Меню

Расчет по токам кз вру

Расчет токов короткого замыкания в сетях 0,4кВ

Схема электроснабжения

Ни один проект по электрике не обходится без расчетов. Одним из них является расчет токов короткого замыкания. В статье рассмотрим пример расчета в сетях 0,4кВ. Файл с примером расчета в Word вы сможете скачать ближе к концу статьи, а также выполнить расчет самостоятельно не покидая сайта (в конце статьи есть онлайн-калькулятор).

Исходные данные: ГРЩ здания запитан от трансформаторной подстанции с двумя трансформаторами по 630кВА.
где:
ЕC – ЭДС сети;
Rт, Xт, Zт – активное, реактивное и полное сопротивления трансформатора;
Rк, Xк, Zк – активное, реактивное и полное сопротивления кабеля;
Zц – сопротивление петли фаза-нуль для кабеля;
Zш – сопротивление присоединения шин;
K1 – точка короткого замыкания на шинах ГРЩ.

Параметры трансформатора:
Номинальная мощность трансформатора Sн = 630 кВА,
Напряжение короткого замыкания трансформатора Uк% = 5,5%,
Потери короткого замыкания трансформатора Pк = 7,6 кВт.

Параметры питающей линии:
Тип, число (Nк) и сечение (S) кабелей АВВГнг 2x (4×185),
Длина линии L = 208 м

Реактивное сопротивление трансформатора:
Реактивное сопротивление трансформатора
Xт = 13,628 мОм

Активное сопротивление трансформатора:
Активное сопротивление трансформатора
Rт = 3,064 мОм

Активное сопротивление кабеля:
Активное сопротивление кабеля
Rк = 20,80 мОм

Реактивное сопротивление кабеля:
Реактивное сопротивление кабеля
Xк = 5,82 мОм

Сопротивление энергосистемы:
Xc = 1,00 мОм

Суммарное реактивное сопротивление участка:
XΣ=Xc+Xт+Xк=20,448 мОм

Суммарное активное сопротивление участка:
RΣ=Rт+Rк=23,864 мОм

Полное суммарное сопротивление:
Полное сопротивление участка
RΣ=31,426 мОм

Ток трехфазного короткого замыкания:
Ток трехфазного короткого замыкания
IK3=7,35 кА (Icn)

Ударный ток трехфазного короткого замыкания:
Ударный ток трехфазного короткого замыкания

Ток однофазного короткого замыкания:
Ток однофазного короткого замыкания
IK1=4,09 кА

TKZ_calculate_10

Чтобы не считать каждый раз вручную на калькуляторе и переносить цифры в Microsoft Word, я реализовал эти расчет прямо в Word. Теперь надо только ответить на вопросы, которые он задаёт. Вот так это выглядит:

Весь расчет занял меньше минуты.

Онлайн-калькулятор для расчет токов короткого замыкания

Для тех, кому нужно быстро рассчитать токи короткого замыкания, сделал калькулятор прямо на сайте. Теперь можете посчитать токи КЗ онлайн. Щелкайте переключателям, двигайте ползунки, выбирайте значения из списка — всё моментально автоматически пересчитается.

Удельные сопротивления меди и алюминия в онлайн-калькуляторе приняты в соответствии с рекомендациями ГОСТ Р 50571.5.52-2011, Часть 5-52 (1,25 удельного сопротивления при 20°С):

  • удельное сопротивление меди — 0,0225 Ом·мм/м
  • удельное сопротивление алюминия — 0,036 Ом·мм/м.

Если возможностей калькулятора вам недостаточно (нужно несколько участков кабелей разного сечения, у вас другие трансформаторы или просто расчет должен быть оформлен в Word), то смело нажимайте кнопку и заказывайте.

Получите оформленный расчёт в Word (файл docx без автоматизации) в соответствии с вашими исходными данными.

