Меню

Расчет магнитного поля проводник с током

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

магнетит

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой – на ЮГ.

магнетит на воде

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

китайский древний компас

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

древний компас со стрелкой

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

сауз парк

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

линии магнитного поля

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии – они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

замкнутые магнитные линии

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

взаимодействие разноименных магнитных полей

Если же приблизить одноименными полюсами, то произойдет их отталкивание

взаимодействие одноименных полюсов магнита

Итак, ниже важные свойства магнитных силовых линий.

  • Магнитные линии не поддаются гравитации.
  • Никогда не пересекаются между собой.
  • Всегда образуют замкнутые петли.
  • Имеют определенное направление с севера на юг.
  • Чем больше концентрация силовых линий, тем сильнее магнитное поле.
  • Слабая концентрация силовых линий указывает на слабое магнитное поле.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке “а” или на рисунке “б”?

плотность магнитного потока

Видим, что на рисунке “а” мало силовых магнитных линий, а на рисунке “б” их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке “б” больше, чем на рисунке “а”.

В физике формула магнитного потока записывается как

формула магнитного потока

Ф – магнитный поток, Вебер

В – плотность магнитного потока, Тесла

а – угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S – площадь, через которую проходит магнитный поток, м 2

магнитный поток

Что же такое 1 Вебер? Один вебер – это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: “напряженность между ними все росла и росла”. То есть по сути напряженность – это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

напряженность магнитного поля формула

H – напряженность магнитного поля, Ампер/метр

B – плотность магнитного потока, Тесла

μ – магнитная постоянная = 4π × 10 -7 Генри/метр или если написать по человечески 1,2566 × 10 -6 Генри/метр.

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

напряженность магнитного поля в веществе формула

μ – это относительная магнитная проницаемость.

У разных веществ она разная

магнитная проницаемость веществ

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

напряженность проводника с током

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

напряженность магнитного поля проводника с током

H – напряженность магнитного поля, Ампер/метр

I – сила тока, текущая через проводник, Ампер

r – расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

Читайте также:  Класс защиты от поражения электрическим током по гост р мэк 60598 1 ii

правило буравчика

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

саморез

Ввинчиваем по часовой стрелке – саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам – кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

направление электрического тока

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

суммирование магнитного поля

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

сумма магнитных полей

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

соленоид

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

плотность магнитного потока в соленоиде

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

принцип работы соленоида

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала – феррита.

многообмоточная катушка

Если в электрических цепях есть такое понятие, как ЭДС – электродвижущая сила, то и в магнитных цепях есть свой аналог – МДС – магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

многообмоточная катушка

I – это сила тока в катушке, Амперы

N – количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Похожие статьи по теме “магнитное поле”

Источник

Расчёт магнитных полей с помощью закона Био–Савара–Лапласа. Магнитное поле в веществе (Главы 3-4 учебного пособия по общей физике)

Страницы работы

Содержание работы

где v – скорость направленного движения свободных носителей заряда. Умножив В на количество свободных носителей заряда в элементе проводника dl, получим индукцию магнитного поля, созданную этим элементом проводника с током,

поскольку env= j*,

;

поскольку dl.j = dl.j (dl и j совпадают по направлению),

.

Таким образом, индукция магнитного поля, созданного элементом dl проводника с током I на расстоянии r от элемента проводника, определяется выражением

.

Это выражение и представляет собой закон Био–Савара–Лапласа.

Из закона видно, что вектор магнитной индукции dB всегда перпендикулярен плоскости, в ко-торой лежат векторы dl и r. Его направление определяется по правилу правого винта.

Модуль вектора dB определяется из выражения

,

где a – угол между векторами dl и r.

* Здесьj – вектор плотности тока.

Необходимо учесть, что полученное выражение позволяет рассчитать индукцию магнитного поля, созданную одним бесконечно малым элементом проводника dl с током I.

Для того чтобы найти магнитную индукцию, созданную всемпроводником, необходимо использовать принцип суперпозиции, т. е. просуммировать векторы dB, созданные каждым элементом проводника в интересующей нас точке.

