Меню

Расчет трансформаторов тока для системы

Расчет и выбор трансформаторов тока

Трансформатор тока (ТТ) служит для измерения, преобразования и передачи информации о режиме работы сильноточной цепи высокого напряжения в цепь низкого напряжения. Информация на вторичной стороне используется как для целей измерения мощности при помощи амперметра, ваттметра, качества энергии, так и для системы релейной защиты. Поэтому ТА, как правило, имеют две вторичные обмотки: одну для измерения, другую для защиты. Вторичный ток ТТ имеет нормированные значения: 5 или 1 А. Одной из важнейших характеристик ТТ является класс точности. Установлено 6 классов точности: 0,2; 0,5; 1; 3; 10% соответствующих 100—120% номинального тока.

Трансформаторы тока отличаются от силовых трансформаторов следующими особенностями: работают в условиях близких к короткому замыканию (амперметр является нагрузкой измерительной обмотки ТТ); ток во вторичной цепи не зависит от значения и характера нагрузки (источник тока), а определяется значением и характером изменения первичного тока.

Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика.

К установке на подстанции выбраны два силовых трансформатора 630кВА 10/0,4 кВ, коэффициент загрузки трансформаторов 0,7

Необходимо выполнить учет электроэнергии на силовом трансформаторе 630 кВА, 10/0,4 кВ. Мощность нагрузки трансформатора с учетом в нем потерь, (счетчик устанавливаем на высокой стороне подстанции) изменяется от (253+24,66) кВА (трансформатор Т1) до номинальной 630кВА.

Номинальный ток трансформатора по стороне 0,4 кВ

Расчеты максимальной и минимальной нагрузки приведены в таблице 9.1.

Таблица 9.1 – Расчет нагрузки, тип счетчиков и вид учета

Наименование узлов питания Pсм, кВт Qсм, квар Sсм A Iминi, A Pном, кВт Iмахi, A 1,25* I 1 махi, A Схема включения счетчика, вид учета Тип счетчика АЛЬФА , обозначение на Э3
1.1Склады ЖД 52,8 80,4 0,8 ТТ , технический Wh5 А1800
1.2Освещение ЖД наружное 0,8 0,6 1,5 0,8 8,75 ТТ , коммерческий Wh6 А1800
1.3 Цех раскроя стекла и деталей (1б) 0,8 ТТ , технический Wh4 А1800
1.4Насосная станция 86,6 0,7 ТТ , коммерческий Wh3 А1800
Т1 всего 294,8 245,6 383,7 585,9 0,8 ТТ и ТН , коммерческий Wh1 А1800
2.1 Гараж 5,3 8,7 12,5 0,8 14,4 2,5 Прямое включение технический Wh9 А1800
2.2 Цех сборочный (1а) 0,7 776,3 ТТ , технический Wh11 А1800
2.3 Склад готовой продукции 7,08 9,2 0,7 31,25 ТТ , технический Wh8 Плюс А2
2.4 Котельная 9,5 11.2 14,7 21,3 0,7 48,7 ТТ , технический Wh12 А1800
2.5 Осветительн. установка 0,8 0,6 1,5 0,8 8,8 Прямое включение технический Wh7 Плюс А2
2.6 Управление 12,6 0,9 ТТ , технический Wh10 А1800
2.7 Проходная весовая 1,8 2,1 2,7 0,7 12,5 15,6 Прямое включение технический Wh13 Плюс А2
Т2 всего 247,7 280,3 536,3 0,7 735,5 919,4 ТТ и ТН , коммерческий Wh2 А1800

Рассчитываем при минимальной мощности нагрузки (253+24,66) кВА аналогично (253+24,66) /(√3∙10)= 16 А

Выбираем ТТ типа ТК-20 класса точности 0,5, для которого максимальное значение тока в первичной обмотке 50А, а во вторичной 5А. Ток во вторичной цепи (при коэффициенте трансформации nт = 50: 5= 10) составит

