Меню

Рентгеновское излучение напряжение сила тока

ОСНОВЫ РЕНТГЕНОЛОГИИ И РЕНТГЕНОВСКОЙ

СЕМИОТИКИ

ОСНОВЫ РЕНТГЕНОЛОГИИ

Рентгеновское излучение представляет собой разновидность электромагнитных колебаний, возникающих при резком тормо­жении ускоренных электронов в момент их столкновения с атома­ми вещества анода рентгеновской трубки, при перестройке элект­ронных оболочек атомов.

По физической сущности рентгеновские лучи не отличаются от других видов электромагнитных колебаний (оптического из­лучения, радиоволн и др.). Особенностью их является то, что они генерируются в диапазоне волн 3-10 -3 /1,5нм (1нм —нано­метр = 1 • 10 -9 м), что обусловливает их высокую дифференциальную проникающую способность через среды с различными физическими параметрами, не пропускающими видимые лучи света.

Источником рентгеновского излучения в рентгеновских аппа­ратах и установках является рентгеновская трубка, представляю­щая собой стеклянный вакуумный баллон со степенью разряже­ния до 10 -7 мм рт. ст. с двумя металлическими электродами: като­дом (—) и анодом (+, антикатодом). Она и преобразует электри­ческий ток в рентгеновское излучение. Нить накала катода соединяется с источником напряжения (

10 В — 1,6 • 10 -19 Дж). При прохождении тока в цепи накала на катоде возникает элект­ронная эмиссия («электронное облако»). Под воздействием высо­кого напряжения между катодом и анодом электроны из этого «электронного облака» устремляются к положительному полюсу (аноду). Фокусирующее устройство при этом концентрирует по­ток электронов на «фокусное пятно» анода. Вследствие их столк­новения с анодом генерируется рентгеновское излучение, интен­сивность которого пропорциональна силе тока, квадрату напря­жения на трубке и атомному номеру вещества анода:

Ф=КZU 2 • I,

где Ф—интенсивность излучения; К—коэффициент пропорциональности (К= 10 -9 • В -1 ); Z— атомный номер вещества анода; U— напряжение на трубке; I— сила тока на рентгеновской трубке.

Величина тока (мА), проходящего через трубку, зависит от количества свободных электронов, генерируемых нитью накала ка­тода. Меняя напряжение в цепи накала трубки, можно изменять интенсивность рентгеновского излучения. Например, если увели­чить ток через рентгеновскую трубку с 2 до 4 мА, то интенсив­ность излучения удвоится, а если удвоить напряжение, то интен­сивность излучения увеличится в 4 раза. Важно, что при этом из­менится не только количество, но и качество рентгеновских лучей (энергия излучения). С увеличением высокого напряжения, т. е. разности потенциалов на электродах трубки, возрастает энергия излучения и уменьшается длина волн рентгеновских лучей. Ко­ротковолновое излучение называют «жестким», оно обладает бо­лее высокой проникающей способностью, чем «мягкое» (длинно­волновое).

Использование рентгеновских лучей в ветеринарии связано с их способностью проникать через ткани организма; вызывать флюоресценцию; оказывать фотохимическое действие (в частно­сти на рентгенографическую пленку); вызывать физиологические и патологические (в зависимости от дозы) изменения в органах и тканях; передавать энергию излучения атомам и молекулам окру­жающей среды (ионизирующий эффект).

Каждая рентгеновская установка состоит из рентгеновской трубки — генератора рентгеновского излучения, блока питания — трансформаторного блока, пульта управления, экранов (для рент­геноскопии) и системы штативов, а также столов для укладки жи­вотных. Электропитание осуществляется через трансформатор­ный блок (блок питания). Он состоит из повышающего и понижа­ющего трансформаторов. С повышающего поступает ток на анод, а с понижающего — на катод («накальный ток»). Пульт управле­ния на стационарных рентгеновских установках выносится в ап­паратную, а на переносных и передвижных монтируется непос­редственно на аппарате. Штативы служат для крепления рентге­новской трубки, просвечивающего экрана и др. Дополнительное оборудование представлено дистанционными приспособлениями (столы, подставки, станки, негатоскопы) и защитными средства­ми для персонала кабинета.

Рентгеновские аппараты и установки должны быть надежно за­землены. Не реже одного раза в год их подвергают контрольным испытаниям. Эксплуатация рентгеновских установок производит­ся с соблюдением правил охраны труда и техники безопасности, в соответствии с техническим паспортом, прилагаемым к каждому рентгеновскому аппарату или рентгеновскому устройству. Основ­ные нормативные требования по этим вопросам изложены в «Правилах устройства и эксплуатации рентгеновских кабинетов и аппаратов на предприятиях Министерства здравоохранения», «Правилах технической эксплуатации электроустановок потреби­телей», «Правилах техники безопасности при эксплуатации элек­троустановок потребителей», а также в «Основных санитарных правилах работы с радиоактивными веществами и другими источни­ками ионизирующих излучений» (ОСП—72).

