Меню

Регулятор расхода теплоносителя или регулятор перепада давления

Регуляторы давления и расхода

Регулятор температуры прямого действия

Регулятор температуры прямого действия

Регуляторы давления (РД) предназначены для поддержания давления до регулировочного клапана («до себя»), а регуляторы расхода (РР) — для поддержания постоянства расхода воды в отопительной системе (или перепада давления).

Регуляторы давления воды системе отопления рассчитаны на рабочее давление до 1,6 МПа при температуре 150 °С. Расчетная площадь затвора (золотника клапана) подобрана примерно равной эффективной площади сильфона, вследствие чего силы от давления жидкости, действующие на сильфон и золотник клапана, уравновешиваются. Таким образом, на шток подвижной системы регулятора РР действует с одной стороны сила, возникающая от разности давлений за клапаном РГ и в сильфонной камере Ру с другой — сила натяжения пружины. Действие взаимнопротивоположных сил уравновешивается. Регулируемое давление Р1 изменяется натяжением пружины.

Регулятор давления (РД) и расхода (РР)

А — регулятор РР

Б — регулятор РД

В конструктивном отношении регулятор расхода РР (перепада) отличается от рассмотренного выше регулятора давления РД только положением плунжера. В регуляторе давления РД он является “нормально закрытым”, а в регуляторе РР — “нормально открытым”. Номинальный регулируемый перепад давления всех типоразмеров регуляторов РР составляет Р = 0,2 МПа (при среднем расходе для каждого типоразмера). При повышенных расходах воды регулируемый перепад снижается примерно до 0,18 МПа. В связи с этим не рекомендуется в зависимости от величины регулируемого перепада регулятор РР присоединять при Р 0,2 МПа по схеме а, при Р > 0,2 МПа — по схеме б и в.

Схемы присоединения регулятора расхода РР

а — при перепаде давления менее 0,2 МПа;

б — при перепаде давления более 0,2 МПа;

в — то же путем присоединения импульсной линии за дроссельной шайбой;

1 — регулятор давления РР;

2 — импульсная линия;

4 — регулятор давления РД;

6, 7 — дроссельные шайбы диаметром d 1 и d 2 ;

9 — дроссельная шайба на трубопроводе dT

Технические характеристики регуляторов РД и РР

Диаметр дроссельной шайбы d Ш схемы в определяется по формуле:

G — расход, м 3 /ч;

? Н — потери напора, м

Диаметр дроссельных шайб 6, 7 определяют по таблице.

Диаметр дроссельных шайб на импульсной линии регулятора РР

Регулятор РР применяют для регулирования температуры на горячее водоснабжение с биметаллическим датчиком ТРБ, ТМП, а в установках приточной вентиляции — с датчиком ТРБ-В. При работе регулятора в качестве регулирующего клапана его перемещение зависит от величины давления Ру. При снижении Ру до 0 регулятор полностью закрывается, при увеличении Ру до давления перед регулятором Р1 регулятор полностью открывается.

Регулятор УРРД — универсальный регулятор, предназначен для регулирования постоянства расхода давления (“до себя” и “после себя”). Регулятор односильфонный, разгруженный. Он может быть собран по схеме “нормально открыт” или “нормально закрыт”. Регулятор прямого действия состоит из односедельного регулирующего органа, разгруженного сильфонным узлом, и мембранно-пружинного исполнительного механизма. Импульс регулируемого давления подводится: к верхней полости мембранного привода — при регулировании давления “после себя”; к нижней полости — при регулировании давления “до себя”; к обеим полостям мембранного привода — при регулировании перепада (расхода).

2 — сборка золотника при регулировании подпора (давления “до себя”)

3 — сборка золотника при регулировании расхода и давления “после себя”

4 — соединительная шпилька

5 — сильфон разгрузки золотника

6 — дополнительная пружина

7 — штуцер для присоединения второго импульса от шайбы или обратной линии

8 — мембранный сервомотор

11 — штуцер для присоединения импульса давления

13 — настроечный винт

14 — настроечная пружина

Величину регулируемого давления устанавливают за счет напряжения пружины настройки с помощью винта, а также за счет применения пружин различной жесткости. Регулятор может применяться в качестве исполнительного механизма и регулировочного клапана с регулирующим прибором РД-3а (РД-3б) и датчиком температуры ТМП. В качестве регулирующей (рабочей) среды применяют воду давлением 0,1—1 Мпа, температурой до 70 0 С.