Iмах подст = I1/n т = 36,5/10 = 3, 7А. 3, 7 х100/5=73%> 40%

Определяем максимальный и минимальный ток на каждое присоединение со стороны низкого напряжения по формулам

, ,

где соsφ — коэффициент мощности соответствующего присоединения,

для цеха раскроя стекла

, (6.8)

Sсм = =245кВА

Увеличиваем расчетный максимальный ток. Выбираем ТТ типа ТК-20 для которого максимальное значение тока в первичной обмотке 600А, а во вторичной 5А. Ток во вторичной цепи (при коэффициенте трансформации nт = 600: 5= 120) составит

I1мах = I1/n т = 400 /120 = 3,3 А. 3,3 х100/5=67%> 40%

Аналогично рассчитываем и выбираем ТТ для каждого присоединения, и результаты приводим в таблице 5.3.

Трансформаторы тока выбраны правильно, так как I2 > Iн счетчика. Сечение жил проводов или кабелей от трансформаторов тока до счетчиков должно быть не менее: медных — 2,5, алюминиевых — 4 мм 2 . Максимальное сечение жил проводов и кабелей, которые возможно подключить к клеммам счетчика, не должно превышать 10 мм 2 .

До приборов учета, смонтированных на вводе, должны быть установлены отключающие аппараты, а после приборов учета — аппараты, обеспечивающие разрыв цепи со стороны распределительных сборок или их группы. Амперметры устанавливают в одной фазе. Три амперметра предусматривают только в тех цепях, где возможна не симметричная нагрузка фаз приемников (освещение, сварочные посты, конденсаторные батареи).

Таблица 9.2 — Расчет и проверка трансформаторов тока

Наименование Iмин, А Iмах, А Тип ТТ Iмах ТТ,А nт Iмин > 5% Iмах>40%
1.1Склады ЖД 80,4 ТК-20
1.2 Освещение ЖД подъезда и путей наружное 1,5
1.3 Цех раскроя стекла и деталей (1б) ТК-20
1.4 Насосная станция ТК-20 83,5
Т1 всего 585,9 ТК-20
2.8 Гараж 12,5
2.9 Цех сборочный (1а) ТК-20
2.10 Склад готовой продукции ТК-20
2.11 Котельная 21,3 ТК-20
2.12 Осветительная нагрузка основных помещ 1,5
2.13 Управление ТК-20
2.14Проходнвая(весовая)
Т2 всего 536,3 919,4 ТК-20

Амперметры включают непосредственно в сеть или через трансформаторы тока.

Для коммерческого учета необходимо поставить трансформаторы тока с классом точности не больше 0,5S

Источник

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Читайте также:  Минимальный ток короткого замыкания в случае параллельного соединения линий

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник



Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

  • Как пользоваться онлайн калькулятором для расчета трансформатора пошагово
    • Подготовка исходных данных за 6 простых шагов
    • Выполнение онлайн расчета трансформатора
  • Как рассчитать силовой трансформатор по формулам за 5 этапов
    • Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
    • Особенности вычисления коэффициента трансформации и токов внутри обмоток
    • Как вычислить диаметры медного провода для каждой обмотки
    • Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
    • Учет свободного места внутри окна магнитопровода
  • 4 практических совета по наладке и сборке трансформатора: личный опыт

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

Читайте также:  Переменный ток как гармоническое колебание

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ватты Коэффициент полезного действия ŋ
15÷50 0,50÷0,80
50÷150 0,80÷0,90
150÷300 0,90÷0,93
300÷1000 0,93÷0,95
>1000 0.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Сердечники трансформаторов

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

Коэффициент трансформации трансформатора

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Расчет диаметра провода

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

Расчет числа витков трансформатора

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.

Источник

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Для контроля за режимом работы электроприемников, а также для производства денежного расчета с энергоснабжающей организацией применяются контрольно-измерительные приборы на подстанциях, присоединяемые к цепям высокого напряжения через измерительные трансформаторы тока и напряжения.