Источник

Расчет по токам кз вру

Свод правил по проектированию и строительству
СП 31-110-2003
12 ТОКИ КОРОТКОГО ЗАМЫКАНИЯ

12.1 ВРУ, ГРЩ должны проверяться по режиму короткого замыкания в соответствии с требованиями 1.4 и 7.1 ПУЭ.
В линиях питания электроприемников I категории по надежности электроснабжения по режиму короткого замыкания должны также проверяться аппараты защиты. При этом автоматические выключатели должны быть устойчивыми к токам короткого замыкания.
12.2 Расчет токов короткого замыкания должен производиться из условия, что подведенное к трансформатору напряжение неизменно и равно номинальному значению.
12.3 Расчет токов короткого замыкания следует вести с учетом активных и индуктивных сопротивлений всех элементов короткозамкнутой цепи, а также всех переходных сопротивлений, включая сопротивление дуги в месте короткого замыкания.
12.4 Значение ударного коэффициента Ку для определения ударного тока короткого замыкания следует принимать:
на шинах РУ-0,4 кВА трансформаторных подстанций — 1,1; в остальных точках сети — 1.

13 ВВОДНО-РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА, ГЛАВНЫЕ РАСПРЕДЕЛИТЕЛЬНЫЕ ЩИТЫ, РАСПРЕДЕЛИТЕЛЬНЫЕ ЩИТЫ, ПУНКТЫ И ЩИТКИ

13.1 ВРУ и ГРЩ, как правило, должны размещаться в специально выделенных запирающихся помещениях (электрощитовых). Двери из этих помещений должны открываться наружу.
Не разрешается размещать ВРУ и ГРЩ в незадымляемых лестничных клетках.
Разрешается размещать электрощитовые в сухих подвалах при условии, что эти помещения отделены противопожарными перегородками с пределом огнестойкости не менее 0,75 ч.
В районах, подверженных затоплению, ВРУ и ГРЩ должны устанавливаться выше возможного уровня затопления.
ВРУ и ГРЩ разрешается размещать не в специальных помещениях при соблюдении следующих требований:
степень защиты ВРУ должна быть не ниже IP31;
устройства и щиты должны быть расположены в удобных и доступных для обслуживания местах (в отапливаемых тамбурах, вестибюлях, коридорах и т. п.);
аппараты защиты и управления должны устанавливаться в металлическом шкафу или в нише стены, снабженных запирающимися дверцами. При этом рукоятки аппаратов управления не должны выводиться наружу, они должны быть съемными или запираться на замки.
В помещениях ВРУ и ГРЩ разрешается размещать оборудование слаботочных устройств и систем (усилители телесигналов, контроллеры автоматизированных систем, аппаратуру и щитки системы дымоудаления и т. п.).
При этом проходы обслуживания между слаботочными устройствами и аппаратурой сильных токов должны соответствовать 4.1 ПУЭ, а панели ВРУ должны иметь исполнение не ниже IP2X.

13.2 Электрощитовые, а также ВРУ и ГРЩ не допускается располагать непосредственно под уборными, ванными комнатами, душевыми, кухнями пищеблоков, моечными и другими помещениями, связанными с мокрыми технологическими процессами, за исключением случаев, когда приняты специальные меры по надежной гидроизоляции, предотвращающие попадание влаги в помещения, где установлены распределительные устройства. Следует исключать возможность проникания шумов от оборудования электрощитовых, расположенных рядом с помещениями, в которых уровень шума ограничивается санитарными нормами.
13.3 Прокладка через электрощитовые трубопроводов систем водоснабжения, отопления (за исключением трубопроводов отопления щитовой), а также вентиляционных и других коробов разрешается как исключение, если они не имеют в пределах щитовых помещений ответвлений, а также люков, задвижек, фланцев, ревизий, вентилей. При этом трубопроводы холодной воды должны иметь защиту от конденсации влаги, а горячей воды — тепловую изоляцию.
Прокладка через электрощитовые газопроводов и трубопроводов с горючими жидкостями, канализации и внутренних водостоков не допускается.
13.4 Электрощитовые должны оборудоваться естественной вентиляцией и электрическим освещением. В них должна обеспечиваться температура не ниже 5 °С.
13.5 Распределительные пункты и групповые щитки следует, как правило, устанавливать в нишах степ в запирающихся шкафах. При наличии специальных шахт для прокладки питающих сетей распределительные пункты и групповые щитки следует устанавливать в этих шахтах с устройством запирающихся входов в шахты для доступа к щиткам и пунктам только обслуживающего персонала.
13.6 В лестничных клетках зданий высота установки осветительных и силовых щитков и пунктов, размещаемых в нишах и не выступающих из плоскости стен, не нормируется.
Открыто установленные щитки и пункты должны размещаться на высоте не менее 2,2 м от пола, при этом не допускается уменьшение проходов, заданных нормами противопожарной безопасности.
13.7 Установка распределительных пунктов, щитов, щитков непосредственно в производственных помещениях пищеблоков, торговых и обеденных залах допускается как исключение при невозможности принять иное решение. При установке в торговых и обеденных залах они должны размещаться в нишах строительных конструкций с запирающимися дверцами и иметь надлежащее архитектурное оформление.
13.8 В учебных кабинетах и лабораториях школ и средних специальных учебных заведений распределительные щитки для питания учебных приборов следует устанавливать вблизи стола преподавателя.
13.9 В жилых и общественных зданиях запрещается применение комплектных устройств, внутренние соединения которых выполнены с использованием алюминиевых проводников. Допускается использование в распределительных устройствах специальных алюминиевых сплавов.

