Меню

Расчет емкостных токов в сетях 6 35 кв

Расчет емкостного тока сети

В электротехнике существует такое понятие как емкостный ток, более известный в качестве емкостного тока замыкания на землю в электрических сетях. Данное явление возникает при повреждении фазы, в результате чего возникает так называемая заземляющая дуга. Для того чтобы избежать серьезных негативных последствий, необходимо своевременно и правильно выполнять расчет емкостного тока сети. Это позволит уменьшить перенапряжение в случае повторного зажигания дуги и создаст условия для ее самостоятельного угасания.

Что такое емкостный ток

Емкостный ток возникает как правило на линиях с большой протяженностью. В этом случае земля и проводники работают аналогично обкладкам конденсатора, способствуя появлению определенной емкости. Поскольку напряжение в ЛЭП обладает переменными характеристиками, это может послужить толчком к его появлению. В кабельных линиях, напряжением 6-10 киловольт, его значение может составить 8-10 ампер на 1 км протяженности.

Расчет емкостного тока сети

В случае отключения линии, находящейся в ненагруженном состоянии, величина емкостного тока может достигнуть нескольких десятков и даже сотен ампер. В процессе отключения, когда наступает момент перехода тока через нулевое значение, напряжение на расходящихся контактах будет отсутствовать. Однако, в следующий момент вполне возможно образование электрической дуги.

Если значение емкостного тока не превышает 30 ампер, это не приводит к каким-либо серьезным повреждениям оборудования в зоне опасных перенапряжений и замыканий на землю. Электрическая дуга, появляющаяся на месте повреждения, достаточно быстро гаснет с одновременным появлением устойчивого замыкания на землю. Все изменения емкостного тока происходят вдоль электрической линии, в направлении от конца к началу. Величина этих изменений будет пропорциональна длине линии.

Для того чтобы уменьшить ток замыкания на землю, в сетях, напряжением от 6 до 35 киловольт, осуществляется компенсация емкостного тока. Это позволяет снизить скорость восстановления напряжения на поврежденной фазе после гашения дуги. Кроме того, снижаются перенапряжения в случае повторных зажиганий дуги. Компенсация выполняется с применением дугогасящих заземляющих реакторов, имеющих плавную или ступенчатую регулировку индуктивности.

Настройка дугогасящих реакторов выполняется в соответствии с током компенсации, величина которого равна емкостному току замыкания на землю. При настройке допускается использование параметров излишней компенсации, когда индуктивная составляющая тока будет не более 5 ампер, а степень отклонения от основной настройки – 5%.

Выполнение настройки с недостаточной компенсацией допустимо лишь в том случае, когда мощность дугогасящего реактора является недостаточной. Степень расстройки в этом случае не должна превышать 5%. Главным условием такой настройки служит отсутствие напряжения смещения нейтрали, которое может возникнуть при несимметричных емкостях фаз электрической сети – при обрыве проводов, растяжке жил кабеля и т.д.

Для того чтобы заранее предупредить возникновение аварийных ситуаций и принять соответствующие меры, необходимо рассчитать емкостный ток на определенном участке. Существуют специальные методики, позволяющие получить точные результаты.

Пример расчета емкостного тока сети

Значение емкостного тока, возникающего в процессе замыкания фазы на землю, определяется лишь величиной емкостного сопротивления сети. По сравнению с индуктивными и активными сопротивлениями, емкостное сопротивление обладает более высокими показателями. Поэтому первые два вида сопротивлений при расчетах не учитываются.

Образование емкостного тока удобнее всего рассматривать на примере трехфазной сети, где в фазе А произошло обычное замыкание. В этом случае величина токов в остальных фазах В и С рассчитывается с помощью следующих формул:

Модули токов в этих фазах Iв и Iс, учитывая определенные допущения С = СА = СВ = СС и U = UА = UВ = UС можно вычислить при помощи еще одной формулы: Значение тока в земле состоит из геометрической суммы токов фаз В и С. Формула целиком будет выглядеть следующим образом: При проведении практических расчетов величина тока замыкания на землю может быть определена приблизительно по формуле: , где Uср.ном. – является фазным средненоминальным напряжением ступени, N – коэффициент, а l представляет собой суммарную длину воздушных и кабельных линий, имеющих электрическую связь с точкой замыкания на землю (км). Оценка, полученная с помощью такого расчета, указывает на независимость величины тока от места замыкания. Данная величина определяется общей протяженностью всех линий сети.