Технические характеристики регулятора УРРД

— условное давление регулируемой среды, Мпа — 1,6

— температура регулируемой среды, 0 С — до 180

— пределы настройки, Мпа:

— зона пропорциональности, % от верхнего предела настройки — 12—20

— условный диаметр, мм — 25, 05, 80

— коэффициент пропускной способности Kw , м 3 /ч — 6, 25, 60

— размеры (соответственно H , h , L ), мм

1) при D у = 25 — 650, 400, 160

2) при Dy = 50 — 715 , 471, 230

3) при Dy = 80 — 715, 471, 310

1) при D у = 25 — 28

2) при Dy = 50 — 29

3) при Dy = 80 — 52

Схема сборки и присоединения регулятора УРРД

а — при регулировании давления “до себя”

б — то же “после себя”

в — при регулировании расхода (перепада давлений)

Регулятор давления с грузом и мембранным приводом типа 21ч10нж поддерживает давление за регулятором (“после себя”). Регулятор 21ч12нж поддерживает давление перед регулятором (“до себя”). На рисунке показана сборка регулятора “после себя” (21ч10нж) (при опускании штока клапан закрывается). В регуляторе “до себя” (21 ч 12нж) при опускании штока клапан должен открываться.

Регулятор давления прямого действия типа 21ч10вж и 21ч12нж

5 — мембранная головка

Технические характеристики регуляторов 21ч10нж и 21ч12нж

Величина регулируемого давления определяется площадью мембранной головки и массой груза.

Размеры мембранной головки и масса грузов регуляторов 21ч10нж и 21ч12нж

Подрегулировка давления может быть произведена изменением значения и положения груза. При установке регулятора 21ч10нж импульсную линию, связывающую мембрану с трубопроводом, присоединяют к трубопроводу за регулятором. При установке регулятора 21ч 12нж импульсную линию присоединяют к трубопро­воду до регулятора (по ходу движения воды).

Регуляторы температуры прямого действия типов РТ и РПДП предназначены для регулирования температуры воды, нагреваемой в водонагревателях в период горячего водоснабжения. Регуляторы относятся к регуляторам манометрического типа и состоят из термосистемы и регулирующего клапана с сильфонным приводом. В регуляторе РТ применен сильфон разгрузки, разгружающий подвижную систему регулирующего клапана от действия давления до регулятора.

Регуляторы температуры прямого действия

2 — разгрузочный сильфон

3 — импульсная трубка

4 — сильфонный привод

6 — сильфон настройки

Термосистема (внутренняя полость термобаллона с сильфоном настройки, капилляром и камерой сильфона исполнительного устройства) заполнена толуолом или ксилолом. Регулятор РТ снабжен узлом защиты термосистемы от повышенной температуры в полости термосистемы. Этот узел защиты конструктивно совмещен с узлом настройки. Допускаемая температура перегрузки по отношению к температуре, установленной на шкале настройки, составляет от 25 до 40 0 С в зависимости от типа регулятора.

Читайте также:  Регулятор питания светодиодных лент

Регулятор работает следующим образом: при увеличении регулируемой температуры увеличивается объем жидкости в термосистеме (термобаллон опущен в трубопровод регулируемой горячей воды) и возрастает давление этой жидкости, что приводит к перемещению дна сильфона исполнительного устройства вместе с плунжером, вследствие чего снижается расход горячей воды. Перемещение плунжера происходит пропорционально изменению регулируемой температуры. На требуемую температуру регулятор настраивается за счет изменения объема термосистемы при изменении положения сильфона настройки.

Регулятор температуры прямого действия типа РПДП в отличие от регулятора РТ имеет двухседельный клапан. В системах теплопотребления применяют терморегуляторы с прямой характеристикой, когда при увеличении температуры, регулирующей среды клапан регулирующего органа прикрывается. Регулятор РПДП выпускается отрегулированным на рабочий ход в диапазоне температур, указанном в паспорте регулятора. Дополнительная подрегулировка может быть произведена поджатием пружины, подпирающей сильфонный привод регулятора. Регуляторы РТ и РПДП не являются плотно запорными. Следует иметь в виду, что манометрическая схема чувствительна к перегреву.