Биологическое действие рентгеновского излучения.При кратковременном повышенном (10 -12 /10 -9 с) воздействии ионизирующе­го излучения происходит поглощение тканями энергии излуче­ния; ионизация и возбуждение атомов и молекул; разрыв хими­ческих связей; образование химически активных радикалов и со­единений. При более длительном воздействии (секунды, часы) наблюдают повреждение структур, обеспечивающих нормальную функцию и наследственные свойства клеток; изменение биохими­ческих процессов, функциональных отправлений и морфологии клеток и тканей, их гибель. Появляются клетки с нарушенными наследственными свойствами. Длительное (минуты, сутки, меся­цы) воздействие вызывает поражение целостного организма, фун­кций органов и систем, нарушение их морфологии. При хрони­ческом (годы) облучении повышенными дозами рентгеновского (ионизирующего) излучения снижается продолжительность жиз­ни, возникают злокачественные опухоли, в том числе гемобластозы (лейкозы), возможны наследственные заболевания, аномалии развития, уродства. Таким образом, под воздействием ионизирую­щего излучения проявляется как непрямое (нарушение метабо­лизма вследствие образования ненасыщенных свободных отрица­тельных и положительных радикалов, обладающих высокой реак­ционной активностью и образующих перекисные соединения), так и прямое действие на организм вследствие непосредственного воздействия на радиочувствительные молекулы органических ве­ществ клеточных структур.

Рентгеновское излучение при несоблюдении правил техники безопасности и охраны труда может вызвать различной степени повреждения облучаемых органов и тканей у персонала рентгено­вских кабинетов, вследствие чего могут возникать лучевые реак­ции — от незначительных морфофункциональных отклонений в тканях, проходящих без лечебного вмешательства, до необрати­мых нарушений, которые могут вызвать гибель. Выделяют три степе­ни кожной реакции: эритрему (I степень), сухой эпидермит (II сте­пень) и мокнущий эпидермит (III степень). Эритрема — стойкая гиперемия, умеренная отечность и болезненность кожи возникают обычно через 2 нед после облучения в дозе 500—900 Р и исчезают через несколько недель, оставляя длительную пигментацию кожи. Сухой эпидермит осложняется шелушением кожи через 10—20 сут при облучении дозой 1300—1700 Р. Мокнущий эпидермит прояв­ляется отеком, гиперемией, образованием пузырьков, которые после вскрытия образуют мокнущую ярко-розовую поверхность через 2—4 нед после облучения в дозе, превышающей 2000 Р.

Лучевые повреждения возникают после облучения массивными дозами (лучевая язва, острый лучевой некроз), требующими дли­тельного врачебного вмешательства. Радиационные мутации развиваются в тех случаях, когда энергия излучения поглощается в хромосомах.

Средняя поглощенная доза естественного радиационного фона составляет около 100 мРад в год. По оценкам специалистов, облу­чение миллиона человек в дозе 1 Рад может привести в среднем к возникновению трех случаев заболевания раком, в то время как естественная частота возникновения злокачественных опухолей около 2000 в год на 1 млн населения. Но следует отметить, что число радиационных мутаций возрастает пропорционально дозе облучения. Однако возникать они могут и от воздействия очень малых доз рентгеновского излучения. Это диктует необходимость строгого соблюдения техники и правил противорадиационной за­щиты.

Нормы радиационной безопасности.В целях контроля за радиа­ционной обстановкой в связи с использованием рентгеновских ус­тановок установлены нормы радиационной безопасности (нормы РБ), предусматривающие непревышение дозового предела, ис­ключение необоснованного облучения и снижение дозы излуче­ния до возможно более низкого уровня. Для этого введены поня­тия предельно допустимой дозы (ПДД), предел дозы (ПД) категории облучаемых лиц и группы критических органов.

ПДД — это наибольшая индивидуальная доза за год, которая при равномерном воздействии не вызывает у человека нежела­тельных последствий в течение 50 лет.

ПД — это предельная доза за год, устанавливаемая для исклю­чения необоснованного облучения лиц, не связанных с источни­ками ионизирующего излучения, в связи с профессиональной дея­тельностью. Она в несколько раз меньше ПДД.

Для облегчения радиационной безопасности осуществляется дозиметрический контроль, включающий контроль защиты от из­лучений на рабочих местах, индивидуальный дозиметрический контроль персонала, работающего с источниками излучения, и контроль защиты от излучения в смежных помещениях. Он осу­ществляется путем измерения мощностей экспозиционной дозы и их сравнения с расчетными мощностями дозы (по таблицам, рассчитанным исходя из допустимой мощности дозы, — отноше­ния ПДД и ПД за год ко времени облучения в течение года). Та­кие расчеты обычно делают с учетом двойного коэффициента за­паса.

Вопросы безопасности рентгенологического исследования.Действующие «Правила устройства и эксплуатации рентгеновских ка­бинетов и аппаратов в учреждениях Министерства здравоохране­ния» предъявляют высокие требования к охране труда и технике радиационной безопасности как персонала рентгеновских каби­нетов, так и пациентов, вполне приемлемые в ветеринарии. Ос­новные элементы этих мер — тщательная организация работы, правильное использование защитных устройств, рациональное расположение отдельных блоков рентгеновской установки, точ­ный расчет времени и расстояния съемки.