Как компенсировать емкостные токи замыкания на землю

Работа электрических сетей, напряжением от 6 до 10 киловольт, осуществляется с изолированной или заземленной нейтралью, в зависимости от силы тока замыкания на землю. Во всех случаях в схему включаются дугогасящие катушки. Нейтраль заземляется с помощью дугогасящих катушек, для того чтобы компенсировать токи замыкания на землю. Когда возникает однофазное замыкание на землю, работа всех электроприемников продолжается в нормальном режиме, а электроснабжение потребителей не прерывается.

Значительная протяженность городских кабельных сетей приводит к образованию в них большой емкости, поскольку каждый кабель является своеобразным конденсатором. В результате, однофазное замыкание в подобных сетях, может привести к увеличению тока на месте повреждения до нескольких десятков, а в некоторых случаях – и сотен ампер. Воздействие этих токов приводит к быстрому разрушению изоляции кабеля. Из-за этого, в дальнейшем, однофазное замыкание становится двух- или трехфазным, вызывая отключение участка и прерывая электроснабжение потребителей. В самом начале возникает неустойчивая дуга, постепенно превращающаяся в постоянное замыкание на землю.

Когда ток переходит через нулевое значение, дуга сначала пропадает, а затем появляется вновь. Одновременно на неповрежденных фазах возникает повышение напряжения, которое может привести к нарушению изоляции на других участках. Для погашения дуги в поврежденном месте, необходимо выполнить специальные мероприятия по компенсации емкостного тока. С этой целью к нулевой точке сети подключается индуктивная заземляющая дугогасящая катушка.

Схема включения дугогасящей катушки, изображенная на рисунке, состоит из заземляющего трансформатора (1), выключателя (2), сигнальной обмотки напряжения с вольтметром (3), дугогасящей катушки (4), трансформатора тока (5), амперметра (6), токового реле (7), звуковой и световой сигнализации (8).

Конструкция катушки состоит из обмотки с железным сердечником, помещенной в кожух, наполненный маслом. На главной обмотке имеются ответвления, соответствующие пяти значениям тока для возможности регулировки индуктивного тока. Один из выводов включается в нулевую точку обмотки трансформатора, соединенной звездой. В некоторых случаях может использоваться специальный заземляющий трансформатор, а соединение вывода главной обмотки осуществляется с землей.

Читайте также:  Может ли ударить током через резиновые перчатки

Таким образом, для обеспечения безопасности выполняется не только расчет емкостного тока, но и проводятся мероприятия по его компенсации с помощью специальных устройств. В целом это дает хорошие результаты и обеспечивает безопасную эксплуатацию электрических сетей.

Источник

Расчет емкостного тока замыкания на землю в сети с изолированной нейтралью

Сети напряжением 6-35 кВ работают преимущественно в режиме с изолированной нейтралью. В нормальном режиме по фазным проводам такой сети протекают токи нагрузки, а также емкостные токи и токи утечки.

Сеть с изолированной нейтралью в нормальном режиме

Емкостные токи обусловлены емкостью фаз относительно земли, а токи утечки – активной проводимостью изоляции. По сравнению с емкостными токами, токи утечки малы и составляют 2-6% емкостных, поэтому при расчетах ими можно пренебречь.

При замыкании на землю одной фазы, например фазы “С”, напряжение нейтрали Un становится равным напряжению поврежденной фазы. Соответсвенно меняется картина распределения токов.

Так как в результате повреждения емкость фазы “С” становится зашунтированной, напряжение Ucn=0 (если пренебречь падением напряжения на продольном сопротивлении ЛЭП), емкостной ток, обусловленный емкостью С становится равным нулю.