  1. Выбор трансформаторов тока
  2. Классы точности трансформаторов тока
  3. Выбора трансформаторов напряжения
  4. Условия выбора трансформаторов напряжения
  5. Надежность измерительных трансформаторов напряжения в сетях с изолированной нейтралью

Выбор трансформаторов тока

Трансформаторы тока выбираются по номинальному напряжению, номинальному первичному току и проверяются по электродинамической и термической стойкости к токам короткого замыкания. Особенностью выбора трансформаторов тока является выбор по классу точности и проверка на допустимую нагрузку вторичной цепи.

Классы точности трансформаторов тока

  • Трансформаторы тока для присоединения счетчиков, по которым ведутся денежные расчеты, должны иметь класс точности 0,5.
  • Для технического учета допускается применение трансформаторов тока класса точности 1;
  • Для включения указывающих электроизмерительных приборов — не ниже 3;
  • Для релейной защиты — класса 10(Р).

Чтобы погрешность трансформатора тока не превысила допустимую для данного класса точности, вторичная нагрузка Z2 не должна превышать номинальную нагрузку Z2ном, задаваемую в каталогах.

Индуктивное сопротивление таковых цепей невелико, поэтому принимают Z2р = г2р. Вторичная нагрузка г2 состоит из сопротивления приборов г приб, соединительных проводов гпр и переходного сопротивления контактов гк:

Читайте также:  Почему переменный ток более опасен чем постоянный

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Для определения сопротивления приборов, питающихся от трансформаторов тока, необходимо составить таблицу — перечень электроизмерительных приборов, устанавливаемых в данном присоединении.

Суммарное сопротивление приборов, Ом, рассчитывается посуммарной мощности:

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

В РУ 6—10 кВ применяются трансформаторы с /2ном = 5А; в РУ 110 — 220 кВ — 1 или 5 А. Сопротивление контактов ГК принимают 0,05 Ом при двухтрех приборах и 0,10 — при большем количестве приборов. Сопротивление проводов рассчитывается по их сечению и длине. Для алюминиевых проводов минимальное сечение — 4 мм2; для медных — 2,5 мм2.

Расчетная длина провода зависит от схемы соединения трансформатора тока и расстояния l от трансформатора до приборов:

  • при включении трансформаторов тока в неполную звезду;
  • 21 — при включении всех приборов в одну фазу;
  • l — при включении трансформаторов тока в полную звезду.

При этом длина l может быть принята ориентировочно для РУ 6—10 к В:

  • при установке приборов в шкафах КРУ / = 4… 6 м;
  • на щите управления /= 30…40 м;
  • для РУ 35 кВ / = 45…60 м;
  • для РУ ПО — 220 кВ/ = 65…80 м.

Если при принятом сечении провода вторичное сопротивление цепи трансформаторов тока окажется больше ZHOU для заданного класса точности, то необходимо определить требуемое сечение проводов с учетом допустимого сопротивления вторичной цепи:

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

где р — удельное сопротивление.

Полученное сечение округляется до большего стандартного сечения контрольных кабелей: 2,5; 4; 6; 10 мм2.

Условия выбора трансформатора тока приведены в табл. 7.5. Дополнительно могут быть заданы: КТН = 1т.тн/УР21ном — кратность тока динамической стойкости трансформатора тока; КТ = /Т//|„ОМ — кратность тока термической стойкости; /i„OM — номинальный ток первичной обмотки трансформатора тока.

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Выбора трансформаторов напряжения

Трансформаторы напряжения, предназначенные для питания катушек напряжения измерительных приборов и реле, устанавливают на каждой секции сборных шин. Их выбирают по форме исполнения, конструкции и схеме соединения обмоток, номинальному напряжению, классу точности и вторичной нагрузке.

