Краткий пост о работе АЭС в маневренном режиме
Часто вижу на Пикабу (да и на других ресурсах) непонимание в вопросах работы атомных станций в режиме постоянного (ну, или почти постоянного) изменения мощности.
Решил кратенько (ну, или как получится, я вообще люблю делать многабукав) рассказать что такое маневренный, что такое базисный режим работы электростанции, зачем оно нам надо и чем это может нам обернуться.
Собственно, начну с краткого и оооочень упрощенного описания работы электросети.
Электричество для многих из нас описывается лишь парой простых состояний — либо оно есть в розетке, либо его нет. На самом деле всё, разумеется, не так просто.
Как мы помним из курса электротехники (да или даже школьной физики) ток в розетках у нас переменный, частотой 50 Гц. Это означает (очень и очень грубо говоря) что электроны у нас в проводе бегают туда-сюда по 50 раз в секунду. Если эти электроны мы пропускаем через электроприборы, потребляющие мощность (чайник, холодильник, да что угодно), то работа, затрачиваемая на перемещение электронов становится больше. Электронам становится «сложнее» двигаться и в итоге мы получаем проседание напряжения и/или частоты в электросети.
Но что именно заставляет двигаться электроны? Ответ прост — генераторы. Причем генератор тоже не может выдавать свою мощность на авось. Все параметры (мощность, частота, напряжение) должны быть такими, чтобы в итоге частота электросети оставалась равной 50 Гц, иначе возможны аварийные режимы и отключения как потребителей, так и генераторов.
Если генераторы ТЭЦ и ГЭЦ, в принципе, могут довольно быстро набрать или снизить нагрузку, то с АЭС возникает сложность.
Мало того, что у АЭС есть довольно-таки жесткие ограничения по ресурсу незаменяемого оборудования (определенное число циклов разогрев/расхолаживание и т.д.). Так еще и физика реактора всегда дает о себе знать. Такая неприятная вещь как ксеноновое отравление и йодная яма (кстати, поделюсь ссылкой на свой же пост) не позволят мощному реактору типа РБМК или ВВЭР быстро, безопасно и без последствий играться с мощностью, подстраиваясь под требования энергосети.
Нет, чисто технически никаких проблем нет. Проблемы все откладываются на будущее — ресурс незаменяемого оборудования будет тратиться сильнее, чем при нормальной эксплуатации. Также самый важный элемент АЭС — топливо — будет испытывать большие тепловые нагрузки, что в итоге может привести к его разгерметизации. Разгерметизация топлива, кстати, не страшна для людей, живущих около АЭС (первый контур у нас замкнут и регулярно чистится), но очень страшна для эксплуатирующей организации — это ведь надо будет менять негерметичное топливо (а оно стоит больших денег!), писать кучу бумаг, в общем, мрак.
Потому в России исторически сложилось так, что АЭС всегда работают в базисном режиме (кроме Билибинской АЭС, но о ней надо будет писать отдельный пост). Базисный режим — означает что АЭС всегда работает на каком-то определенном уровне мощности, и меняет мощность только для того, чтобы перейти на новый уровень и закрепиться на нем. К примеру, на моей родной станции с реактором РБМК-1000 мы обычно работаем на уровнях мощности в 500, 800 и 1000 МВт (электрических).
Для компенсации изменения нагрузки на электросеть (утренние, вечерние пики и т.д.) работают маневренные блоки ГЭС и ТЭЦ, которые в режиме онлайн подстраиваются под нужды электросети.
Резюмируя всё вышенаписанное — работать энергоблоком АЭС в режиме постоянного изменения мощности, при необходимости и должном обосновании безопасности — можно. Но при этом надо готовиться к большему износу оборудования а также небольшим сложностям в управлении реактором.
P.S. Прошу прощения у электриков и электротехников, при желании, можете поступить со мной, как настоящие геологи:)
Многообещающее начало и ничего. Думал вот расскажут чем реально отличаются эти режимы, в чем ограничения, насколько количественно это хуже (ремонт не раз в 20 … Читать ещё
я на ГЭСах специализируюсь, так вот они самые маневренные 🙂 собственно сейчас на Братской ГЭС, 18 агрегатов по 240 МВт, и любой из них (ну кроме агрегатов, ко… Читать ещё
Источник
27. Основные параметры регулирования аэс. Главные регуляторы станции. Способы регулирования мощности станции.
К основным параметрам регулирования относятся:
давление пара во втором контуре;
давление в первом контуре;
уровень в компенсаторе давления;
уровень в парогенераторе;
скорость разогрева-расхолаживания первого контура и компенсатора давления.