При этом по поврежденной фазе «С» будет протекать емкостной ток замыкания на землю, равный емкостному току неповрежденных фаз

Знак “-“ говорит от том, что ток направлен в противоположную сторону, то есть к источнику питания, а не от него.

Сеть с изолированной нейтралью при КЗ

Для определения уставок срабатывания токовой защиты от замыкания на землю, необходимости компенсации емкостных токов замыкания на землю, необходимо уметь определять ток замыкания на землю линии.

Расчет емкостного тока замыкания на землю кабельной линии

Для определения емкостного тока замыкания на землю кабельной линии необходимо знать значение емкости жилы кабеля относительно его оболочки С

Частичные емкости трехжильных кабелей с поясной изоляцией

С –емкость жилы на оболочку

Согласно [1] емкость жилы кабеля относительно оболочки С характеризует работу трехфазной кабельной линии при замыкании на землю и служит для подсчета емкостного тока замыкания на землю.

Емкостной ток замыкания на землю кабельной линии определяется по формуле [1, 2]:

где: ω = 2 · π · f – угловая частота напряжения сети, с -1 (при частоте сети f=50 Гц, ω=314);
С — емкость жилы кабеля относительно оболочки, приводится в справочных данных завода-изготовителя кабельной продукции, мкФ/км.
Uф – фазное напряжение сети, кВ.

Расчет емкостного тока замыкания на землю воздушной линии

Емкостной ток ВЛ может быть приближенно определен по формуле [3]:

где: U – напряжение сети, кВ (6, 10 или 35 кВ);
l – длина линии, км.

Для линий 6-10 кВ, а также линий 35 кВ без тросов принимается коэффициент 2,7; для линий 35 кВ на деревянных опорах с тросами – 3,3; на металлических опорах с тросами – 3,0.

Емкостный ток двухцепной линии может быть определен по формуле:

где: Iс.вл – емкостный ток одноцепной ВЛ, А

Увеличение емкостного тока сети за счет емкости оборудования подстанций может ориентировочно оцениваться для воздушных и кабельных сетей 6-10 кВ – на 10%, для воздушных сетей 35 кВ – на 12%.

Для кабельных сетей 35 кВ увеличение емкостного тока за счет оборудования подстанций учитывать не следует.

Недостаточная точность аналитического метода определения емкостных токов замыкания на землю и напряжений несимметрии реальных воздушных линий электропередачи определяет применение расчетов только для предварительной оценки параметров проектируемых сетей, а также перед прямыми их измерениями.

Справочные данные по емкостным токам однофазного замыкания на землю кабельных линий

Ниже приведены некоторые данные с каталогов заводов-изготовителей кабельной продукции и различной литературы.

Завод Южкабель, кабели из сшитого полиэтилена [4]

Кабели из сшитого полиэтилена Nexans [5]

Емкостные токи кабельных линий согласно СТП 09110.20.187-09. Методические указания по заземлению нейтрали сетей 6-35 кВ через резистор [3]

Таблица Г.1 – Емкостные токи замыкания на землю кабелей с секторными жилами и поясной изоляцией

Сечение, мм 2 Ток замыкания на землю, А/км
Кабели 6 кВ Кабели 10 кВ
16 0,37 0,52
25 0,46 0,62
35 0,52 0,69
50 0,59 0,77
70 0,71 0,90
95 0,82 1,00
120 0,89 1,10
150 1,10 1,30
185 1,20 1,40
240 1,30 1,60
300 1,50 1,80

Таблица Г.2 – Емкостные токи замыкания на землю кабелей с бумажной пропитанной изоляцией

Сечение, мм 2 Ток замыкания на землю, А/км
Кабели 20 кВ Кабели 35 кВ
25 2,0
35 2,2
50 2,5
70 2,8 3,7
95 3,1 4,1
120 3,4 4,4
150 3,7 4,8
185 4,0 5,2

Таблица Г.3 – Емкостные токи замыкания на землю кабелей с пластмассовой изоляцией

Сечение, мм 2 Ток замыкания на землю, А/км
Кабели 6 кВ Кабели 10 кВ Кабели 35 кВ
25 0,55 1,90 3,30
35 0,60 2,10 3,60
50 0,65 2,30 3,90
70 0,70 2,60 4,50
95 0,75 2,90 4,80
120 0,85 3,20 5,40
150 0,9 3,40 5,70
185 1,00 3,80 6,30
240 1,00 4,50 6,90
300 5,00 7,50
400 5,60 8,10
Примечания:
1) Три жилы кабелей 6кВ имеют общий металлический экран.
2) Каждая жила кабелей 10-35 кВ имеет отдельный металлический экран.