3.4. Расчёт магнитных полей с помощью закона

Био–Савара–Лапласа

3.4.1. Индукция магнитного поля отрезка прямолинейного проводника с током

Для всех бесконечно малых элементов dl отрезка векторы dl и r лежат в плоскости листа. Поэтому векторы dB, созданные в выбранной нами точке различными элементами проводника направлены одинаково – перпендикулярно плоскости листа. Следовательно, сложение векторов dB можно заменить сложением их модулей dB.

Из рисунка видно, что r = b/sina
(b – расстояние от проводника до инте-ресующей нас точки), и

.

Тогда индукция, созданная элементом проводника dl, равна

.

Индукция магнитного поля, созданного всем проводником, может быть найдена как интеграл от dB в пределах от a1 до + a2:

Иногда удобнее воспользоваться другим выражением:

(обратите внимание на рисунок, показывающий углы q1 и q2).

Обратите также внимание на то, что если точка расположена так, как показано на следующем рисунке, то q2 меняет знак и формула для расчёта магнитного поля прямолинейного отрезка записывается следующим образом:

Читайте также:  Испытательное напряжение постоянного тока

.

3.4.2. Индукция магнитного поля бесконечно длинного

прямолинейного проводника с током

Если длина прямого проводника бесконечно велика, то a1 = 0, а a2 = p.

В этом случае индукция магнитного поля, созданного проводником, будет равна

.

Таким образом, индукция магнитного поля, созданного бесконечно длинным проводником прямо пропорциональна току в проводнике и обратно пропорциональна расстоянию от проводника до интересующей нас точки.

Дополнительно рассмотрим магнитное поле, созданное бесконечным проводником, который изогнут под прямым углом.

Ограничимся получением расчётной формулы для точки А, расположенной на продолжении одной из половин проводника.

Участок DB в точке А не создаёт магнитного поля, так как для него a1 и a2 равны 0.

Для участка ВС a1 = 90 0 , a2 = -180 0 . Поэтому индукция, созданная этим участком, равна

.

Таким образом, индукция магнитного поля в точке А равна половине индукции, созданной прямым бесконечно длинным проводником с таким же током.

3.4.3. Индукция магнитного поля в центре квадрата

Рассмотрим квадрат со стороной а, в котором течёт ток I.

Все стороны квадрата создают в его центре одинаковое магнитное поле. Поэтому если индукция, созданная одной стороной, равна В, то магнитная индукция, созданная всеми сторонами, равна 4В.

В рассматриваемом случае a1 = 45 0 , а a2 = 135 0 (см. рисунок).

Индукция магнитного поля, созданного одной стороной, равна:

.

Соответственно индукция магнитного поля, созданного всеми сторонами, равна

.

В показанном на рисунке случае индукция магнитного поля направлена перпендикулярно плоскости квадрата на нас.

3.4.4. Расчёт магнитного поля замкнутого кругового тока

(витка с током).

Пусть радиус витка равен R, а ток в нём – I.

Вначале рассмотрим расчёт поля в центре витка.

Каждый элемент тока будет создавать индукцию, направленную вдоль оси витка. Поэтому, как и в предыдущем случае, сложение dB алгебраическое и

,

(в каждой точке a = 90 0 )

.

Поле на оси витка на расстоянии b от центра витка рассчитывается несколько сложнее. В этом случае векторы dB не параллельны друг другу.

При суммировании составляющие векторов dB, перпендикулярные оси, уничтожаются, а параллельные оси – складываются.

Из рисунка видно, что

;

.

Проинтегрировав это выражение по всему контуру, получаем

.

Источник



Магнитное поле тока, магнитный ток.

Магнитное поле тока представляет собой силовое поле, воздействующее на электрические заряды и на тела, находящиеся в движении и имеющие магнитный момент, вне зависимости от состояния их движения. Магнитное поле является частью электромагнитного поля.

Ток заряженных частиц либо магнитные моменты электронов в атомах создают магнитное поле. Также, магнитное поле возникает в результате определенных временных изменений электрического поля.