Технические характеристики регуляторов температуры прямого действия типов РТ и РПДП

Примечание. Пределы настройки для регуляторов типа РТ: 20—60; 40—80; 60—100; 80—120 и т.д. до 180; для регуляторов РПДП: 30—40; 40—50; 60—70; 70—80 и т.п. до 160 0 С.

Размеры регулятора температуры прямого действия РТ

Регуляторы температуры прямого действия типа РТК-2216-ДП и РТК-216-ТС предназначены для поддержания в заданных пределах температуры воздуха в помещениях жилых, общественных и производственных зданий. Принцип действия основан на изменении объема термочувствительной жидкости в термобаллонах при изменении температуры регулируемой среды. Изменение объема термочувствительной жидкости вызывает перемещение штока исполнительного механизма термосистемы, воздействующего на шток регулирующего клапана, что ведет к изменению проходного сечения регулирующего органа и, следовательно, к изменению расхода регулируемой среды. Регуляторы состоят из жидкостной манометрической системы и регулирующего органа. Тер мосистема имеет три датчика (термобаллона): два датчика температуры воздуха в помещениях для установки на этажах и один датчик температуры наружного воздуха (корректи рующий).

Регулятор температуры с манометрической системой типа РКТ-22216-ДП (ТС)

1 — датчик наружной температуры

2, 3 — датчики внутренней температуры

6 — исполнительный механизм

7 — регулирующий клапан ДП

8 — регулирующий клапан ТС

Регулирующий орган выполнен двухходовым ДП и трехходовым ТС. Наличие корректирующего датчика позволяет более эффективно поддерживать в заданных пределах температуру воздуха в отапливаемом здании в переходный период отопительного сезона.

Технические характеристики регуляторов типа РТК

Диаметр условного прохода, м — 25, 32, 40, 50, 60

Пределы настройки, °С — от 18 до 24.

Зона нечувствительности,°С, не более — 0,5.

Длина капилляров, м: — 60;

— наружного датчика — 10, 16;

— внутреннего датчика верхнего этажа — 16, 25;

— то же нижнего этажа — 10, 16;

— от датчика до исполнительного механизма — 3.

— РТК-2216-ДП — от 18 до 41;

— РТК-2216-ТС — от 19до 50.

— исполнительного механизма — 22×89;

— регулирующего органа ТС — 623х296х 180;

— регулирующего органа ДП — 649×296 х 180.

Регулятор универсальный прямого действия модернизованный УРРД-М предназначен для поддержания гидравлического режима в теплофикационных системах путем регулирования давления, перепада давлений или расхода теплоносителей. Регулятор применяют как регулятор прямого действия для автоматизации абонентских вводов жилых и общественных зданий, как исполнительное устройство (клапан) в гидравлических регуляторах непрямого действия для регулирования давления, перепада давлении, расхода, уровня или температуры. В корпусе регулятора размещен запорно-регулирующий узел, состоящий из подвижного подпружиненного седла, неподвижного седла и кольцевого разгруженного затвора.

Сверху корпуса размещен мембранный исполнительный механизм (гидропривод), являющийся одновременно чувствительным элементом регулятора. Гидропривод состоит из мембраны жестким центром, зажатой между двумя чашами со штуцерами, и стакана с настроечной пружиной. Один конец пружины соединен с надстроечным винтом, а другой — с жестким центром мембраны.

Регулятор расхода давления модернизированный типа УРРД-М

2 — неподвижное седло

4 — пружина настройки

5 — винт настройки

Затвор и жесткий цент соединены между собой штоком. Работа регулятора заключается в изменении расхода проходящей через него среды в зависимости от изменения величины регулируемого параметра.

Импульс регулируемого параметра подводится непосредственно в камеру гидропривода. Возникающие при этом на мембране усилия (разность усилий при регулировании расхода или перепада давлений) уравновешивается натяжение настроечной пружины.

Отклонение регулируемого параметра от заданного значения нарушает равновесие действующих на мембрану сил, что приводит к перемещению затвора в сторону восстановления за счет изменения расхода среды и заданного значения регулируемого параметра.