Рентгенолог обязан соблюдать безопасность рентгенологичес­кого исследования, регистрировать в журнале работу рентгено­логического кабинета, обеспечивая надлежащие учет и отчет­ность.

В рентгеновском кабинете оборудуют процедурную комнату площадью не менее 25—30 м 2 на цокольном поле или первом эта­же здания. Деревянные и некапитальные стены ее обивают про-свинцованной резиной, свинцовыми листами толщиной до 3 мм или оснащают баритовой штукатуркой толщиной не менее 1 — 1,5 см. На высоте от пола не менее 150—170 см устанавливают об­щее и адаптационное (рабочее) освещение, приточно-вытяжную вентиляцию с трехкратным в 1 ч обменом воздуха. В аппаратном отсеке (комнате управления) размещают пульт управления и трансформаторный блок. Аппаратную от процедурной отделяют дверью, оснащенной окном с просвинцованным стеклом. Рентге­новскую трубку располагают не ближе 2 м от стены, на которую направлен поток рентгеновских лучей. При просвечивании рент­геновский пучок должен быть направлен в сторону капитальной стены или к земле. Рабочие места персонала располагают в зоне, не превышающей допустимый уровень радиации. Каждый рентге­новский кабинет должен иметь средства индивидуальной защиты: фартуки, юбки из просвинцованной резины, перчатки просвин-цованные и др. со свинцовыми эквивалентами не менее 0,3 мм. Защита расстоянием (дистанционное управление) основана на за­коне обратно пропорционального ослабления излучения от квад­рата расстояния. Так, если расстояние трубки увеличить с 0,5 до 2 см (в 4 раза), то интенсивность излучения снизится в 16 раз (за­кон «обратных квадратов»). Фотолабораторию оборудуют рядом с процедурной, надежно защищают и оснащают ее вытяжной вен­тиляцией, не пропускающей свет, оборудуют как белым, так и желто-зеленым или красным освещением.

Читайте также:  Сопротивление постоянному току токоведущего контура

Степень облучения пациента при рентгеноскопии и рентгено­графии зависит от напряжения и силы тока в рентгеновской труб­ке, фильтрации излучения, времени включения высокого напря­жения, расстояния объекта исследования от трубки, качества эк­рана и чувствительности рентгеновской пленки.

К работе в рентгенологических кабинетах допускают только персонал, прошедший специальную подготовку, аттестованный в установленном порядке и освоивший техническую документацию по устройству и эксплуатации рентгеновских кабинетов и рентге­новских установок, используемых в каждом случае.

Дозиметрия рентгеновского излучения.Обязательное условие ра­диационной безопасности при использовании рентгеновских ус­тановок — точный количественный учет энергии излучения, по­глощаемого людьми при работе с ними — дозиметрия. Для измерения дозы и мощности ионизирующих излучений используют дозиметры, в основе устройства которых лежат регистрация и количественная характеристика ионизирующего, сцинтилляционного, фотографического, химического и других эффектов от взаимо­действия ионизирующих излучений с веществом. Они имеют раз­личное назначение: для измерения излучения в прямом пучке (для дозирования при лучевой терапии); для контроля мощности доз рассеянного излучения на рабочих местах, в смежных помещени­ях и для индивидуального контроля.

Использование дозиметров осуществляется в соответствии с их техническим паспортом и инструкцией по эксплуатации. Обычно для этих целей используют дозиметры разной мощности рентге­новского или гамма-излучения: ДКЗ; МРМ-1; МРМ-2; «Кура»; ДРГЗ-01 («Араке»); ДРГЗ-02; ДРГЗ-03 («Аргунь») и ДРГЗ-04 («Катунь»). Для индивидуального контроля применяют дозиметры ИФК-2,-3; КИД-1,-2,-20; дозиметрический комплект «ТЕЛДЕ» (термолюминесцентный детектор) и др.

Использование рентгеновских методов исследования (рентге­носкопия, рентгенография, флюорография, рентгенотомография, рентгенокимография, рентгенофотооссеометрия и др.) имеют не проходящее значение как в диагностике заболеваний отдельных тканей, органов и систем организма, так и алиментарных, гормо­нальных, токсических, неврогенных и других болезней.

Интерпретация результатов рентгенологического исследования при кажущейся простоте требует глубоких специальных знаний и практической подготовки. На экране или рентгеновском снимке виден не сам объект исследования, а только его теневое отображе­ние, характер которого определяется как количественными и ка­чественными его особенностями, так и избранной методикой и техникой исследования. В образовании рентгеновского изображе­ния важное значение имеют геометрические, физические законо­мерности и технические факторы его образования, так как оно яв­ляется суммарным отображением структуры всех составляющих на пути прохождения рентгеновских лучей через ткани, является плоскостным отображением, не дающим трехмерного представле­ния об объекте исследования, многообразии морфофункциональных его особенностей. Поэтому от исследователя требуются уме­ние и опыт пространственной стереометрической абстракции, способность мысленно воссоздать тот анатомо-морфологический субстрат, который участвует в образовании теневого рентгено­вского изображения.

