Меню

Пробивное напряжение p n перехода

Пробивное напряжение p n перехода

Если напряжение обратного смещения непрерывно повышать, то в отсутствие ограничительного сопротивления в цепи перехода после достижения некоторого значения Uпроб (рис. 69) наблюдается резкое увеличение силы тока, происходит так называемый пробой p-n-перехода. Различают электрический и тепловой пробои. Электрический пробой не приводит к разрушению перехода, и если за ним не последует теплового пробоя, свойства p-n-перехода после снятия обратного напряжения восстанавливаются. Существуют два вида электрического пробоя: лавинный и туннельный.

Рис. 69
Рис. 69

Лавинный пробой. В основе этого вида пробоя лежит эффект лавинного размножения носителей в толще р-n-перехода. При некотором значении обратного напряжения смещения напряженность поля в p-n-переходе становится настолько большой, что неосновные носители, ускоряясь в нем, приобретают энергию, достаточную для ионизации нейтральных атомов полупроводника в переходе. В результате ионизации происходит лавинное нарастание числа носителей, создающих обратный ток. Лавинный пробой обычно наблюдается при обратных напряжениях смещения порядка десятков или сотен вольт. Он характерен для достаточно толстых р-n-переходов, в которых каждый из неосновных носителей, разгоняемый электрическим полем, вызывает акты ионизации атомов в обедненном слое много раз. В узких переходах обычно наблюдается туннельный пробой.

Туннельный пробой своим происхождением обязан так называемому туннельному эффекту. Возникает этот эффект благодаря непосредственному воздействию сильного электрического поля на атомы кристаллической решетки полупроводника в р-n-переходе. Под действием этого поля происходит разрыв валентной связи и электрон становится свободным носителем, переходя в межузельное пространство и оставляя на своем месте дырку. Зонная схема туннельного пробоя приведена на рисунке 70. Электроны из валентной зоны p-полупроводника переходят, не изменяя свою энергию, в зону проводимости полупроводника n-типа, пересекая запрещенную зону р-n-перехода. Необходимым условием реализации туннельного перехода является незанятость в зоне проводимости n-полупроводника энергетического уровня, соответствующего энергии переходящего из р-области электрона.

Рис. 70
Рис. 70

Туннельный пробой наблюдается в тонких р-n-переходах, которые могут быть созданы только на границе раздела высоколегированных областей. Для того чтобы вызвать туннельный пробой, необходимо создать поле с напряженностью порядка 10 5 -10 6 В/см. Поскольку туннельный пробой реализуется только в тонких переходах порядка 10 -5 -10 -6 см, то для получения пробивных значений напряженности поля оказывается достаточной обратная разность потенциалов всего в несколько вольт.

Нарастание тока при туннельном пробое (кривая 2 на рисунке 69) происходит даже более круто, чем при лавинном пробое (кривая 1). Так как свойства p-n-перехода после электрического пробоя (лавинного или туннельного) восстанавливаются при выключении обратного напряжения смещения, то в технике во многих случаях p-n-переход используется именно в режиме пробоя (полупроводниковые стабилитроны, туннельные обращенные диоды и пр.).

Читайте также:  Сварочный трансформатор вторичное напряжение

Тепловой пробой. Если количество тепла, выделяющегося в р-n-переходе, превышает количество тепла, отводимого от него, то разогрев перехода приводит к росту процесса генерации носителей и, следовательно, к увеличению силы тока, текущего через переход, что в свою очередь ведет к дальнейшему повышению температуры и т. д. В итоге такого лавинообразно развивающегося перегрева сила тока продолжает возрастать и при уменьшении напряжения (кривая 3 на рисунке 69); наступает разрушение материала полупроводника. Тепловой пробой может возникнуть самостоятельно, но может оказаться и следствием развивающегося электрического пробоя. Поэтому обычно в цепь р-n-перехода последовательно включают ограничительный резистор, сопротивление которого подбирается так, чтобы сила тока не превосходила допустимого значения.

Поверхностный пробой. Лавинный или туннельный электрический пробой p-n-перехода может происходить не только в объеме полупроводника, но и по его поверхности. На поверхностный пробой значительное влияние может оказать искажение электрического поля в p-n-переходе поверхностными зарядами. Наличие поверхностного заряда связано с обрывом кристаллической решетки и с наличием в ней дефектов и примесей (особенно адсорбированных молекул воды). В определенных случаях поверхностный заряд приводит к сужению запорного слоя у поверхности и увеличению в приповерхностной области напряженности поля, благодаря этому пробой у поверхности начинается при меньших значениях обратного напряжения смещения, чем в объеме. Для уменьшения вероятности поверхностного пробоя применяют различные защитные покрытия, предотвращающие проникновение на поверхность p-n-перехода влаги и различных активных примесей.

Источник



Пробой p-n-перехода

date image2014-02-09
views image9639

facebook icon vkontakte icon twitter icon odnoklasniki icon

Стабилитроны

Стабилитроны и параметрические стабилизаторы напряжений

План лекции:

5.1. Пробой p-n-перехода

5.3. Расчёт параметрического стабилизатора на стабилитроне

Стабилитроном называют полупроводниковый диод, на обратной ветви которого имеется участок с сильной зависимостью тока от напряжения. Такая зависимость, как правило, обусловлена электрическим пробоем p-n-перехода.

Пробоем называют резкое увеличение обратного тока p-n-перехода при некотором обратном напряжении, превышающем напряжение пробоя . Различают электрический и тепловой пробои. Существуют три основных вида электрического пробоя: лавинный, туннельный и поверхностный.