Крепление на трубопроводах регуляторов УРРД-М диаметром 80—150 мм стандартное, фланцевое, а диаметром 25—56 мм — муфтовое.

Основные данные регулятора УРРД-М

Источник



Main menuВыбор регулятора давления отопленияНавигация по статьямУстройство ИТП тепловых пунктов зданийПоделись с друзьями, если понравилась статья

Центральное качественное регулирование совмещённой нагрузки.

При выборе графика
регулирования ориентируются на
относительную нагрузку гвс, в зависимости
от коэффициента μ

В случае, если
μсрн=>
0,15, для обеспечения качественного
регулирования необходимо центральное
регулирование дополнять групповым и
регулирование вести по повышенному
графику по совмещенной нагрузке отопления
и гвс.

В
кач-ве импульса для регулирования
отопительной нагрузки на центральных
тепловых пунктах используется внутренняя
t
отапливаемых помещений или t
устройства, моделирующего tый
режим отапливаемых помещений.

Центральное
регулирование закрытых систем
теплоснабжения может приниматься при
любом относительном количестве абонентов
с обоими видами нагрузки в случае
использования регуляторов систем
отопления.

При использовании
регуляторов расхода данное регулирование
применяется только в том случае, когда
не менее 75% жилых и общественных зданий
имеют установки гвс.

Рассмотрим
регулирование по совмещённой нагрузке
при закрытой схеме теплоснабжения с 2х
ступенчатым последовательным подогревом
воды для ГВС.

Расход
сетевой воды в рассматриваемой установке
регулируется регулятором расхода РР и
регулятором температуры РТ. РР поддерживает
постоянным заданный расход сетевой
воды через сопло элеватора. Когда
открывается клапан РТ увеличивается
расход воды через подогреватель верхней
ступени, РР прикрывается на столько,
чтобы расход воды через сопло элеватора
не изменялся.

1.
Выравнивание неравномерности суточного
графика совмещённой нагрузки за счёт
использования аккумулирующей способности
строит конструкций.

2.
минимальный расход сетевой воды,
практически = расходу воды на отопление

3.
пониженная t
сетевой воды за счёт использования
теплоты обратной воды для частичного
покрытия нагрузки ГВС.

Повышенный
график
центрального качественного регулирования
по совмещённой нагрузке.

Читайте также:  Настройки регулятора скорости hobbywing

Основой для его
построения явл-ся график регулирования
по отопительной нагр-ке.

Задача
расчёта центрального регулирования
заключается в определении t
воды в подающей и обратной магистралях
при различных t
наружного воздуха.

Исходными данными
для расчёта являются:

1)μ
для типового абонента; 2) расчётный
график t
для отопления; 3) типовой суточный график
для системы ГВС.

Температурный
график регулирования отопительной
наргузки строиться по уравнениям:

а)изменение
температуры сетевой воды в подающей
магистрали

б) температура
сетевой воды после отопительной установки

в) температура
воды после элеватора или после
смесительного устройства


температурный напор отопительной
установки при расчетном режиме.


перепад температур сетевой воды в
тепловой сети при расчетном режиме.


перепад температур воды в местной или
абонентской установке.

Основной
расчёт проводят по балансовой нагрузке
системы ГВС

χ б
– поправочный коэф-т для компенсации
небаланса теплоты на отопление,
вызываемого неравномерностью суточного
графика ГВС (при наличии аккумуляторов
горячей воды =1, при отсутствии аккумуляторов
горячей воды для жилых и общественных
зданий =1,2)

Расчёт
t
го графика по совмещённой нагрузке
заключается в определении перепадов
t
сетевой воды в подогревателях верхней
и нижней ступени при различных значениях

и Q гвб

δ1
и δ2 – перепад t
в подогр. верх. и нижн. ступени соответсвенно.

При
балансовой нагрузке сист ГВС суммарный
перепад t
постоянен при любых t
наружного воздуха.

Перепад
t
в нижней ступени подогревателя ГВС при
любых t
наружного воздуха.