Читайте также:  Трансформаторы тока монтаж трансформаторов тока

Источник



Расчет токов короткого замыкания (КЗ), пример, методические пособия

расчет токов кз

В этой статье мы ниже рассмотривает пример расчет из курсового проекта тока КЗ. Скажем сразу, расчетов токов КЗ целое исскуство, и если Вам необходимо рассчитать токи КЗ для реальных электроустановок, то лучше скачать следующие методические пособия разработанные Петербурским энергетическим университетом повышения квалификации и всё сделать по ним.

1. И.Л. Небрат. Расчеты токов короткого замыкания в сетях 0,4 кв — скачать;

2.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 1 — скачать;

3.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 2 — скачать.

Так же полезно будет иметь под рукой программы, которые помогут Вам точно расчитать токи КЗ. Данных программ в настоящее время много и Вы можете найти большое количество различного софта в интернете, на который Вы можете потратить от часа до нескольких дней, чтобы разобраться как в нём работать. Ниже я выложу перечень программ в файле ворд, в котором указаны производители программ и как и где их можно получить (ссылок на скачивание в файле нет). А также выложу одну программу для расчета токов КЗ в сетях 0.4кВ. Данная программа очень древняя, но и такая же надежная как весь совеский аэрофлот. Работает из под DOSa. Эмулятор в файле скачивания. И так:

1. Переченьпрограмм расчетов ТКЗ и уставок РЗ (если Вы знаете какие-то другие программы, то пишите на pue8(г а в)mail.ru). Мы их включим в перечень.;

2. Программа для расчета токов КЗ в сетях 0.4 кВ.

Если Вам необходим расчет для курсового проекта или учебного задания, то ниже приведен не большой расчет, который в этом Вам поможет.

В задании к курсовому проекту приводятся данные об эквивалентных параметрах сети со стороны высшего напряжения рабочих трансформаторов СН (ТСН) и со стороны высшего напряжения резервных трансформаторов СН (РТСН). В соответствии с рис.2.1, приводятся: ток КЗ на ответвлении к ТСН (3) по I , кА при номинальном напряжении генератора Uгн, кВ или эквивалентное сопротивление сети со стороны ВН ТСН ТСН э X , Ом. Имеет место следующая зависимость:

Расчетная схема для определения токов КЗРис.2.1. Расчетная схема для определения токов КЗ при расположении точек КЗ на секциях СН 6(10) кВ и 0,4(0,69) кВ.
Для резервных трансформаторов СН задается ток к.з. на шинах ОРУ в точке включения РТСН (3) по I , кА при среднеэксплуатационном напряжении ОРУ ср U , кВ или эквивалентное сопротивление системы в точке включения РТСН РТСН э Х , Ом:
Расчет токов короткого замыкания (КЗ), пример, методические пособия
Учитывается возможность секционирования с помощью токоограничивающих реакторов секций РУСН-6 кВ. Это дает возможность применить на секциях за реактором более дешевые ячейки КРУ с меньшими токами термической и электродинамической стойкости и меньшим номинальным током отключения, чем на секциях до реактора, и кабели с меньшим сечением токопроводящих жил.

Расчет ведется по среднеэксплуатационным напряжениям, равным в зависимости от номинального напряжения 1150; 750; 515; 340; 230; 154; 115; 37; 24; 20; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,66; 0,525; 0,4; 0,23, и среднеэксплуатационным коэффициентам трансформации. В учебном пособии расчеты по определению токов КЗ в относительных (базисных) единицах применительно к схеме Ленинградской АЭС с тремя системами напряжения (750, 330, 110 кВ) и напряжением 6,3 кВ проводились с учетом как действительных, так и среднеэксплуатационных коэффициентов трансформации трансформаторов и автотрансформаторов.