Надо иметь в виду, что различные по этиологии и патогенети­ческой сущности процессы могут дать сходную рентгенологичес­кую картину и, наоборот, один и тот же процесс в различные ста­дии развития дает разную теневую панораму. Поэтому нужен все­сторонний подход к анализу теневого рентгеновского изображе­ния с точки зрения основных принципов и закономерностей рентгеновского тенеобразования — скиалогии и патоморфологической трактовки теневого симптомокомплекса — семи­отики. Учитывать надо и разрешающие возможности рентгено­логического метода как в смысле возможностей определения эти­ологии заболевания, так и возможности его использования при исследовании животных разных видов и возрастных групп. Целе­сообразно делать два снимка, исследовать объект методом томог­рафии — во взаимно перпендикулярных проекциях. Прямой сни­мок часто не является точным изображением фронтального сече­ния, а боковой не всегда соответствует сагиттальному. Для изуче­ния поверхности исследуемого объекта надо сделать ее краеобразующей, т. е. повернуть объект по отношению к потоку рентгеновских лучей так, чтобы они прошли по касательной к его поверхности, — тангенциальная проекция.

Для получения дифференцированных изображений анатоми­ческих структур надо делать рентгеновские снимки в двух или трех взаимноперпендикулярных проекциях: прямой, боковой и осевой (аксиальной) или менять положение животного при про­свечивании.

Степень проекционного увеличения рентгеновского изобра­жения зависит от пространственных взаимоотношений между рентгеновской трубкой, объектом исследования и экраном или пленкой.

Распознание патологических феноменов находится в прямой зависимости от технического качества рентгенологического ис­следования, произведенного снимка (оптической плотности, кон­трастности, резкости и структурности изображения).

Оптическая плотность — это интенсивность почер­нения экспонированной пленки после проявления. За единицу плотности почернения принимают ослабление проходящего через пленку светового потока в 10 раз. Оптимальность изображения де­талей бывает при средних значениях плотности. Для нормального глаза достаточна оптимальная плотность 0,5—2,3, а наиболее тон­кие детали различаются в пределах 0,7—0,9.

Контрастность есть степень выраженности потемнения изображения соседних участков пленки с изображением и фоном. Она зависит от плотности, толщины, особенностей исследуемого объекта, качества рентгеновского излучения (мягкое, жесткое), расстояния фокус—пленка, экспозиции, вида и качества фотома­териалов и усиливающих экранов и т. п. Так, при жестком излуче­нии рентгенограмма бывает неконтрастной, а при мягком — фо­новое почернение становится интенсивным, а сам объект — про­зрачным, лишенным деталей. Переэкспонированный снимок дает чрезмерное потемнение рентгенограммы, при этом часть деталей теряется в общем почернении и т. п.

Оптимальной следует считать контрастность, обеспечивающую максимально отчетливое выявление деталей изображаемого объекта. Глаз в состоянии выявить разницу оптической плотности до 2 %, а при изучении рентгенограммы на негатоскопе — до 5 %. Малая контрастность деталей изображения лучше выявляется на снимках при невысокой относительной оптической плотности, поэтому не следует допускать значительного почернения рентге­нограмм. Отрицательно влияют на контрастность лучи повыше­ния жесткости и рассеянное излучение.

Резкость изображения — это степень перехода по­чернения одного участка снимка на другой, выраженности изоб­ражения одной структурной компоненты от контуров другой. Нерезкость («смазанность») контуров воспринимается глазом, когда она составляет 0,25 мм и более. Различают геометрическую, дина­мическую и экранную нерезкость.

Источник

Физика рентгеновских лучей

Рентгенология — раздел радиологии, изучающий воздействие на организм животных и человека рентгеновского излучения, возникающие от этого заболевания, их лечение и профилактику, а также методы диагностики различных патологий при помощи рентгеновских лучей (рентгенодиагностика). В состав типового рентгенодиагностического аппарата входит питающее устройство (трансформаторы), высоковольтный выпрямитель, преобразующий переменный ток электрической сети в постоянный, пульт управления, штатив и рентгеновская трубка.

Рентгеновские лучи — это вид электромагнитных колебаний, которые образуются в рентгеновской трубке при резком торможении ускоренных электронов в момент их столкновения с атомами вещества анода. В настоящее время общепризнанной считается точка зрения, что рентгеновские лучи по своей физической природе являются одним из видов лучистой энергии, спектр которых включает также радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи и гамма-лучи радиоактивных элементов. Рентгеновское излучение можно характеризовать как совокупность его наименьших частиц — квантов или фотонов.

Roentgen

Рис. 1 — передвижной рентгеновский аппарат:

A — рентгеновская трубка;
Б — питающее устройство;
В — регулируемый штатив.

Roentgen

Рис. 2 — пульт управления рентгеновским аппаратом (механический — слева и электронный — справа):

A — панель для регулирования экспозиции и жёсткости;
Б — кнопка подачи высокого напряжения.