δ2’’’
— перепад t
в подогревателе нижней ступени в точке
излома tго
графика

ρ гвб-
относительный коэффициент


– tхолодной
воды

tп
– t
воды на выходе из подогревателя нижней
ступени.

t’’’ п
— температура
воды из подогревателя нижней ступени
в точке излома температурного графика

при балансовой
нагрузке гвс суммарный перепад температур
в подогревателе верхней и нижней ступени
постоянен:

перепад
температур в подогревателе верхней
ступени δ1 = δ-δ2

по
найденным значениям δ1 и δ2 и известным
значениям τ 01’
и τ 02’
определяют τ 1
и τ 2:

то
есть при центральном регулировании по
совмещенной нагрузке отопления и гвс
температура сетевой воды в подающей
магистрали тепловой сети выше, чем по
отопительному графику, τ 1>
τ0 1,
поэтому график называется отопительным.

Рис. 2. Схема индивидуального теплового пункта с регулятором температуры и расхода поз. 2.11, зависимая схема подключения

Экономия энергии может быть достигнута только при правильном проектировании, настройке и установке всех элементов теплового пункта.

Опыт инсталляций ИТП показывает – системы отопления дома должны быть четко описаны и проинспектированы еще перед началом работ по проектированию ИТП. Так ли это на практике? В ряде случаев подготовка происходит небрежно, вследствие чего характеристики теплового пункта отличаются от требуемых. Это несоответствие возникает из-за ошибок, накапливающихся, начиная с этапа сбора данных вплоть до сборки элементов в единое изделие. Поэтому при проектировании пытаются применять универсальное оборудование или подбор с «запасом», что не является оптимальным для системы регулирования.

Помимо компонентов ИТП (насос, теплообменник, запорная арматура и трубопроводы) большую роль в работе теплового пункта занимает регулятор теплового потока и программируемый логический контроллер (ПЛК) – центральные элементы системы автоматического регулирования (САР).

Универсальным решением в некотором смысле можно считать комбинированные клапаны-регуляторы температуры и расхода. Благодаря такой арматуре, как комби-клапан, выбор типоразмера сводится только к расчету по расходу (кг/час), при этом регулятор перепада давления исключается из расчета.

Функция поддержания постоянного перепада давления предусмотрена специальной конструкцией комби-клапана (рис. 3). Регуляторы температуры и расхода успешно применяются в схемах с зависимым и независимым подключением потребителей к тепловым сетям.

Рис. 3. Конструкция с регулятором температуры и расхода

Комби-клапан имеет конструкцию с двумя противоположно расположенными затворами: затвор регулятора расхода и затвор регулирующего клапана.

Принцип работы следующий. При полностью открытом затворе регулирующего клапана регулятор расхода автоматически поддерживает заданный максимально допустимый расход Gmax (кг/час). При этом расчетное сопротивление комби-клапана (при полном его открывании) определяется суммой потерь давления на затворе регулирующего клапана и минимально требуемой потерей давления на регуляторе расхода 0,5 бар (50 кПа), обеспечивающей его работоспособность.

Действие электронного контроллера (ПЛК) направлено на уменьшение расхода ниже заданного максимального значения путем воздействия на привод затвора регулирующего клапана. Расходная характеристика комби-клапана – линейная, другими словами – это пропускная характеристика регулирующего клапана, при которой относительная пропускная способность пропорциональна относительному ходу. Благодаря этой арматуре в сочетании с системой САР (на базе программируемого контроллера) можно достичь достаточно высокой точности регулирования объекта при динамически изменяющихся характеристиках (особенно при внешних возмущениях) тепловой сети.

Именно поэтому, решения с использованием комбинированных клапанов производства компании HERZ (рис. 4) вызвали большой интерес у специалистов инжиниринговых компаний, проектных и монтажных организаций, служб эксплуатации. Благодаря применению комби-клапанов можно создать компактную универсальную схему регулируемого теплового пункта, приспособленного для любой системы отопления, присоединяемой к тепловым сетям, с естественной или принудительной циркуляцией теплоносителя без реконструкции самой системы отопления.

Практика применения систем регулирования (в частности, установка ИТП) показывает значительное сокращение энергопотребления (до 30%), при этом жильцы получают возможность значительно снизить платежи за коммунальные услуги и повысить уровень комфорта в своем жилье.

Для достижения максимального уровня энергосбережения установка теплового пункта должна сопровождаться и другими энергоэффективными мероприятиями, такими, как установка арматуры для ручной (статической) и автоматической (динамической) балансировки систем отопления, а также установка термостатических клапанов на отопительных приборах. Результаты такой модернизации будут очевидны уже в первые месяцы эксплуатации системы регулирования.