Вектор индукции магнитного поля В представляет собой главную силовую характеристику магнитного поля. В математике В = В (X,Y,Z) определяется как векторное поле. Это понятие служит для определения и конкретизации физического магнитного поля. В науке зачастую вектор магнитной индукции попросту, для краткости, именуется магнитным полем. Очевидно, что такое применение допускает некоторую вольную трактовку этого понятия.

Ещё одной характеристикой магнитного поля тока есть векторные потенциал.

Векторный потенциал

В научной литературе часто можно встретить, что в качестве главной характеристики магнитного поля, в условиях отсутствия магнитной среды (вакууме), рассматривается вектор напряжённости магнитного поля. Формально, такая ситуация вполне приемлема, поскольку в вакууме вектор напряженности магнитного поля H и вектор магнитной индукции B совпадают. В тоже время, вектор напряженности магнитного поля в магнитной среде не наполнен тем же физическим смыслом, и является второстепенной величиной. Исходя из этого при формальной равенства этих подходов для вакуума, систематическая точка зрения рассматривает вектор магнитной индукции основной характеристикой магнитного поля тока.

основной характеристикой магнитного поля

Магнитное поле, безусловно, представляет собой особенный вид материи. С помощью этой материи происходит взаимодействие между обладающими магнитным моментом и движущимися заряженными частицами либо телами.

Специальная теория относительности рассматривает магнитные поля как следствие существования самих электрических полей.

В совокупности магнитное и электрическое поля формируют электромагнитное поле. Проявлениями электромагнитного поля является свет и электромагнитные волны.

Магнитное поле тока

Квантовая теория магнитного поля рассматривает магнитное взаимодействие как отдельный случай электромагнитного взаимодействия. Он переносится безмассовым бозоном. Бозон представляет собой фотон — частицу, которую можно представить как квантовое возбуждение электромагнитного поля.

Порождается магнитное поле либо током заряженных частиц, либо трансформирующимся во временном пространстве электрическим полем, либо собственными магнитными моментами частиц. Магнитные моменты частиц для однообразного восприятия формально сводятся к электрическим токам.

Вычисление значения магнитного поля.

Простые случаи позволяют вычислить значения магнитного поля проводника с током по закону Био-Савара-Лапласа, либо при помощи теоремы о циркуляции. Таким же образом может быть найдено значение магнитного поля и для тока, произвольно распределённого в объёме или пространстве. Очевидно, эти законы применимы для постоянных либо относительно медленно изменяющихся магнитных и электрических полей. То есть, в случаях наличия магнитостатики. Более сложные случаи требуют вычисления значения магнитного поля тока согласно уравнений Максвелла.

Проявление наличия магнитного поля.

Основным проявлением магнитного поля является влияние на магнитные моменты частиц и тел, на заряженные частицы находящиеся в движении. Силой Лоренца называется сила, которая воздействует на электрически заряженную частицу, которая движется в магнитном поле. Эта сила имеет постоянно выраженную перпендикулярную направленность к векторам v и B. Она также имеет пропорциональное значение заряду частицы q, составляющей скорости v, осуществляющейся перпендикулярно направлению вектора магнитного поля B, и величине, которая выражает индукцию магнитного поля B. Сила Лоренца согласно Международной системе единиц имеет такое выражение: F = q [v, B], в системе единиц СГС: F = q / c [v, B]

Векторное произведение отображено квадратными скобками.

Читайте также:  Электрический ток в металлах это определение

В результате влияния силы Лоренца на движущиеся по проводнику заряженные частицы, магнитное поле и может осуществлять воздействие на проводник с током. Силой Ампера является сила, действующая на проводник с током. Составляющими этой силы считаются силы, воздействующие на отдельные заряды, которые движутся внутри проводника.

Явление взаимодействия двух магнитов.

Явление магнитного поля, которое мы можем встретить в повседневной жизни, получило название взаимодействие двух магнитов. Оно выражается в отталкивании друг от друга одинаковых полюсов и притяжении противоположных полюсов. С формальной точки зрения описать взаимодействия между двумя магнитами как взаимодействие двух монополей, является достаточно полезной, реализуемой и удобной идеей. В то же время, детальный анализ свидетельствует, что в действительности это не совсем верное описание явления. Основным вопросом, остающимся без ответа в рамках такой модели, является, почему монополя не могут быть разделены. Собственно, экспериментально доказано, что любое изолированное тело не имеет магнитный заряд. Также эту модель невозможно применить к магнитному полю, созданному макроскопическим током.

