние полей, имеющих электрическую и магнитную природу.

Физический смысл закона

Рассмотрим упрощённый вариант влияния магнитной индукции на электрическое поле. Для этого представим себе два параллельных проводника, по которым циркулируют постоянные токи, например, I1 и I2. Вблизи этих проводников образуется поле, которое мысленно можно ограничить неким контуром L – воображаемой замкнутой фигурой, плоскость которой пересекает потоки движущихся зарядов.

В пределах плоскости, охватываемой контуром L, формируется магнитное поле, напряжённость которого распределена в соответствии с направлениями токов. При этом циркуляция вектора магнитного поля в плоскости замкнутого контура прямо пропорциональна сумме токов, пронзающих данный контур. Полный электрический ток равен векторной сумме его составляющих:

Направления векторов I1 и I2 определяется по правилу буравчика.

Приведённые выше рассуждения можно рассматривать в качестве примера изображающего упрощённую модель частного случая рассматриваемого закона. В действительности же, процессы взаимного влияния магнитных и электрических полей намного сложнее, и они описываются интегральными и дифференциальными уравнениями Максвелла.

Упрощенный подход

Выразить закон в дифференциальном представлении довольно сложно. Потребуется вводить дополнительные компоненты. Необходимо учитывать влияние молекулярных токов. Наличие вихревых токов является причиной образования магнитного вихревого поля в пределах контура.

Вектор электрического смещения сравним с вектором напряжённости присутствующего магнитного поля H. При этом Ориентация вектора смещения зависит от быстроты изменения магнитной индукции.

Для упрощения вычислений на практике часто пользуются формулами закона для магнитного поля полных токов, представленных в виде суммирования предельно малых участков контура, с учётом влияния вихревых полей. При реализации этого метода контур мысленно разбивают на бесконечно малые отрезки. На этих отрезках проводники считаются прямолинейными, а магнитное поле на таких участках контура считают однородным.

На одном дискретном участке вектор напряженности Um определяется по формуле: Um= HL×ΔL, где HL– циркуляция вектора напряжённости на участке ΔL контура L. Тогда суммарная напряжённость UL вдоль всего контура вычисляется по формуле: UL= Σ HL× ΔL.

Закон в интегральном представлении

Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).

Поле бесконечно прямого тока

Рис. 1. Поле бесконечно прямого тока

Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ 2π.

Из теоремы Остроградского-Гаусса вытекает формула:

Формула из теоремы Остроградского-Гаусса

Учитывая, что cos φ = 1,

Формула магнитной индукции

Формула итог

Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μI, где μ = 1/c 2 ε – магнитная постоянная.

Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда

Сумма токов

Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.

Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.

Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.

Если ток распределён в пространстве (произвольный ток), тогда

Ток в пространстве

где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:

Формула полного тока в вакауумеИллюстрация закона для вакуума Рис. 2. Иллюстрация закона для вакуума

  1. Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
  2. Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
  3. Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.

Влияние среды

На результат взаимодействия магнитных потоков и постоянных токов влияет среда. Вещества обладают магнитной проницаемостью в потоке вектора индукции, что вносит коррективы на взаимодействие магнитной среды с токами проводимости. В однородной изотопной среде, где значение вектора электромагнитной индукции одинаково во всех точках, векторы B и H связаны между собой следующим соотношением:

Связь векторов b и h

где H — напряжённость магнитного поля, символом μ обозначена магнитная проницаемость.

Носители электрических зарядов создают собственные микротоки. Циркуляция вектора, характеризующего электростатическое поле, всегда нулевая. Поэтому электростатические поля, в отличие от магнитных, являются потенциальными.

Вектор B отображает результирующее значение полей макро- и микротоков. Линии электростатической индукции всегда остаются замкнутыми, в том числе и на положительных зарядах.

Закон полного тока в веществе

Рис. 3. Закон полного тока в веществе

Для полей, которые действуют в среде, состоящей из разных веществ, необходимо учитывать микротоки, характерные именно для конкретных структур, образующих данную среду.

Утверждение, изложенное выше, верно для полей соленоидов или любой другой структуры, обладающей свойствами конечной магнитной проницаемости.

Торойд

В электротехнике часто приходится иметь дело с катушками разных видов и размеров. Катушка, образованная витками намотанными на сердечник тороидальной формы (в виде бублика), называется тороидом. Важными характеристиками сердечника тора являются его радиусы — внутренний (R1) и внешний (R2).

Поле внутри соленоида на расстоянии r от центра равно:

Формулы: Поле внутри соленойда

Выводы

На основании изложенного, приходим к заключению:

  1. Закон полного тока устанавливает зависимость между напряжённостью магнитного поля и перемещением в этом поле электрических зарядов.
  2. Действие закона распространяется на все среды, при допустимых плотностях тока.
  3. Закон также выполняется в полях постоянных магнитов.

При вычислениях не имеет значения, какую формулу мы используем – суть закона остаётся неизменной: он выражает взаимодействия, которые происходят между токами и создаваемыми ими магнитными полями, пронизывающими замкнутый контур.

Выводы закона учитываются при конструировании электромагнитных устройств. Наличие завихрений в электромагнитных полях приводит к снижению КПД. Кроме того, вихревые поля негативно влияют на работоспособность электронных элементов, расположенных в зоне их действий.

Конструкторы электротехнических приборов стремятся свести к минимуму таких влияний. Например, вместо обычных соленоидов применяют тороидальные катушки, за пределами которых отсутствуют электромагнитные поля.

Источник