Лавинный пробой вызывается ударной ионизацией нейтральных атомов кристаллической решётки полупроводника в обеднённом слое под действием сильного электрического поля. При обратном напряжении ток в p-n-переходе создаётся дрейфовым движением неосновных носителей заряда, приходящих из нейтральных p и n-областей. В обеднённом слое эти носители ускоряются и при напряжении, превышающем некоторое критическое значение, приобретают на длине свободного пробега кинетическую энергию, достаточную для того, чтобы при соударении с нейтральным атомом полупроводника произвести его ионизацию, т.е. создать новую пару носителей заряда – электрон и дырку. Вновь образовавшиеся носители будут ускоряться полем и могут также вызвать ионизацию. При этом может начинаться и начинается лавинообразный процесс роста количества носителей заряда. Соответственно нарастает обратный ток p-n-пере­хода.

Читайте также:  Бкс для стабилизаторов напряжения

Для оценки этого процесса введён коэффициент лавинного умножения , показывающий, во сколько раз обратный ток превышает исходную величину обратного теплового тока:

Коэффициент находят из эмпирической формулы

где параметр, зависящий от материала полупроводника и типа электропроводности базовой области, причём , напряжение лавинного пробоя, причём − обратное приложенное напряжение.

Для кремния n-типа и германия p-типа , а для кремния p-типа и германия n-типа . Зависимости обратного тока от обратного напряжения для двух значений приведены на рис. 5.1.

Рис. 5.1. Обратная ветвь вольтамперной характеристики p-n-перехода при лавинном пробое

Характерной особенностью лавинного пробоя является то, что с увеличением температуры напряжение пробоя возрастает. Следовательно, напряжение лавинного пробоя имеет положительный температурный коэффициент. Рост при увеличении температуры происходит потому, что уменьшается длина свободного пробега носителей и для сообщения носителям заряда необходимой энергии требуется бóльшая напряжённость электрического поля.

Туннельный пробой представляет собой переход электронов сквозь потенциальный (энергетический) барьер между переходом — без изменения энергии. Такой переход называют туннельным эффектом.

Туннельный пробой возникает при очень высокой ( В/см) напряжённости электрического поля в обеднённом слое. Поэтому туннельный эффект наблюдается в узких переходах при толщине барьера порядка мкм и с очень высокой концентрацией примеси ( ) в переходах — . Напряжение туннельного пробоя составляет 0 ÷ 5 В.

В отличие от лавинного пробоя повышение температуры приводит к понижению напряжения туннельного пробоя из-за уменьшения ширины запрещённой зоны , т.е. из-за уменьшения высоты барьера. Следовательно, напряжение туннельного пробоя имеет отрицательный температурный коэффициент.

Установлено, что при , т.е. при невысоких концентрациях примеси, напряжение лавинного пробоя ниже, чем напряжение туннельного пробоя. При этом (> 6,6 В для Si), а при высоких концентрациях примеси ( ) − выше, т.е. . При промежуточных концентрациях примеси, когда , пробой может объясняться обоими механизмами. Механизм пробоя в этом случае можно определить по знаку температурного коэффициента напряжения пробоя.

Читайте также:  Устройства для преобразования статического напряжения

Крутизна вольтамперной характеристики при лавинном пробое больше, чем при туннельном, и поэтому дифференциальное сопротивление стабилитрона в зоне пробоя при лавинном пробое меньше, чем при туннельном. В силу этого эффект стабилизации при лавинном пробое более сильный, чем при туннельном.

Формула для расчёта напряжения пробоя при туннельном пробое в литературе отсутствует.

Поверхностный пробой объясняется резким увеличением тока утечки. Вследствие возможного загрязнения и наличия поверхностных зарядов между выходящими на поверхность участками p-n-перехода могут образовываться проводящие плёнки и каналы, по которым будет протекать ток утечки . Поверхностный пробой пропорционален величине обратного напряжения и в некоторых случаях может превысить тепловой ток, что эквивалентно пробою. Для уменьшения тока утечки принимают специальные конструкторские и технологические меры. Поэтому поверхностный пробой является крайне редким явлением.

Тепловой пробой обусловлен выделяющейся мощностью из-за протекания обратного тока под действием обратного напряжения

что вызывает разогрев p-n-перехода и прилегающих к нему областей полупроводника. Повышение температуры приводит к увеличению обратного тока и этот процесс может разрушить стабилитрон.

Выделяющаяся мощность за счёт теплопроводности отводится от зоны нагрева и рассеивается в окружающей среде. Кроме того, часть выделяющейся мощности отводится путём непосредственного излучения, однако этот механизм в данном случае является второстепенным.

Отводимая за счёт теплопроводности мощность пропорциональна разности температур перехода и окружающей среды и обратно пропорциональна тепловому сопротивлению участка конструкции p-n-переход − окружающая среда

Если скорость отвода мощности больше, чем скорость выделяющейся мощности, то может установиться тепловое равновесие, когда выполняется условие

которое определяет установившуюся (стационарную) температуру p-n-пере­хода.

Тепловой пробой не может быть использован в качестве механизма стабилизации. Он только ограничивает рабочую величину обратного тока лавинного или туннельного пробоя.

В p-n-переходах с большими обратными токами, например, в германиевых, тепловой пробой уже при комнатных температурах может наступать раньше, чем лавинный пробой. В кремниевых p-n-переходах обратные токи малы, так что раньше наступает лавинный пробой, диод может работать как стабилитрон. При высоких температурах тепловой пробой в кремниевых p-n-переходах может наступать раньше лавинного.

Источник