Читайте также:  Закон взаимодействия параллельных токов формула

Показано, что расчет по среднеэксплуатационным напряжениям не вносит существенных корректировок в уровни токов КЗ. В то же время требуется серьезная вычислительная работа методом последовательных приближений, чтобы связать уровни напряжения генераторов, значения их реактивных мощностей с учетом коэффициента трансформации АТ связи, рабочих и резервных ТСН и напряжений на приёмных концах линий. При сокращении числа переключений трансформаторов и АТ связи с РПН из соображений надежности работы блоков задача выбора отпаек РПН становится менее актуальной.

Схема замещения в случае наличия реактора при питании секций

Схемы замещения для точек КЗ на напряжениях 6,3 и 0,4 кВ приведены на рис.2.2.
Все сопротивления приводятся к базисным условиям и выражаются либо в относительных единицах (о.е.) либо в именованных (Ом). В начале расчета необходимо определиться, в каких единицах будут производиться вычисления, и сохранять данную систему единиц до конца расчетов. Методики определения токов КЗ с использованием относительных и именованных единиц равноправны.

В работе приводятся методики расчетов в относительных и в именованных единицах, как с учетом действительных коэффициентов трансформации, так и по среднеэксплуатационным напряжениям.

В работе приводятся расчеты как в относительных, так и в именованных единицах для простейших схем 0,4 кВ, где нужно учесть не только индуктивное, но и активное сопротивления.

Рис.2.2. Схема замещения в случае наличия реактора при питании секций 6(10) кВ СН: а – от рабочего ТСН; б – от резервного ТСН Для расчета в относительных единицах задают базисную мощность Sбаз, базисное напряжение Uбаз и вычисляют базисные токи Iбаз. В качестве базисной целесообразно принять номинальную мощность трансформатора СН: Sбаз = SТСН, МВА. Базисное напряжение принимают, как правило, равным для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ. Заметим, что при расчете в относительных единицах можно выбрать любые другие значения Sбаз, Uбаз.

Базисные токи в точках короткого замыкания К1 – К4, кА:

Расчет токов короткого замыкания (КЗ), пример, методические пособияПри расчетах в именованных единицах задают только базисное напряжение Uбаз – напряжение той точки, для которой рассчитываются токи КЗ: для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ.
Сопротивления сети в точках включения рабочего хсист1 и резервного хсист2 трансформаторов СН приводятся к базисным условиям по формулам:
в относительных единицах:
Расчет токов короткого замыкания (КЗ), пример, методические пособиягде uкв-н – напряжение короткого замыкания ТСН между обмоткой ВН и обмотками НН, включенными параллельно, о.е.;
uкн-н – напряжение короткого замыкания ТСН между обмотками НН, приведенное к половинной мощности ТСН, о.е.;
SТСН – номинальная мощность ТСН, МВА.

При использовании справочников для определения напряжения короткого замыкания uкн-н следует обращать внимание на указанный в примечаниях смысл каталожных обозначений. Если напряжение короткого замыкания uк НН1-НН2 отнесено в каталоге к номинальной мощности трансформатора, то данное uк НН1-НН2 необходимо пересчитать для половинной мощности, разделив на 2. В случае неверной подстановки в формулы (2.5), (2.5′) зачастую сопротивление хв получается отрицательным. Например, для ТСН марки ТРДНС-63000/35 в табл.3.5 справочника uкв-н = 12,7% и uкн-н = 40% отнесены к полной мощности трансформатора – см. примечание к таблице.

В этом случае в скобках формул (2.5), (2.5′) должно стоять выражение (0,127 – 20,2 ). Например, для РТСН марки ТРДН-32000/150 в табл.3.7 справочника uкв-н = 10,5% и uкн-н = 16,5% отнесены к половинной мощности трансформатора. При этом в скобках формул (2.5), (2.5′) должно быть (0,105 – 20,165 ). На блоках мощностью до 120 МВт используются двухобмоточные трансформаторы собственных нужд без расщепления. В этом случае сопротивление ТСН или РТСН вычисляется по формулам:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

в относительных единицах:
где uкв-н – напряжение короткого замыкания трансформатора между обмотками высшего и низшего напряжений, о.е.;
Sбаз, SТСН, SРТСН имеют тот же смысл, что и в формулах (2.5), (2.5′), (2.6),(2.6′).