Таблица Г.4 – Емкость кабелей с изоляцией из сшитого полиэтилена

Сечение, мм 2 Ток замыкания на землю, А/км
Кабели 6 кВ Кабели 10 кВ Кабели 35 кВ
50 0,43 0,72 2,53
70 0,49 0,82 2,86
95 0,55 0,91 3,19
120 0,58 0,97 3,41
150 0,64 1,07 3,74
185 0,70 1,16 4,07
240 0,77 1,29 4,51
300 0,85 1,41 4,95
400 0,94 1,57 5,50
500 1,04 1,73 6,05
630 1,15 1,92 6,70
800 1,28 2,14 7,47
  1. Справочник по электрическим установкам высокого напряжения/ Под ред. И.А. Баумштейна, С.А. Бажанова. – 3-е изд., перераб. И доп. –М.: Энергоатомиздат, 1989.
  2. РД 34.20.179. Типовая инструкция по компенсации емкостного тока замыкания на землю в электрических сетях 6-35 кВ.
  3. СТП 09110.20.187-09. Методические указания по заземлению нейтрали сетей 6-35 кВ через резистор.
  4. ЗАО “Завод “Южкабель”. Силовые кабели среднего и высокого напряжения с изоляцией из сшитого полиэтилена.
  5. Кабели силовые с изоляцией из сшитого полиэтилена на напряжение 6–35 кВ Nexans.
  6. Библиотечка электротехника, вып. 11(35). Шуин В.А, Гусенков А.В. Защиты от замыканий на землю в электрических сетях 6-10 кВ. –М.: НТФ «Энергопрогресс».
Читайте также:  Сила тока в лампочке 220в

Автор статьи, инженер-проектировщик систем релейной защиты станций и подстанций

Источник



Усовершенствованный способ измерения емкостной и активной составляющих токов однофазного замыкания на землю в сетях 6 – 35 кВ

Выводы:

1. Обоснованы и программно реализованы алгоритмы расчета активных и реактивных составляющих токов однофазного замыкания и пофазных проводимостей изоляции на землю в сетях 6 ÷ 35 кВ по результатам измерений фазных напряжений в опытах подключения конденсатора между фазой и землей.

2. Разработанный измерительно-вычислительный комплекс надежно апробирован при измерениях токов ОЗЗ и настроек дугогасящих реакторов. Ввиду достигаемой высокой точности расчетов, малых затрат на проведение опытов и отсутствия опасных возмущений в питающей сети он может быть рекомендован к широкому использованию в энергоснабжающих организациях и на промышленных предприятиях.

Литература:

1. Правила технической эксплуатации электрических станций и сетей Российской Федерации. 2003г.

2. Типовая инструкция по компенсации емкостного тока замыкания на землю в электрических сетях 6-35 кВ. РД 34.20.179 (ТИ 34-70-070-87).

3. Анненков В.З. Выравнивание емкостей фаз относительно земли в сетях 35 кВ. Электрические станции, 1966, №12.

4. Цапенко Е.Ф., Случевский Ю.Н. Определение токов однофазного замыкания на землю в сетях с изолированной нейтралью на основании измерений вольтметром. – Изв. Вузов. Энергетика, 1981, № 9, с.101-106.

5. Цапенко Е.Ф. Замыкания на землю в сетях 6-35 кВ. — М.: Энергоатомиздат, 1986. — 128с.:ил.

6. Кузнецов А.А. «Исследование резонансных процессов на высших гармониках в несимметричных режимах работы систем электроснабжения» (Автореферат дисс. канд. техн. наук, СПбГТУ, СПб, 2000, 16 с.).