С нашей точки зрения, правильно считать, что сила, действующая на магнитный диполь, находящийся в неоднородном поле, стремится развернуть его таким образом, чтобы магнитный момент диполя имел одинаковое с магнитным полем направление. Однако нет магнитов, которые подвержены воздействию суммарной силы со стороны однородного магнитного поля тока. Сила, которая действует на магнитный диполь с магнитным моментом m выражается следующей формулой:

Магнитное поле тока, магнитный ток.

.

Действующая на магнит сила со стороны неоднородного магнитного поля, выражается суммой всех сил, которые определяются данной формулой, и воздействующих на элементарные диполи, которые составляют магнит.

Электромагнитная индукция.

В случае изменения во времени потока вектора магнитной индукции через замкнутый контур, в этом контуре формируется ЭДС электромагнитной индукции. Если контур неподвижен, она порождается вихревым электрическим полем, которое возникает в результате изменения магнитного поля со временем. Когда магнитное поле не изменяется со временем и нет изменений потока из-за движения контура-проводника, то ЭДС порождается силой Лоренца.

Источник

6.2. Магнитное поле прямолинейного проводника с током

Вычислим поле, создаваемое током, текущим по тонкому прямолинейному проводу бесконечной длины.

Индукция магнитного поля в произвольной точке А (рис. 6.12), создаваемого элементом проводника dl, будет равна

Рис. 6.12. Магнитное поле прямолинейного проводника

Поля от различных элементов имеют одинаковое направление (по касательной к окружности радиусом R, лежащей в плоскости, ортогональной проводнику). Значит, мы можем складывать (интегрировать) абсолютные величины

Выразим r и sin через переменную интегрирования l

Тогда (6.7) переписывается в виде

Картина силовых линий магнитного поля бесконечно длинного прямолинейного проводника с током представлена на рис. 6.13.

Рис. 6.13. Магнитные силовые линии поля прямолинейного проводника с током:
1 — вид сбоку; 2, 3 — сечение проводника плоскостью, перпендикулярной проводнику

Для обозначения направления тока в проводнике, перпендикулярном плоскости рисунка, будем использовать следующие обозначения (рис. 6.14):

Рис. 6.14. Обозначения направления тока в проводнике

Для обозначения направления тока в проводнике, перпендикулярном плоскости рисунка, будем использовать следующие обозначения (рис. 6.14):

Напомним выражение для напряженности электрического поля тонкой нити, заряженной с линейной плотностью заряда

Сходство выражений очевидно: мы имеем ту же зависимость от расстояния до нити (тока), линейная плотность заряда заменилась на силу тока. Но направления полей различны. Для нити электрическое поле направлено по радиусам. Силовые линии магнитного поля бесконечного прямолинейного проводника с током образуют систему концентрических окружностей, охватывающих проводник. Направления силовых линий образуют с направлением тока правовинтовую систему.

На рис. 6.15 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг прямолинейного проводника с током. Толстый медный проводник пропущен через отверстия в прозрачной пластинке, на которую насыпаны железные опилки. После включения постоянного тока силой 25 А и постукивания по пластинке опилки образуют цепочки, повторяющие форму силовых линий магнитного поля.

Вокруг прямого провода, перпендикулярного пластинке, наблюдаются кольцевые силовые линии, расположенные наиболее густо вблизи провода. При удалении от него поле убывает.

Рис. 6.15. Визуализация силовых линий магнитного поля вокруг прямолинейного проводника

На рис. 6.16 представлены опыты по исследованию распределения силовых линий магнитного поля вокруг проводов, пересекающих картонную пластинку. Железные опилки, насыпанные на пластинку, выстраиваются вдоль силовых линий магнитного поля.

Рис. 6.16. Распределение силовых линий магнитного поля
вблизи пересечения с пластинкой одного, двух и нескольких проводов

Источник