Условия выбора трансформаторов напряжения

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

  • конструкция, схема соединения;
  • соблюдение условия Uc.ном = U1ном (где Uc.ном— номинальное напряжение сети, к которой присоединяется трансформатор напряжения, кВ;
  • U1.ном— номинальное напряжение первичной обмотки трансформатора, кВ);
  • класс точности;
  • соблюдение условия S2 рас

При определении вторичной нагрузки сопротивление соединительных проводов не учитывается, так как оно мало. Однако ПУЭ требует оценить потерю напряжения, которая в проводах от трансформаторов к счетчикам не должна превышать 0,5 %, а в проводах к щитовым измерительным приборам — 3 %. Сечение провода, выбранное по механической прочности, как правило, отвечает требованиям потерь напряжения.

Выбор типа трансформатора напряжения определяется его назначением. Если от ТН получают питание расчетные счетчики, то целесообразно использовать на напряжениях 6, 10, 35 кВ два однофазных трансформатора типа НОМ или НОЛ, соединенных по схеме открытого неполного треугольника.

Два однофазных ТН обладают большей мощностью, чем один трехфазный, а по стоимости на напряжения 6 и 10 кВ они примерно равноценны. Если одновременно с измерением необходимо производить контроль изоляции в сетях 6—10 кВ, то устанавливают трехфазные трехобмоточные пятистержневые трансформаторы напряжения серии НТМИ или группу из трех однофазных трансформаторов серии ЗНОМ или ЗНОУТ, если мощность НТМИ недостаточна.

При использовании трех однофазных трансформаторов, соединенных в звезду, нейтральная точка обмотки высокого напряжения ТН должна быть заземлена для правильной работы приборов контроля состояния изоляции

Для напряжения 110 кВ и выше применяют каскадные трансформаторы НКФ.

Надежность измерительных трансформаторов напряжения в сетях с изолированной нейтралью

Электрические сети 6-35 кВ Украины и стран СНГ выполнены с изолированной нейтралью. Эти сети при определенных токах замыкания на землю (для Uн=35 кВ – 10 А; Uн=10 кВ – 20 А; Uн=6 кВ – 30 А) должны иметь, как правило, реакторную или резистивную компенсацию нейтрали.

надежность трансформаторов тока

Основным преимуществом сетей с изолированной нейтралью является возможность обеспечивать длительное время потребителей электроэнергией даже при наличии «земли» в сети без их отключения. В то же время одним из основных недостатков является опасность возникновения (при малых токах замыкания на землю, равных 0,5-3,5 А) феррорезонансных процессов с последующим повреждением электромагнитных трансформаторов напряжения (ТН).

Феррорезонансные процессы (ФРП) в таких сетях, как показывает опыт эксплуатации и исследования, проведенные учеными «Львовской политехники», возникают во время появления и обрыва «земли» в сети (срабатывание разрядников, касание ветвями деревьев, обрыв троса фаз ЛЭП, стекание капель росы по изоляторам, особенно загрязненным, некоторым коммутационным переключениям, приводящим к изменению емкости в сети и т.д.).

В большинстве случаев эти ФРП проходят при частотах 17 и 25 Гц и сопровождаются протеканием через первичную обмотку ТН сверхтоков, которые на порядок и больше превышают допустимые для ТН токи, из-за чего первичные обмотки перегорают в течение нескольких минут. В эксплуатации имеют место случаи, когда первоначально по два-три раза (после замены) перегорает высоковольтный предохранитель 35 кВ, рассчитанный на номинальный ток срабатывания 2 А (это при том, что допустимый ток первичной обмотки ТН не превышает 60 мА), при этом повреждается ТН. Таким образом, имеют место неоднократные протекания больших токов через об-мотку ТН сверх допустимых, которые постепенно, за счет перегрева внутренних слоев, приводят к разложению изоляции и повреждению ТН.

В настоящее время, если судить по публикациям российских журналов, проводится большая работа по защите ТН от их повреждений в сетях.