Авторы:

Л.А.Кучумов, канд. техн. наук, ЗАО «НПФ «ЭНЕРГОСОЮЗ»
А.А.Кузнецов, канд. техн. наук, ЗАО «НПФ «ЭНЕРГОСОЮЗ»

Источник

Пояснительная записка. Компенсация емкостных токов замыкания на землю в сетях 6-35кВ

Пояснительная записка.

Компенсация емкостных токов замыкания на землю в сетях 6-35кВ.

Введение. Самым частым видом повреждения (до 95%) в сетях 6, 10, 35 кВ являются однофазные замыкания на землю (ОЗЗ), сопровождающиеся протеканием через место замыкания емкостного тока и перенапряжениями высокой кратности на элементах сети (двигателях, трансформаторах) в виде высокочастотного переходного процесса. Такие воздействия на сеть приводят в лучшем случае к срабатыванию земляных защит. Отыскание поврежденного присоединения представляется трудоемкой и длительной организационной задачей – поочередное отключение присоединений затягивается на продолжительное время и сопровождается комплексом оперативных переключений для резервирования потребителей. И, как правило, большинство междуфазных замыканий начинается с ОЗЗ. Развитие однофазных замыканий на землю сопровождается разогревом места замыкания, рассеиванию большого количества энергии в месте ОЗЗ и заканчивается отключением потребителя уже защитой МТЗ при переходе ОЗЗ в короткое замыкание. Изменить ситуацию можно применением резонансного заземления нейтрали.

Токи замыкания. При ОЗЗ на землю через место повреждения протекает емкостный ток, обусловленный наличием электрической емкости между фазами сети и землей. Емкость сконцентрирована, в основном, в кабельных линиях, длина которых и определяет общий емкостный ток ОЗЗ (ориентировочно на 1 А емкостного тока приходится 1 км кабеля).

Виды ОЗЗ. Все ОЗЗ делятся на глухие (металлические) и дуговые. Наиболее частым (95% всех ОЗЗ) и наиболее опасным видом ОЗЗ являются дуговые ОЗЗ. Опишем каждый вид ОЗЗ отдельно.

1) с точки зрения уровней перенапряжений на элементах сети наиболее безопасны металлические замыкания на землю (например, падение провода воздушной ЛЭП на землю). В этом случае через место пробоя протекает емкостный ток, не сопровождающийся большими перенапряжениями в виду специфики такого рода ОЗЗ.

2) особенность дуговых ОЗЗ — наличие электрической дуги в месте ОЗЗ, которая является источником высокочастотных колебаний, сопровождающих каждое ОЗЗ.

Способы подавления токов ОЗЗ. Существует два способа подавления токов ОЗЗ.

1) отключение поврежденного присоединения – этот способ ориентирован на ручное либо автоматическое (с использованием средств РЗА) отключение. При этом потребитель в соответствии с категорией переводится на резервное питание или остается без питания. Нет напряжения на поврежденной фазе – нет тока через место пробоя.

2) компенсация емкостного тока в месте замыкания установленным в нейтрали сети реактором, обладающим индуктивными свойствами.

Суть компенсации емкостных токов ОЗЗ. Как было замечено, при замыкании фазы на землю (пробое) через место ОЗЗ протекает емкостный ток. Этот ток при ближайшем рассмотрении обусловлен емкостями двух оставшихся (неповрежденных) фаз, заряженных до линейного напряжения. Токи этих фаз, сдвинутые друг относительно друга на 60 электрических градусов, суммируются в точке повреждения и имеют по величине тройное значение фазного емкостного тока. Отсюда и определяется величина тока ОЗЗ через место повреждения: . Этот емкостный ток можно скомпенсировать индуктивным током дугогасящего реактора (ДГР), установленного в нейтраль сети. При ОЗЗ в сети на нейтрали любого присоединенного к ней трансформатора, обмотки которого соединены в звезду, появляется фазное напряжение, которое, если имеется вывод нейтрали, присоединенный к высоковольтной обмотке реактора L, инициирует индуктивный ток реактора через место пробоя. Этот ток направлен встречно емкостному току ОЗЗ и может его компенсировать при соответствующей настройке реактора (рис. 1)