Roentgen

Рис. 3 — блок-схема типичного рентгенаппарата

1 — сеть;
2 — автотрансформатор;
3 — повышающий трансформатор;
4 — рентгеновская трубка;
5 — анод;
6 — катод;
7 — понижающий трансформатор.

Механизм образования рентгеновского излучения

Рентгеновские лучи образуются в момент столкновения потока ускоренных электронов с веществом анода. При взаимодействии электронов с мишенью 99% их кинетической энергии превращается в тепловую энергию и только 1% — в рентгеновское излучение.

Рентгеновская трубка состоит из стеклянного баллона, в который впаяны 2 электрода: катод и анод. Из стеклянного баллона выкачен воздух: движение электронов от катода к аноду возможно лишь в условиях относительного вакуума (10 -7 –10 -8 мм. рт. ст.). На катоде имеется нить накала, являющаяся плотно скрученной вольфрамовой спиралью. При подаче электрического тока на нить накала происходит электронная эмиссия, при которой электроны отделяются от спирали и образуют рядом с катодом электронное облачко. Это облачко концентрируется у фокусирующей чашечки катода, задающей направление движения электронов. Чашечка — небольшое углубление в катоде. Анод, в свою очередь, содержит вольфрамовую металлическую пластину, на которую фокусируются электроны, — это и есть место образования рентгеновских лучей.

Roentgen

Рис. 4 — устройство рентгеновской трубки: А — катод;
Б — анод;
В — вольфрамовая нить накала;
Г — фокусирующая чашечка катода;
Д — поток ускоренных электронов;
Е — вольфрамовая мишень;
Ж — стеклянная колба;
З — окно из бериллия;
И — образованные рентгеновские лучи;
К — алюминиевый фильтр.

К электронной трубке подключены 2 трансформатора: понижающий и повышающий. Понижающий трансформатор раскаляет вольфрамовую спираль низким напряжением (5—15 вольт), в результате чего возникает электронная эмиссия. Повышающий, или высоковольтный, трансформатор подходит непосредственно к катоду и аноду, на которые подаётся напряжение 20–140 киловольт. Оба трансформатора помещаются в высоковольтный блок рентгеновского аппарата, который наполнен трансформаторным маслом, обеспечивающим охлаждение трансформаторов и их надёжную изоляцию.

Читайте также:  Резистор как определить переменный или постоянный ток

После того как при помощи понижающего трансформатора образовалось электронное облачко, включается повышающий трансформатор, и на оба полюса электрической цепи подаётся высоковольтное напряжение: положительный импульс — на анод, и отрицательный — на катод. Отрицательно заряженные электроны отталкиваются от отрицательно заряженного катода и стремятся к положительно заряженному аноду — за счёт такой разности потенциалов достигается высокая скорость движения — 100 тыс. км/с. С этой скоростью электроны бомбардируют вольфрамовую пластину анода, замыкая электрическую цепь, в результате чего возникает рентгеновское излучение и тепловая энергия.

Рентгеновское излучение подразделяется на тормозное и характеристическое. Тормозное излучение возникает из-за резкого замедления скорости электронов, испускаемых вольфрамовой спиралью. Характеристическое излучение возникает в момент перестройки электронных оболочек атомов. Оба этих вида образуются в рентгеновской трубке в момент столкновения ускоренных электронов с атомами вещества анода. Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического рентгеновских излучений.

RoentgenРис. 5 — принцип образования тормозного рентгеновского излучения. RoentgenРис. 6 — принцип образования характеристического рентгеновского излучения.

Основные свойства рентгеновского излучения

  1. Рентгеновские лучи невидимы для визуального восприятия.
  2. Рентгеновское излучение обладает большой проникающей способностью сквозь органы и ткани живого организма, а также плотные структуры неживой природы, не пропускающие лучи видимого света.
  3. Рентгеновские лучи вызывают свечение некоторых химических соединений, называемое флюоресценцией.
    • Сульфиды цинка и кадмия флюоресцируют жёлто-зелёным цветом,
    • Кристаллы вольфрамата кальция — фиолетово-голубым.
  4. Рентгеновские лучи обладают фотохимическим действием: разлагают соединения серебра с галогенами и вызывают почернение фотографических слоёв, формируя изображение на рентгеновском снимке.
  5. Рентгеновские лучи передают свою энергию атомам и молекулам окружающей среды, через которую они проходят, проявляя ионизирующее действие.
  6. Рентгеновское излучение оказывает выраженное биологическое действие в облучённых органах и тканях: в небольших дозах стимулирует обмен веществ, в больших — может привести к развитию лучевых поражений, а также острой лучевой болезни. Биологическое свойство позволяет примененять рентгеновское излучение для лечения опухолевых и некоторых неопухолевых заболеваний.

