Меню

Разделы электростатика постоянный ток

ЧАСТЬ 3. ЭЛЕКТРОСТАТИКА И ПОСТОЯННЫЙ ТОК

Электростатика – раздел электродинамики, в котором рассматриваются свойства и взаимодействие неподвижных в инерциальной системе отсчета электрически заряженных тел или частиц, обладающих электрическим зарядом.

§30 Электрический заряд. Закон Кулона

Электрический заряд ( q ) – неотъемлемое свойство некоторых элементарных частиц (протонов, электронов и т.д.), определяющее их взаимодействие с внешним электромагнитным полем.

30.1 Свойства электрического заряда

1. Электрический заряд существует в двух видах: положительный и отрицательный. Одноименные заряды отталкиваются, разноименные – притягиваются.

2. Существует минимальный электрический заряд, который называют элементарным. Носитель элементарного отрицательного заряда – электрон, положительного – протон. Заряд элементарных частиц одинаков по величине.

q e = e = 1,6 10 − 19 Кл .

3. Электрический заряд дискретен, т.е. заряд любого тела образуется совокупностью элементарных зарядов и является величиной, кратной е .

q = eN , N = 1 , 2 , 3 K

4. Электрический заряд подчиняется закону сохранения заряда: Алгебраическая сумма зарядов электрически изолированной системы заряженных тел остается величиной постоянной.

q 1 + q 2 +K+ q N = const

5. Электрический заряд инвариантен, т.е. его величина не зависит от того, движется заряд или нет.

30.2 Закон Кулона

Закон, который позволяет найти силу взаимодействия точечных зарядов, установлен экспериментально в 1785 году Ш. Кулоном.

Точечный заряд – это заряженное тело, размерами которого можно пренебречь по сравнению с расстоянием от этого тела до других заряженных тел.

Сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине этих зарядов, обратно пропорциональна квадрату расстояния между ними и зависит от среды, в которой находятся заряды:

Электростатика и постоянный ток

циональности в СИ.

ε 0 = 8,85 10 − 12 Ф м – электрическая постоянная.

ε – диэлектрическая проницаемость – характеристика

среды. Для вакуума ε =1.

Сила направлена по прямой, соединяющей заряды (рис. 30.1).

§ 31 Электрическое поле. Характеристики электрического поля

Электрическое поле – это материальная среда, существующая вокруг заряженных тел и проявляющая себя силовым действием на заряды. Если электрически заряженные тела или частицы неподвижны в данной системе отсчета, то их взаимодействие осуществляется посредством электростатического поля. Электростатическое поле является не изменяющимся во времени (стационарным) электрическим полем.

31.1 Напряженность электрического поля

Для того, чтобы обнаружить и исследовать электрическое поле, используют точечный положительный заряд, который называют пробным – q пр . Если брать разные по величине пробные заряды, то и силы, которые действуют на эти заряды в данной точке поля, будут разными. Однако отношение силы к величине заряда для данной точки поля для всех пробных зарядов будет одним и тем же.

Напряженность электрического поля ( E ) – векторная физическая ве-

личина, силовая характеристика электрического поля, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля:

Источник

Электростатика

Электростатика как раздел электродинамики

В основе большей части явлений природы, знакомых человечеству, лежит взаимодействие, называемое электромагнитным. Лишь земное притяжение, океанские приливы и движение планет имеют в своей основе другое взаимодействие (гравитацию). В основе всех остальных процессов лежит электромагнетизм. Механика, теплоэнергетика, химия, биология – все это проявление различных сторон электромагнитного взаимодействия.

Электромагнетизм изучается в рамках электродинамики. Однако такая широкая сфера действия электромагнитного взаимодействия приводит к необходимости разбиения этой теории на более мелкие разделы. Одним из таких разделов является электростатика – описание явлений, происходящих с покоящимися заряженными телами.

Рис. 1. Электростатика как раздел электродинамики.

Если заряженные тела не движутся, то огромная часть особенностей электромагнитного взаимодействия не проявляется. В первую очередь это относится к магнитным явлениям. Описание только электрических взаимодействий короче, формулы электростатики проще, поэтому изучение электромагнетизма обычно начинают с электростатики.

Основные понятия электростатики

Электрическое поле и заряд

Центральным понятием электростатики является понятие электрического поля и заряда. Поле – это особое свойство материи, проявляющееся в том, что тела, находящиеся в нем, испытывают силовое влияние со стороны других тел. Интенсивность этого влияния может быть различна, и поэтому для ее измерения вводится понятие заряда. Чем больший заряд имеет тело, с тем большей силой оно участвует во взаимодействии с полем. Например, для гравитационного поля в качестве гравитационного заряда выступает масса тела. Чем она больше, тем больше силы гравитации между объектами, обладающими массой.

Точно так же, тела, обладающие электрическим зарядом, взаимодействуют с полем и друг с другом, причем тем сильнее, чем больше заряды.

Два вида электрических зарядов

Наиболее просто сообщить телу заряд можно с помощью трения. Многие тела при взаимном трении приобретают электрические свойства.