Просмотрено: 4 208

Регуляторы теплового потока в ИТП

Регулирование осуществляется местными устройствами – регуляторами теплового потока. В домах с низким классом энергоэффективности (ниже С) регулирование системы отопления в лучшем случае осуществляют вручную, с использованием запорной арматуры в качестве регулирующей. Эффект такого регулирования прогнозировать сложно. Поэтому задачу поддержания оптимальной температуры в помещениях лучше всего решает установка регулятора теплового потока в индивидуальном тепловом пункте.

Тепловой пункт может состоять из нескольких модулей: модуль узла учета тепла, модуль системы отопления (зависимая (рис. 1) или независимая (рис. 2) схема), модуль системы горячего водоснабжения (ГВС), а также из отдельных модулей – например, модуль системы отопления (если узел учета уже установлен на объекте). Оборудование модулей монтируется вполне компактно, как правило, на одной рампе.

Основные преимущества регуляторов расхода воды теплоносителя КОМОС УЗЖ-Р

Регуляторы расхода КОМОС УЗЖ-Р — это современные, высокотехнологичные приборы, которые имеют массу преимуществ, среди которых:

Читайте также:  Регулятор давления сметная расценка

энергонезависимость. Приборам для работы не требуется подключение к каким-либо внешним источникам питания;

автоматический режим работы. Приборы полностью автоматически поддерживают расход теплоносителя в системах отопления,вентиляции и охлаждения, а также заданную t° горячей воды в закрытых системах ГВС;

комфорт. Приборы позволяют создать для потребителей максимально комфортные условия, как t° воздуха, так и t° воды ГВС в обогреваемых помещениях даже в условиях аварийного отключения электроснабжения зданий;

универсальность. Приборы могут работать практически под любым углом по отношению к вертикали;

экономичность. Использование КОМОС УЗЖ-Р позволяет в среднем на 25-64% снизить затраты тепловой энергии при эксплуатации систем отопления, примерно на 35-59% снизить затраты при использовании систем ГВС, а также уменьшить затраты в среднем на 30% на использование сетевой воды в зависимости от индивидуальных теплотехнических характеристик объекта, на котором используется прибор;

легкость монтажа. Стоит отметить, что для установки, а также дальнейшей настройки и эксплуатации достаточно квалификации слесаря-сантехника;

быстрая окупаемость. В зависимости от величины потребления объектом сетевой воды и тепловой энергии срок окупаемости прибора составляет примерно от 2 до 60 дней;

вандалоустойчивость, нечувствительность к колебаниям t° и влажности внешней среды

в течение 15-лет безаварийно работают в 108 городах России;

  • импортозамещающее оборудование, защищенное патентом РФ.
  • ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ регуляторов расхода теплоносителя КОМОС УЗЖ-Р

    Условная пропускная способность

    Давление рабочей среды, Р, МПа (атм)

    Компания «Комос» — это не просто поставщик высокотехнологичного оборудования, но и надежный партнер для вашего бизнеса. В нашей компании работают высококвалифицированные специалисты, которые ценят в своей работе компетентный, ответственный подход к решению любой задачи. Мы предоставляем вам полное гарантийное, а также послегарантийное обслуживание на всю продукцию, приобретенную в нашей компании.

    Получить консультацию и уточнить наличие любой продукции на складе Вы можете

    — по телефону: 8-(343)-222-20-73;

    — по почте: al@groupkomos.ru;

    — по Skype (пришлите нам по электронной почте свое Skype-имя и менеджер отдела продаж свяжется с Вами в течение 3-х часов):

    — в офисе нашей компании по адресу; Екатеринбург,Пл. Первой пятилетки, д.1.

    Работа теплового пункта подключенного по зависимой схеме

    Работой теплового пункта управляет программируемый контроллер к которому подключены электропривод клапана влияющего на отбор теплоносителя из тепловой сети, датчик температуры наружного воздуха и датчик температуры теплоносителя поступающего в систему отопления.