Сопротивление участка магистрали резервного питания:

в относительных единицах:

где Худ – удельное сопротивление МРП, Ом/км;
МРП – длина МРП, км;
Uср – среднеэксплуатационное напряжение на первой ступени трансформации, кВ.

Сопротивление трансформатора собственных нужд 6/0,4 кВ:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

в относительных единицах:
где SТ 6/0,4 – номинальная мощность трансформатора, МВА.
Аналогично рассчитывается сопротивление трансформатора 10,5/0,69 кВ.

Сопротивление одинарных токоограничивающих реакторов Хр задается в Омах и для приведения к базисным условиям используют формулы:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

в относительных единицах:
В некоторых каталогах сопротивление токоограничивающих реакторов Хр приводится в процентах и для приведения к базисным условиям используют формулы:

в относительных единицах:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

где Iрн – номинальный ток реактора, кА, определяемый по мощности тех электродвигателей, которые предполагается включить за реактором.

Индуктивное сопротивление реактора Хр определяют по допустимому току КЗ за реактором Iп0доп. Значение Iп0доп связано с номинальным током отключения предполагаемых к установке за реактором выключателей (Iп0доп — Iоткл.н).

Одновременно происходит и снижение теплового импульса тока КЗ за реактором Вдоп, что благоприятно для выбора сечения кабелей по условиям термической стойкости и невозгорания. При определении Iп0доп и Вдоп следует учитывать, что реактор не в состоянии ограничить подпитку точки КЗ от двигателей за реактором Iпд0 и ухудшает условия их пуска и самозапуска, т.е.

Расчет токов короткого замыкания (КЗ), пример, методические пособия

где Iпс – периодическая составляющая тока подпитки точки КЗ от ветви, в которую предполагается включить реактор;

Iпд0 – ток подпитки от двигателей за реактором.
Потеря напряжения U в одинарном реакторе при протекании токов рабочего режима I:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Сопротивление эквивалентного двигателя на каждой секции определяется через его мощность или через коэффициент загрузки Кзгр и номинальную мощность трансформатора СН. При отсутствии токоограничивающего секционного реактора и использовании на первой ступени трансформатора с расщепленными обмотками имеем:

Читайте также:  Трансформаторы тока принцип действия области применения

Расчет токов короткого замыкания (КЗ), пример, методические пособия

В случае различия расчетных мощностей двигательной нагрузки Sд1, Sд2, в дальнейшем расчете сопротивления эквивалентного двигателя будет участвовать максимальная из них, вне зависимости от способа питания секций 6,3 кВ (от рабочего и резервного ТСН).

При использовании секционного токоограничивающего реактора определяется его проходная мощность Sр по формуле (2.12) и далее – мощности двигателей:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

при использовании РТСН для замены рабочего ТСН энергоблока, работающего на мощности. Наличие предварительной нагрузки РТСН характерно для блоков генератор-трансформатор без генераторных выключателей. При наличии выключателя в цепи генераторного токопровода, что предусмотрено действующими нормами технологического проектирования, пуск и останов энергоблока обычно осуществляется от рабочего ТСН и надобности в использовании РТСН в этих режимах не возникает. Поэтому для схем с генераторными выключателями можно принимать ТСН згр к = РТСН згр к = 0,7. При отсутствии выключателей в цепи генераторного токопровода РТСН згр к возрастает.

Наличие секционного токоограничивающего реактора приводит к изменению распределения двигателей по сравнению с вариантом без реактора и к изменению доли подпитки ими точек КЗ до и после реактора. При КЗ в точке К2 не следует учитывать подпитку от двигателей, включенных до реактора, а при КЗ в точке К1 не следует учитывать подпитку от двигателей, включенных за реактором.

По вычисленным мощностям двигателей Sд определяют приведенные сопротивления двигательной нагрузки в вариантах при отсутствии реактора и при его наличии:

Источник

Расчет токов короткого замыкания

Дата25 марта 2015 Авторk-igor

Сегодня хочу вашему вниманию представить методику расчета токов короткого замыкания. Самое главное без всякой воды и каждый из вас сможет ей воспользоваться, приложив минимум усилий, а некоторые из вас получат и мою очередную программу, с которой считать будет еще проще.

Это уже вторая статья, посвященная токам короткого замыкания. В первой статье я обратил ваше внимание на защиту протяженных электрических сетей и то, что в таких сетях, порой, не так просто подобрать защиту от токов короткого замыкания. Для того и проектировщик, чтобы решать подобные вопросы.