Шкала электромагнитных колебаний

радиоволны инфракрасное излучение видимый свет ультрафиолетовое излучение рентгеновское излучение γ-излучение (гамма) космическое излучение
30 км–0,15 см 0,15 см–700 нм 700–400 нм 400–1,5 нм 1,5–3×10 -3 нм 3×10 -3 –1×10 -3 нм 1×10 -3 –5×10 -5 нм

Рентгеновские лучи имеют определённую длину волны и частоту колебаний. Длина волны (λ) и частота колебаний (ν) связаны соотношением: λ • ν = c, где c — скорость света, округлённо равная 300 000 км в секунду. Энергия рентгеновских лучей определяется формулой E = h • ν, где h — постоянная Планка, универсальная постоянная, равная 6,626 • 10 -34 Дж⋅с. Длина волны лучей (λ) связана с их энергией (E) соотношением: λ = 12,4 / E.

Рентгеновское излучение отличается от других видов электромагнитных колебаний длиной волны (см. таблицу) и энергией кванта. Чем короче длина волны, тем выше её частота, энергия и проникающая способность. Длина волны рентгеновского излучения находится в интервале

1,5–3×10 -3 нм

. Изменяя длину волны рентгеновского излучения, можно регулировать его проникающую способность. Рентгеновские лучи имеют очень малую длину волны, но большую частоту колебаний, поэтому невидимы человеческим глазом. Благодаря огромной энергии кванты обладают большой проникающей способностью, что является одним из главных свойств, обеспечивающих использование рентгеновского излучения в медицине и других науках.

Характеристики рентгеновского излучения

Интенсивность — количественная характеристика рентгеновского излучения, которая выражается количеством лучей, испускаемых трубкой в единицу времени. Интенсивность рентгеновского излучения измеряется в миллиамперах. Сравнивая её с интенсивностью видимого света от обычной лампы накаливания, можно провести аналогию: так, лампа на 20 Ватт будет светить с одной интенсивностью, или силой, а лампа на 200 Ватт — с другой, при этом качество самого света (его спектр) является одинаковым. Интенсивность рентгеновского излучения, по сути, это его количество. Каждый электрон создаёт на аноде один или несколько квантов излучения, следовательно, количество рентгеновских лучей при экспонировании объекта регулируется путём изменения количества электронов, стремящихся к аноду, и количества взаимодействий электронов с атомами вольфрамовой мишени, что можно осуществить двумя путями:

  1. Изменяя степень накала спирали катода при помощи понижающего трансформатора (количество электронов, образующихся при эмиссии, будет зависеть от того, насколько сильно раскалена вольфрамовая спираль, а количество квантов излучения будет зависеть от количества электронов);
  2. Изменяя величину высокого напряжения, подводимого повышающим трансформатором к полюсам трубки — кадоду и аноду (чем выше напряжение подаётся на полюса трубки, тем большую кинетическую энергию получают электроны, которые за счёт своей энергии могут взаимодействовать с несколькими атомами вещества анода поочерёдно — см. рис. 5; электроны с низкой энергией смогут вступить в меньшее число взаимодействий).

Интенсивность рентгеновского излучения (анодный ток), помноженная на выдержку (время работы трубки), соответствует экспозиции рентгеновского излучения, которая измеряется в мАс (миллиамперах в секунду). Экспозиция — это параметр, который, также как и интенсивность, характеризует количество лучей, испускаемых рентгеновской трубкой. Разница состоит лишь в том, что экспозиция учитывает ещё и время работы трубки (так, например, если трубка работает 0,01 сек., то количество лучей будет одним, а если 0,02 сек, то количество лучей будет другим — в два раза больше). Экспозиция излучения устанавливается рентгенологом на контрольной панели рентгеновского аппарата в зависимости от вида исследования, размеров исследуемого объекта и диагностической задачи.

Жёсткость — качественная характеристика рентгеновского излучения. Измеряется величиной высокого напряжения на трубке — в киловольтах. Определяет проникающую способность рентгеновских лучей. Регулируется величиной высокого напряжения, подводимого к рентгеновской трубке повышающим трансформатором. Чем выше разность потенциалов создаётся на электродах трубки, тем с большей силой электроны отталкиваются от катода и устремляются к аноду и тем сильнее их столкновение с анодом. Чем сильнее их столкновение, тем короче длина волны у возникающего рентгеновского излучения и выше проникающая способность данной волны (или жёсткость излучения, которая, так же как и интенсивность, регулируется на контрольной панели параметром напряжением на трубке — киловольтажем).

RoentgenРис. 7 — Зависимость длины волны от энергии волны:

λ — длина волны;
E — энергия волны

  • Чем выше кинетическая энергия движущихся электронов, тем сильнее их удар об анод и меньше длина волны образующегося рентгеновского излучения. Рентгеновское излучение с большой длиной волны и малой проникающей способностью называется «мягким», с малой длиной волны и высокой проникающей способностью — «жёстким».

RoentgenРис. 8 — Соотношение напряжения на рентгеновской трубке и длины волны образующегося рентгеновского излучения:

  • Чем выше напряжение подаётся на полюса трубки, тем сильнее на них возникает разность потенциалов, следовательно, кинетическая энергия движущихся электронов будет выше. Напряжение на трубке определяет скорость движения электронов и силу их столкновения с веществом анода, следовательно, напряжение определяет длину волны возникающего рентгеновского излучения.