Однако каждый из предлагаемых методов имеет свои недостатки и не в состоянии полностью решить проблему защиты ТН от воздействия ФРП. Кроме того, отсутствует возможность фиксации появления ФРП на участке сети с ТН.

С этой точки зрения наиболее эффективным способом подавления (а главное фиксацией времени и длительности) ФРП является устройство подавления резонанса (УПР), разработанное на кафедре электрических сетей «Львовской политехники», типа ПЗФ-5 (рис. 1, 2).

надежность трансформаторов тока

При возникновении феррорезонанса на выводах обмотки «разомкнутого треугольника» трехфазного ТН (или группы трех однофазных ТН) возникает напряжение нулевой последовательности 3U0 ? 100 В с субгармонической частотой (чаще всего 20-25 Гц).

После появления напряжения с субгармонической частотой устройство ПЗФ-5 с заданной задержкой времени однократно подключает к выводам обмотки «разомкнутого треугольника» резистор 5-6 Ом на время, заданное для гашения ФРП. Подключенный резистор обеспечивает срыв (погашение) феррорезонансных колебаний в течение t ?0,3 с, что исключает возможность термического повреждения обмоток ВН ТН феррорезонансными процессами.

У устройства ПЗФ-5 предусмотрено однократное его включение на заданное время с повторной готовностью к срабатыванию через заданное время. При длительном феррорезонансе предусмотрено повторное однократное срабатывание устройства с последующим запретом (блокированием) импульса гашения вплоть до ликвидации феррорезонанса, после чего устройство снова будет готово к работе. Это обеспечивает термическую стойкость резистора при многократных частых пусках устройства (например, при перемежающей дуге, частыми замыканиями на землю проводов сети ветками деревьев, порывами ветра и т.д.). Устройство формирует архив и отражает на дисплее 5 последних режимов феррорезонанса (срабатываний устройства). В «архиве аварий» устройства накапливается информация о дате и времени возникавших аварийных состояний, что дает эксплуатационным службам дополнительную информацию о состоянии сети в том или ином режиме. По анализу «архива» появляется возможность принять меры по повышению надежности сети в целом.

В настоящее время в системах установлено около 60 УПР. В сетях, где они установлены, информации о повреждениях ТН и неправильной работе ПЗФ не поступало.

Устройство представляет собой металлический ящик размерами 240х185х80 мм, к которому подводится питание ТН 100 В, 50 Гц и напряжение 3U0 от «разомкнутого треугольника», по которому и определяется наличие резонанса в сети. Устройство потребляет не более 10 ВА, устанавливается на панели релейной защиты и может работать при температуре окружающей среды от -55 0С до +60 0С. УПР ПЗФ-5 имеет кнопки вызова – ввода информации (с контролем информации по цифровому индикатору), проверки исправности (тестирования), а также контакты для запуска реле сигнализации при срабатывании (пуске) защиты или потере питания. Масса устройства 3 кг (рис. 3).

Прибор типа ПЗФ-5 обеспечивает защиту трансформатора напряжения от повреждения при феррорезонансных процессах. Вместе с этим нужно учитывать, что ПЗФ-5 может защитить ТН от повреждения только в том случае, если не менее 60% ТН в электрически связанной сети будет оборудовано устройством защиты от ФРП. Наиболее благоприятными условиями для предотвращения ФРП является оборудование такими устройствами 80-90% ТН в электрически связанной сети. Это необходимо потому, что вывод в ремонт одного ТН, оборудованного устройством ПЗФ, приведет к уменьшению общего процента оборудованных ТН, и условия для предотвращения ФРП соответственно ухудшатся.Разработчики и изготовители ТН, так же как и эксплуатационники, заинтересованы в безаварийной работе ТН и было бы целесообразно провести проверку работы устройства ПЗФ-5 в наиболее проблемных сетях, обобщить опыт работы и на его основе принять окончательное решение о целесообразности применения ПЗФ-5.

Источник