Рис. 1 Пути прохождения токов ОЗЗ через элементы сети

Необходимость автоматической настройки в резонанс. Для достижения максимальной эффективности ДГР контур, образованный емкостью всей сети и индуктивностью реактора – контур нулевой последовательности сети (КНПС) — должен быть настроен в резонанс на частоте сети 50 Гц. В условиях постоянных переключений в сети (включений/отключений потребителей) емкость сети изменяется, что приводит к необходимости применения плавнорегулируемых ДГР и автоматической системы компенсации емкостных токов ОЗЗ (АСКЕТ). К слову сказать, применяемые в настоящее время ступенчатые реакторы типа ЗРОМ и др. настраиваются вручную, исходя из расчетных данных о емкостных токах сети, и поэтому не обеспечивают резонансной настройки.

Читайте также:  02256 ошибка ауди ток покоя

Принцип действия АСКЕТ. КНПС настраивается в резонанс устройством автоматической регулировки компенсации типа УАРК.101М, работающим на фазовом принципе. На вход УАРК.101М подаются опорный сигнал (линейное напряжение) и сигнал 3Uo с измерительного трансформатора (например, НТМИ). Для правильной и устойчивой работы АСКЕТ необходимо создать искусственную несимметрию в сети, что делается источником возбуждения нейтрали (ИВН) — либо включением высоковольтной конденсаторной батареи в одну из фаз сети, либо установкой специального несимметричного трансформатора типа ТМПС со встроенным ИВН (с возможностью регулирования коэффициента трансформации с дискретностью 1,25 % фазного напряжения). В последнем случае величина напряжения 3Uo в режиме резонанса и устойчивость работы АСКЕТ остаются постоянными при изменении конфигурации сети (см. формулы ниже). В нейтраль этого же трансформатора устанавливается ДГР (например, типа РДМР). Таким образом, АСКЕТ представляется в виде системы ТМПС+РДМР+УАРК.101М.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

О соотношении величин естественной и искусственной несимметрии. В сети с изолированной нейтралью напряжение на разомкнутом треугольнике НТМИ с учетом коэффициента трансформации соответствует напряжению естественной несимметрии. Величина и угол этого напряжения нестабильны и зависят от различных факторов (погодных,…..и т. д.), поэтому для правильной работы АСКЕТ необходимо создать более стабильный сигнал как по величине, так и по фазе. Для этой цели в КНПС вводится источник возбуждения нейтрали (источник искусственной несимметрии). Если использовать терминологию теории автоматического управления, искусственная несимметрия представляет собой полезный сигнал, используемый для управления КНПС, а естественная – помеха, от которой необходимо отстроиться путем выбора величины искусственной несимметрии. В сетях с наличием кабельных линий с емкостным током 10 и более ампер величина естественной несимметрии, как правило, очень мала [2]. П.5.11.11. ПТЭЭСиС [4] ограничивает величину напряжения несимметрии (естественной + искусственной) в сетях, работающих с компенсацией емкостного тока, на уровне 0,75% фазного напряжения, а максимальную степень смещения нейтрали на уровне не выше 15% фазного напряжения. На разомкнутом треугольнике НТМИ эти уровни будут соответствовать значениям 3Uo= 0,75В и 15В. Максимальная степень смещения нейтрали возможна в режиме резонанса (рис.2).

Приведем ниже формулы для расчета напряжения 3Uo в режиме резонанса для двух способов создания искусственной несимметрии:

1) в случае применения конденсатора Co

где — угловая частота сети, 314,16 с-1,

— емкость асимметрирующего конденсатора, Ф,

— предполагаемый ток замыкания на землю, А

— коэффициент трансформации по 3Uo измерительного трансформатора, в сети 6 кВ – 60/ , в сети 10 кВ — 100/ ,

2) в случае применения специального несимметричного трансформатора

где Ксм – переключаемый коэффициент смещения фазы В специального трансформатора.