Классификация рентгеновских трубок

  1. По назначению
    1. Диагностические
    2. Терапевтические
    3. Для структурного анализа
    4. Для просвечивания
  2. По конструкции
    1. По фокусности
      • Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)
      • Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)
    1. По типу анода
      • Стационарный (неподвижный)
      • Вращающийся

Рентгеновские лучи применяются не только в рентгенодиагностических целях, но также и в терапевтических. Как было отмечено выше, способноcть рентгеновского излучения подавлять рост опухолевых клеток позволяет использовать его в лучевой терапии онкологических заболеваний. Помимо медицинской области применения, рентгеновское излучение нашло широкое применение в инженерно-технической сфере, материаловедении, кристаллографии, химии и биохимии: так, например, возможно выявление структурных дефектов в различных изделиях (рельсах, сварочных швах и пр.) с помощью рентгеновского излучения. Вид такого исследования называется дефектоскопией. А в аэропортах, на вокзалах и других местах массового скопления людей активно применяются рентгенотелевизионные интроскопы для просвечивания ручной клади и багажа в целях безопасности.

В зависимости от типа анода, рентгеновские трубки различаются по конструкции. В силу того, что 99% кинетической энергии электронов переходит в тепловую энергию, во время работы трубки происходит значительное нагревание анода — чувствительная вольфрамовая мишень часто сгорает. Охлаждение анода осуществляется в современных рентгеновских трубках при помощи его вращения. Вращающийся анод имеет форму диска, который распределяет тепло по всей своей поверхности равномерно, препятствуя локальному перегреву вольфрамовой мишени.

Конструкция рентгеновских трубок различается также по фокусности. Фокусное пятно — участок анода, на котором происходит генерирование рабочего пучка рентгеновского излучения. Подразделяется на реальное фокусное пятно и эффективное фокусное пятно (рис. 12). Из-за того, что анод расположен под углом, эффективное фокусное пятно меньше, чем реальное. Различные размеры фокусного пятна используются в зависимости от величины области снимка. Чем больше область снимка, тем шире должно быть фокусное пятно, чтобы покрыть всю площадь снимка. Однако меньшее фокусное пятно формирует лучшую чёткость изображения. Поэтому при производстве небольших снимков используется короткая нить накала и электроны направляются на небольшую область мишени анода, создавая меньшее фокусное пятно.

Читайте также:  Генератором стабильного тока схема транзистор

RoentgenРис. 9 — рентгеновская трубка со стационарным анодом. RoentgenРис. 10 — рентгеновская трубка с вращающимся анодом. RoentgenРис. 11 — устройство рентгеновской трубки с вращающимся анодом. RoentgenРис. 12 — схема образования реального и эффективного фокусного пятна.

Источник



От рабочих параметров рентгеновской трубки

date image2014-02-09
views image1038

facebook icon vkontakte icon twitter icon odnoklasniki icon

Зависимость энергии рентгеновского излучения

Экспериментально, показано, что средняя энергия рент-геновского излучения, переносимого без потерь через единицу площади, т.е. поток энергии , зависит от рабочих параметров рентгеновской трубки.

1)От ускоряющего напряжения, т.е. от энергии электронов.

Величина потока прямо пропорцио

нальна квадрату ускоряющего напря-жения . Кроме того, при увеличении и сдвигаются в сторону коротких волн, т.е. рентгеновское излучение становится более жестким

2)От силы тока, т.е. от числа электронов, испускаемых катодом.

Чем больше сила тока в цепи, тем больше нагревается катод, тем больше электронов вылетает с него, тем чаще происходят столкновения электронов с анодом. Следовательно, при увеличении силы тока в цепи наблюдается прямо пропорциональная зависимость потока излучения от силы тока: .

Сдвига спектра не наблюдается, т.е. и при изменении силы тока не изменяются.

3)От природы, т.е. от порядкового номера вещества поверхности анода. Количество электронов в разных атомах различно, следовательно, различным по напряженности будет и электрическое поле этих атомов, значит, и скорость торможения будет различной.

С учетом влияния всех рассмотренных параметров поток рентгеновского излучения, получаемого в рентгеновской трубке, определяется по формуле

Источник

Рентгеновское излучение напряжение сила тока

АТОМНАЯ ФИЗИКА

Рентгеновское излучение

Природа и свойства РИ. В рентгеновской трубке пучок электронов, эмитируемых катодом и разгоняемых электрическим полем до скоростей порядка 100000 км/с, ударяется об анод. Очень резкое торможение электронов, происходящее при ударе об анод, создаёт коротковолновое электромагнитное излучение, называемое тормозным РИ. При ударе электронов об анод происходит превращение части кинетической энергии электронов в энергию электромагнитного излучения, однако большая часть энергии электронов превращается в энергию молекулярно-теплового движения частиц анода, что вызывает его сильное нагревание.

Тормозное РИ имеет сплошной спектр. Это объясняется тем, что одни электроны тормозятся быстрее, другие медленнее, что и приводит к возникновению электромагнитного излучения с различными длинами волн.