Теорию по расчету токов короткого замыкания можно найти в следующих документах:

2 РД 153-34.0-20.527-98 (Руководящие указания по расчету токов короткого замыкания и выбору элетрооборудования).

3 А.В. Беляев (Выбор аппаратуры, защит и кабелей в сетях 0,4кВ).

В интернете я не нашел, где все четко было бы расписано от «А» до «Я».

Думаю вы со мной согласитесь, что токи короткого замыкания не так просто рассчитать, поскольку проектировщик не всегда досконально владеет всей необходимой информацией. Данный метод расчета является упрощенным, т.к. в нем не учитываются сопротивления контактов автоматических выключателей, предохранителей, шин, трансформаторов тока.

Возможно, позже все эти сопротивления я учту, но, на мой взгляд, эти значения на конечный результат влияют незначительно.

Последовательность расчета токов короткого замыкания.

1 Сбор исходных данных по трансформатору:

Uкз — напряжение короткого замыкания трансформатора, %;

Рк — потери короткого замыкания трансформатора, кВт;

Uвн – номинальное напряжение обмоток ВН понижающего трансформатора; кВ;

Uнн (Ел) – номинальное напряжение обмоток НН понижающего трансформатора; В;

Еф – фазное напряжение обмоток НН понижающего трансформатора; В;

Sнт – номинальная мощность трансформатора, кВА;

– полное сопротивление понижающего трансформатора током однофазного к.з., мОм;

Активные и индуктивные сопротивления трансформаторов 6(10)/0,4кВ, мОм

Активные и индуктивные сопротивления трансформаторов 6 (10)/0,4кВ, мОм

2 Сбор исходных данных по питающей линии:

Тип, сечение кабеля, количество кабелей;

L – длина линии, м;

Хо – индуктивное сопротивление линии, мОм/м;

Zпт – полное сопротивление петли фаза-ноль от трансформатора до точки к.з., измеренное при испытаниях или найденное из расчета, мОм/м;

Полное удельное сопротивление петли фаза-ноль для кабелей или пучка проводов

Полное удельное сопротивление петли фаза-ноль для кабелей или пучка проводов

3 Другие данные.

Куд – ударный коэффициент.

Ударный коэффициент

После сбора исходных можно приступить непосредственно к вычислениям.

Активное сопротивление понижающего трансформатора, мОм:

Активное сопротивление понижающего трансформатора

Активное сопротивление трансформатора

Индуктивное сопротивление понижающего трансформатора, мОм:

Индуктивное сопротивление трансформатора

Индуктивное сопротивление трансформатора

Активное сопротивление питающей линии, мОм:

Индуктивное сопротивление питающей линии, мОм:

Полное активное сопротивление, мОм:

Полное индуктивное сопротивление, мОм:

Полное сопротивление, мОм:

Полное сопротивление

Ток трехфазного короткого замыкания, кА:

Ток трехфазного короткого замыкания

Ток трехфазного короткого замыкания

Ударный ток трехфазного к.з., кА:

Ударный ток трехфазного к.з.

Ударный ток трехфазного к.з.

Ток однофазного короткого замыкания, кА:

Ток однофазного короткого замыкания

Ток однофазного короткого замыкания

Рассчитав токи короткого замыкания, можно приступать к выбору защитных аппаратов.

По такому принципу я сделал свою новую программу для расчета токов короткого замыкания. При помощи программы все расчеты можно выполнить значительно быстрее и с минимальным риском допущения ошибки, которые могут возникнуть при ручном расчете. Пока это все-таки beta-версия, но тем не менее думаю вполне рабочий вариант программы.

Внешний вид программы:

Программа для расчета токов к.з.

Программа для расчета токов к.з.

Ниже в программе идут все необходимые таблицы для выбора нужных параметров трансформатора и питающей линии.

Также в месте с программой я прилагаю образец своего расчета, чтобы быстро можно было оформить расчет и предоставить всем заинтересованным органам.

Стоит заметить, что у меня появилась еще одна мелкая программа – интерполяция. Удобно, например, находить удельную нагрузку квартир при заданных значениях.

Интерполяция

Жду ваших отзывов, пожеланий, предложений, уточнений.
Продолжение следует. будет еще видеообзор измененной версии.
Нужно ли учитывать сопротивления коммутационных аппаратов при расчете к.з.?

Источник