Основные системы регулирования управляют мощностью реактора и турбины таким образом, чтобы при желаемом уровне мощности первый и второй контуры работали в энергетическом и материальном балансе.
Системы автоматического регулирования должны обеспечить поддержание основных технологических параметров в допустимых пределах или изменения их по определенному (заданному) закону во всех возможных режимах нормальной эксплуатации и режимах отклонений от нормальных условий эксплуатации без возникновения автоколебаний за счет взаимодействия регуляторов в процессе регулирования.
Должна быть предусмотрена возможность ручного регулирования параметров. При этом переход с автоматического регулирования на ручное и обратно не должен нарушать ход технологического процесса.
Существуют два способа регулирования мощности станции:
электрическая мощность регулируется системой регулирования турбины, а технологические параметры регулируются системой регулирования реактора, т.е. режим следования реактора за турбиной;
мощность реактора регулируется регулятором нейтронной мощности, а технологические параметры регулируются системой регулирования турбины, т.е. режим следования турбины за реактором.
Первый режим используется для нормальной работы на мощности, а второй режим в основном при малых уровнях мощности во время пуска и останова.
28. Система регулирования мощности реактора. Режимы работы. Структура и функции арм-5, ром.
Система регулирования мощности реактора предназначена для работы в следующих режимах:
-программа поддержания постоянного давления в главном паровом коллекторе (режим “Т”);
-программа поддержания постоянной величины плотности нейтронного потока (режим “Н”).
Базовыми режимами работы АРМР и системы управления турбиной являются режим поддержания теплотехнического параметра АРМР – давления пара в ГПК (режим “Т”) и режим поддержания мощности турбины система управления турбиной в соответствии с заданным значением (режим “РМ”), соответственно.
При возникновении требований на переход АРМР из режима “Т” в режим поддержания мощности реактора (режим “Н”) (срабатывание ПЗ, превышение заданного значения нейтронной мощности) АРМР переходит в режим “Н”, при этом и система управления турбиной автоматически переходит в режим поддержания заданного давления пара в ГПК (режим “РД”) после поступления соответствующего сигнала из АРМР. После снятия требований на работу АРМР в режиме “Н” и стабилизации мощности реактора на заданном уровне с учетом погрешности регулирования, АРМР переходит в режим “Т”, что автоматически вызывает переход системы управления турбиной в режим “РМ” после поступления соответствующего сигнала из АРМР.
При одновременном возникновении требований на работу системы управления турбиной в режиме “РД” (поступает сигнал от АРМР о переходе в режим “Н”) и в режиме “РМ” (изменение заданного значения мощности турбогенератора) система управления турбиной остается в режиме “РД”
Все необходимые параметры, управляющие алгоритмы и режимы должны быть определены и уточнены в соответствии с результатами динамических расчетов.
Основными управляемыми и регулируемыми величинами ядерного энергетического блока при нормальных режимах эксплуатации являются: электрическая мощность NЭ, давление пара в контуре Рп, уровень воды в барабане парогенератора hб, температура теплоносителя на входе в реактор θВХ и на выходе из него θВЫХ, плотность потока нейтронов в A3 реактора п.
Рис. 6-3. Структурные схемы регуляторов мощности реакторов ВВЭР.
б — регулятор АРМ-5.
На рис. 6-3,6 показана схема одного канала регулятора АРМ-5, установленного на АЭС Ловииза и намечаемого к установке на ряде других блоков. Сигнал отклонения давления пара второго контура от заданного формируется манометром /, измерительным блоком 2, задатчикам3 и поступает в релейный блок 8, вырабатывающий сигнал на перемещение регулирующих органов. Одновременно на релейный блок 8 через усилитель 7 поступает сигнал от ионизационной камеры 5. Усилитель 7 охвачен отрицательной обратной связью через интегратор 4 и ключ 9, который размыкается при появлении сигнала («больше» или «меньше») на выходе блока 8. Сигналы с блока 8 вместе с сигналами других каналов поступают на мажоритарную схему. В описываемом регуляторе также приближенно реализуется ПИ-закон регулирования давления за счет введения обратной связи через объект и блоки 7 и 4, выполняющие роль реального дифференциатора. При отсутствии отклонения давления медленный дрейф тока камер, как и в предыдущей схеме, не вызывает срабатывания блока 8. Разгрузка реактора при аварийном отключении ГЦН осуществляется самостоятельным регулятором.
Источник