    В контроллер вносится зависимость температуры теплоносителя на входе в систему отопления от температуры наружного воздуха, дня недели и времени суток. Контроллер с определённой периодичностью замеряет температуру наружного воздуха и сравнивает фактически замеренную температуру теплоносителя с заданным для текущих условий значением. Если температура ниже заданной – на регулирующий клапана поступает открывающий сигнал, а если выше – закрывающий.

    В подающий трубопровод системы отопления поступает смесь двух потоков теплоносителя. Один поток «горячий» поступает из подающего трубопровода тепловой сети пропущенный регулятором, а второй поток «охлаждённый» подмешивается через перемычку из обратного трубопровода.

    Независимо от того открыт регулирующий клапан, или закрыт – в системе циркулирует постоянный объёмный расход теплоносителя, а от степени закрытия зависит лишь пропорции «горячего» и «холодного» потоков в этом объёме. То есть, если отбор из тепловой сети полностью перекрыт – в систему будет поступать только вода отобранная из обратного трубопровода, через перемычку.

    Стабильную циркуляцию в системе отопления и смешение создают два бесшумных насоса с мокрым ротором, один из которых всегда работает, а второй находится в резерве на случай выхода из строя рабочего.

    Преимущества зависимого подключения ИТП

    1 Более низкая по сравнению с независимым подключением стоимость блока.

    2 Возможность автоматического программного управления режимом работы системы отопления.

    3 Давление в системе отопления стабильно и равно давлению в обратном трубопроводе источника тепла.

    4 Простой пуск и настройка модуля теплового пункта.

    5 Возможность подать в систему теплоноситель с температурой равной температуре теплоносителя в подающем трубопроводе тепловой сети (только в случае применения трёхходового клапана).

    Недостатки зависимого подключения ИТП

    1 Система отопления опустошится в случае дренажа теплотрассы.

    2 Циркуляция воды в системе отопления прекратится в случае обесточивания насосов.

    Виды независимых схем подключения теплового пункта и в каких случаях применяются.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    1. Отопительный конвектор, включающий нагреватель в виде по крайней мере двух параллельных труб для подачи теплоносителя, преимущественно горячей воды, расположенных в одной плоскости и снабженных поперечными ребрами охлаждения в виде прямоугольных пластин с двумя отверстиями, кронштейны, связанные с трубами нагревателя, закрепленный на кронштейнах Г-образный кожух, содержащий лицевую панель, боковины и решетку на горизонтальной части, тепловой регулятор расхода теплоносителя, установленный за нагревателем и выполненный в виде клапана с термостатом и угловым сгоном, которые соединены разъемно с помощью резьбового соединения соответственно с концами труб нагревателя, отличающийся тем, что концы труб нагревателя снабжены патрубками, неразъемно, например с помощью сварки, связанными с соответствующими трубами, причем патрубки выполнены с наружными кольцевыми буртиками и оснащены накидными гайками с возможностью взаимодействия с ними и резьбами соответственно клапана и углового сгона регулятора расхода теплоносителя.

    2. Способ монтажа теплового термостатического регулятора расхода теплоносителя при изготовлении отопительного конвектора с нагревателем в виде двух параллельных труб, снабженных поперечными ребрами охлаждения, включающий предшествующую установке теплового регулятора фиксацию труб нагревателя с рабочими торцами в одной плоскости и при размещении их геометрических осей на расстоянии, соответствующем (в пределах допуска) расстоянию между геометрическими осями входных отверстий в присоединительных оснащенных уплотнительными прокладками элементах соответственно клапана и углового сгона теплового регулятора и последующего их присоединения к трубам нагревателя, отличающийся тем, что присоединительные патрубки с наружными буртиками перед их сваркой с соответствующими торцами труб нагревателя закрепляют с помощью накидных гаек на имеющих наружную резьбу бобышках, которые жестко связаны, например с помощью сварки, между собой скобой монтажного приспособления и расстояние между геометрическими осями которых соответствует (в пределах допуска) расстоянию между геометрическими осями присоединительных элементов теплового регулятора, прижимают соответствующие торцы присоединительных патрубков к торцам труб нагревателя, осуществляют неразъемное соединение их, например с помощью сварки, после чего свинчивают накидные гайки с бобышек и удаляют монтажное приспособление, а вместо него устанавливают тепловой регулятор с уплотняющими прокладками, фиксируя на его присоединительных элементах накидные гайки.

    Источник