Но, в отличие от гравитации, где массы всегда притягиваются друг к другу, в электростатике существуют заряды двух сортов. Условно они названы положительным и отрицательным. Притяжение испытывают заряды разных знаков. Заряды одного знака отталкиваются.

Многие видели, как расческа при расчесывании начинает притягивать мелкие кусочки бумаги. Это происходит потому, что расческа от трения приобретает некоторый заряд. Приближение этого заряда к кусочкам бумаги приводит к тому, что внутри них происходит смещение заряженных частиц (поляризация). Одни частицы притягиваются к расческе, и смещаются ближе к ней. Другие – отталкиваются. Более близкие заряды притягиваются сильнее, чем далекие, равнодействующая сила притяжения оказывается больше, и бумажный кусочек притягивается.

Рис. 2. Притяжение бумаги к расческе.

Закон сохранения электрического заряда

Опыт показывает, что электризация тел не создает заряды в телах, а лишь перераспределяет их. Если тело в результате трения получило электрический заряд, то обязательно существует другое тело, которое тоже получило такой же по величине, но противоположный по знаку заряд (чаще всего, это второе тело, участвовавшее в трении). Данная особенность – это проявление одного из законов сохранения.

Читайте также:  Трансформатор тока нулевой последовательности тзрл 100

В изолированной системе алгебраическая сумма зарядов остается постоянной.

Закон сохранения заряда выполняется даже в случае, когда его носители (элементарные частицы) исчезают, превращаясь в совсем другие частицы. Например, свободный нейтрон, не имеющий заряда, может самопроизвольно превратиться в три совсем других частицы (протон, электрон и антинейтрино), две из которых обладают зарядом. Однако суммарный заряд этих трех частиц по-прежнему останется нулевым.

Закон сохранения заряда

Рис. 3. Закон сохранения заряда.

Что мы узнали?

Электростатика – это раздел физики, изучающий явления, происходящие с покоящимися зарядами. Основными понятиями электростатики является понятие электрического поля и заряда. Это особые свойства материи, проявляющиеся в том, что тела, находящиеся в электрическом поле и имеющие электрический заряд, испытывают силовое влияние со стороны этого поля и других заряженных тел.

Источник



Разделы электростатика постоянный ток

Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q. В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10 –6 Кл), нанокулонами (1 нКл = 10 –9 Кл) и пикокулонами (1 пКл = 10 –12 Кл). Электрический заряд обладает следующими свойствами:

1. Электрический заряд является видом материи.

2. Электрический заряд не зависит от движения частицы и от ее скорости.

3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

4. Существует два рода электрических зарядов, условно названных положительными и отрицательными.

5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом. Его значение:

e = 1,602177·10 –19 Кл ≈ 1,6·10 –19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

Формула Электрический заряд

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е; 1,7е; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

7. Закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q1 и q2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

Закон сохранения электрического заряда

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

Формула Линейная плотность заряда

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

Формула Поверхностная плотность заряда

где: S – площадь поверхности тела. Измеряется в Кл/м 2 .

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

Формула Объёмная плотность заряда

где: V – объем тела. Измеряется в Кл/м 3 .

Обратите внимание на то, что масса электрона равна:

Закон Кулона

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Формула Закон Кулона

где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Читайте также:  Источник переменного тока 19 pr816

Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

Формула Электростатический коэффициент

где: ε = 8,85∙10 –12 Ф/м – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Запомните также два важных определения:

Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε.

Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

Формула Диэлектрическая проницаемость

Электрическое поле и его напряженность

По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не вносит заметного перераспределения исследуемых зарядов. Для количественного определения электрического поля вводится силовая характеристика — напряженность электрического поля E.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на пробный заряд, помещенный в данную точку поля, к величине этого заряда:

Формула Напряжённость электрического поля

Напряженность электрического поля – векторная физическая величина. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд. Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим.

Для наглядного представления электрического поля используют силовые линии. Эти линии проводятся так, чтобы направление вектора напряженности в каждой точке совпадало с направлением касательной к силовой линии. Силовые линии обладают следующими свойствами.

  • Силовые линии электростатического поля никогда не пересекаются.
  • Силовые линии электростатического поля всегда направлены от положительных зарядов к отрицательным.
  • При изображении электрического поля с помощью силовых линий их густота должна быть пропорциональна модулю вектора напряженности поля.
  • Силовые линии начинаются на положительном заряде или бесконечности, а заканчиваются на отрицательном или бесконечности. Густота линий тем больше, чем больше напряжённость.
  • В данной точке пространства может проходить только одна силовая линия, т.к. напряжённость электрического поля в данной точке пространства задаётся однозначно.

Электрическое поле называют однородным, если вектор напряжённости одинаков во всех точках поля. Например, однородное поле создаёт плоский конденсатор – две пластины, заряженные равным по величине и противоположным по знаку зарядом, разделённые слоем диэлектрика, причём расстояние между пластинами много меньше размеров пластин.