Из формул видно, что в случае применения конденсатора Co величина 3Uo в точке резонанса зависит от емкостного тока сети ( ), а в случае применения специального несимметричного трансформатора не зависит.

Минимальное значение 3Uo выбирается, исходя из условия надежной работы устройства УАРК.101М, и составляет 5В.

В вышеприведенных формулах не учитывается величина напряжения естественной несимметрии сети ввиду ее небольших значений. Пример суммарного вектора показан на рис. 3 внизу.

Работа при ОЗЗ. Рассмотрим эффективность резонансного заземления нейтрали в двух режимах работы сети: при металлическом однофазном замыкании на землю и дуговом ОЗЗ.

1) Металлическое ОЗЗ. В данном случае происходит минимизация емкостного тока через место замыкания индуктивным током дугогасящего реактора. Нескомпенсированными остаются только активный ток ОЗЗ, который меньше емкостного примерно в 20 раз, а так же ток высокочастотных составляющих.

2) При дуговом ОЗЗ происходит сброс напряжения на поврежденной фазе и его постепенное нарастание в течение 15-20 периодов. Время нарастания напряжения поврежденной фазы зависит от точности настройки в резонанс и состояния изоляции кабельных линий и определяет бестоковую паузу между двумя повторяющимися пробоями, благодаря которой может произойти восстановление изоляционных свойств поврежденного участка (здесь речь идет о так называемом эффекте самоустранения дугового пробоя). Чем точнее КНПС настроен в резонанс и чем выше изоляционные характеристики сети, тем дольше нарастает напряжение на поврежденной фазе, тем больше бестоковая пауза [1,3] (рис. 4). В этом случае не менее 85 % дуговых ОЗЗ переходят в разряд самоустраняющихся и не требуют отыскания поврежденного присоединения.

Рис. 3 Векторы напряжений в резонансно-заземленной сети

Точная автоматическая компенсация емкостного тока ОЗЗ является бесконтактным средством дугогашения и по сравнению с сетями, работающими с изолированной нейтралью, с резистивно-заземленной, с частично компенсируемой, а также с комбинированно заземленной нейтралью имеет следующие преимущества:

уменьшает ток через место повреждения до минимальных значений (в пределе до активных составляющих и высших гармоник), обеспечивает надежное дугогашение (предотвращает длительное воздействие заземляющей дуги) и безопасность при растекании токов в земле;

облегчает требования к заземляющим устройствам;

ограничивает перенапряжения, возникающие при дуговых ОЗЗ, до значений 2,5-2,6 Uф (при степени расстройки компенсации 0-5%), безопасных для изоляции эксплуатируемого оборудования и линий;

значительно снижает скорости восстанавливающихся напряжений на поврежденной фазе, способствует восстановлению диэлектрических свойств места повреждения в сети после каждого погасания перемежающейся заземляющей дуги;

предотвращает набросы реактивной мощности на источники питания при дуговых ОЗЗ, чем сохраняется качество электроэнергии у потребителей;

предотвращает развитие в сети феррорезонансных процессов (в частности, самопроизвольных смещений нейтрали), если выполняются ограничения в отношении применения плавких предохранителей на линиях электропередачи;

исключает ограничения по статической устойчивости при передаче мощности по линиям электропередачи.

При компенсации емкостных токов воздушные и кабельные сети могут длительно работать с замкнувшейся на землю фазой.

1. Лихачев на землю в сетях с изолированной нейтралью и с компенсацией емкостных токов. М.: Энергия, 1971. – 152 с.

2. Обабков адаптивных систем управления резонансными объектами. Киев: Наукова думка, 1993. – 254 с.

3. Способы заземления нейтрали в сетях 6-35 кВ. Точка зрения проектировщика. Новости Электротехники, №2, 2008

4. Правила технической эксплуатации электрических станций и сетей Российской федерации. РД 34.20.501-издание. Москва, 1996.

Рис. 2 Примеры резонансных характеристик КНПС

Рис. 4 Реакция резонансно-заземленной сети на дуговой пробой

Источник