Во всех точках однородного поля на заряд q, внесённый в однородное поле с напряжённостью E, действует одинаковая по величине и направлению сила, равная F = Eq. Причём, если заряд q положительный, то направление силы совпадает с направлением вектора напряжённости, а если заряд отрицательный, то вектора силы и напряжённости противоположно направлены.

Силовые линии кулоновских полей положительных и отрицательных точечных зарядов изображены на рисунке:

Силовые линии кулоновских полей

Принцип суперпозиции

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряжённостей электрических полей, создаваемых в той же точке зарядами в отдельности:

Формула Принцип суперпозиции для электрических полей

Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции. В соответствии с законом Кулона, напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю:

Формула Напряженность электрического поля точечного заряда

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
Читайте также:  Один киловатт ток сколько стоит

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

VEDAJ.BY - Архитектура и культура БеларусиDVERIDUB.BY - Двери, лестницы и мебель из массива дуба

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

Источник

Электростатика

Электростатика как раздел электродинамики

В основе большей части явлений природы, знакомых человечеству, лежит взаимодействие, называемое электромагнитным. Лишь земное притяжение, океанские приливы и движение планет имеют в своей основе другое взаимодействие (гравитацию). В основе всех остальных процессов лежит электромагнетизм. Механика, теплоэнергетика, химия, биология – все это проявление различных сторон электромагнитного взаимодействия.

Электромагнетизм изучается в рамках электродинамики. Однако такая широкая сфера действия электромагнитного взаимодействия приводит к необходимости разбиения этой теории на более мелкие разделы. Одним из таких разделов является электростатика – описание явлений, происходящих с покоящимися заряженными телами.

Рис. 1. Электростатика как раздел электродинамики.

Если заряженные тела не движутся, то огромная часть особенностей электромагнитного взаимодействия не проявляется. В первую очередь это относится к магнитным явлениям. Описание только электрических взаимодействий короче, формулы электростатики проще, поэтому изучение электромагнетизма обычно начинают с электростатики.

Основные понятия электростатики

Электрическое поле и заряд

Центральным понятием электростатики является понятие электрического поля и заряда. Поле – это особое свойство материи, проявляющееся в том, что тела, находящиеся в нем, испытывают силовое влияние со стороны других тел. Интенсивность этого влияния может быть различна, и поэтому для ее измерения вводится понятие заряда. Чем больший заряд имеет тело, с тем большей силой оно участвует во взаимодействии с полем. Например, для гравитационного поля в качестве гравитационного заряда выступает масса тела. Чем она больше, тем больше силы гравитации между объектами, обладающими массой.

Точно так же, тела, обладающие электрическим зарядом, взаимодействуют с полем и друг с другом, причем тем сильнее, чем больше заряды.

Два вида электрических зарядов

Наиболее просто сообщить телу заряд можно с помощью трения. Многие тела при взаимном трении приобретают электрические свойства.

Но, в отличие от гравитации, где массы всегда притягиваются друг к другу, в электростатике существуют заряды двух сортов. Условно они названы положительным и отрицательным. Притяжение испытывают заряды разных знаков. Заряды одного знака отталкиваются.

Многие видели, как расческа при расчесывании начинает притягивать мелкие кусочки бумаги. Это происходит потому, что расческа от трения приобретает некоторый заряд. Приближение этого заряда к кусочкам бумаги приводит к тому, что внутри них происходит смещение заряженных частиц (поляризация). Одни частицы притягиваются к расческе, и смещаются ближе к ней. Другие – отталкиваются. Более близкие заряды притягиваются сильнее, чем далекие, равнодействующая сила притяжения оказывается больше, и бумажный кусочек притягивается.

Рис. 2. Притяжение бумаги к расческе.

Закон сохранения электрического заряда

Опыт показывает, что электризация тел не создает заряды в телах, а лишь перераспределяет их. Если тело в результате трения получило электрический заряд, то обязательно существует другое тело, которое тоже получило такой же по величине, но противоположный по знаку заряд (чаще всего, это второе тело, участвовавшее в трении). Данная особенность – это проявление одного из законов сохранения.

В изолированной системе алгебраическая сумма зарядов остается постоянной.

Закон сохранения заряда выполняется даже в случае, когда его носители (элементарные частицы) исчезают, превращаясь в совсем другие частицы. Например, свободный нейтрон, не имеющий заряда, может самопроизвольно превратиться в три совсем других частицы (протон, электрон и антинейтрино), две из которых обладают зарядом. Однако суммарный заряд этих трех частиц по-прежнему останется нулевым.

Закон сохранения заряда

Рис. 3. Закон сохранения заряда.

Что мы узнали?

Электростатика – это раздел физики, изучающий явления, происходящие с покоящимися зарядами. Основными понятиями электростатики является понятие электрического поля и заряда. Это особые свойства материи, проявляющиеся в том, что тела, находящиеся в электрическом поле и имеющие электрический заряд, испытывают силовое влияние со стороны этого поля и других заряженных тел.

Источник