По квантовой теории сплошной спектр тормозного излучения объясняется так: пусть кинетическая энергия электрона перед его соударением с анодом равна . Если часть А этой энергии превращается при соударении в тепло, то энергия фотона рентгеновского излучения будет равна:

. (1)

Существование резкой коротковолновой границы в рентгеновском спектре объясняется так: при ударе электрона об анод в предельном случае он может отдать всю свою энергию на излучение. Тогда из формулы (1) следует, что

.

Это равенство и определяет коротковолновую границу рентгеновского спектра. Так как

,

где U – приложенная разность потенциалов и e – заряд электрона, то

;

.

Следовательно, минимальная длина волны тормозного излучения обратно пропорциональна напряжению трубки. Можно получить для нее выражение:

.

Коротковолновое рентгеновское излучение обычно обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое – мягким.

Интенсивность рентгеновского излучения определяется эмпирической формулой:

, (2)

где I – сила тока в трубке, U – напряжение, Z – порядковый номер атома вещества антикатода, k = 10-9 В-1.

При больших напряжениях в рентгеновской трубке наряду с рентгеновским излучением, имеющим сплошной спектр, возникает рентгеновское излучение, имеющее линейчатый спектр; последний налагается на сплошной спектр. Это излучение называется характеристическим, так как каждое вещество имеет собственный, характерный для него линейчатый рентгеновский спектр (сплошной спектр не зависит от вещества анода и определяется только напряжением на рентгеновской трубке).

Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли:

(3)

где n — частота спектральной линии, А и В – постоянные.

Взаимодействие РИ с веществом. Когерентное (классическое) рассеяние. Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает, если энергия фотона меньше энергии ионизации: h n А .

Некогерентное рассеяние (эффект Комптона). Рассеяние рентгеновского излучения с изменением длины волны называют некогерентным, а само явление – эффектом Комптона.

Оно возникает, если энергия фотона рентгеновского излучения больше энергии ионизации h n > А. Это явление обусловлено тем, что при взаимодействии с атомом энергия фотона h n расходуется на образование нового рассеянного фотона рентгеновского излучения с энергией h n ¢ , на отрыв электрона от атома (энергия ионизации) и сообщение электрону кинетической энергии Ек: h n > h n ¢ + А + Ек. Так как во многих случаях h n >> А и эффект Комптона происходит на свободных электронах, то приближенно можно записать:

.

Изменение длины волны при комптоновском рассеянии определяется выражением , где λ – длина падающей рентгеновской волны, – длина рентгеновской волны после прохождения через вещество, λк = 2,4263∙10-12 м – комптоновская длина волны, φ – угол рассеяния падающего излучения.

Поглощение рентгеновского излучения описывается законом Бугера:

x, (4)

где m — линейный коэффициент ослабления, x – толщина слоя вещества, F 0 – интенсивность падающего излучения, F – интенсивность прошедшего излучения.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

№ 1.1.1.

Определить поток рентгеновского излучения для трубки рентгенодиагностической установки с вольфрамовым катодом, работающей под напряжением 60 кВ и силе тока 2 мА.

Решение

Интенсивность рентгеновского излучения определяется эмпирической формулой:

,

где I – сила тока в трубке, U – напряжение, Z — порядковый номер атома вещества антикатода, k = 10-9 В-1.

Подставляя численные значения, получим:

.

№ 1.1.2.

Рентгеновская трубка аппаратного диагностического комплекса, работающая под напряжением 50 кВ при силе тока 2 мА, излучает 5∙1013 фотонов в секунду. Считая среднюю длину волны излучения равной 0,1 нм, найти КПД трубки, т.е. определить, сколько процентов составляет мощность рентгеновского излучения от мощности потребляемого тока

Рентгеновская трубка аппаратного диагностического комплекса, работающая под напряжением U = 50 кВ при силе тока I = 0,2 мА, излучает 9∙1012 фотонов в секунду. Считая частоту излучения ν = 2,9∙1018, найти КПД трубки.

Решение

КПД трубки определяется как выраженная в процентах доля мощности рентгеновского излучения от мощности потребляемого тока, т.е.

. (1)

Затраченная мощность определяется как произведение силы тока через трубку на анодное напряжение:

. (2)

Под полезной мощностью понимается энергия квантов рентгеновского излучения, испускаемая с анода трубки за единицу времени:

. (3)

С учетом (2) и (3) выражение (1) перепишется:

.

№ 1.1.3.

Оценить сдвиг длин волн рентгеновских лучей при комптоновском рассеянии под углом 90 ° . Комптоновскую длину волны принять равной λк = 2,4∙10-12 м.

Решение

Изменение длины волны при комптоновском рассеянии определяется выражением

, (1)

где λ – длина падающей рентгеновской волны, — длина рентгеновской волны после прохождения через вещество, λк = 2,4263∙10-12 м – комптоновская длина волны, φ – угол рассеяния падающего излучения. Подставляя численные значения в (1), получим:

№ 1.1.4.

Скорость электронов, подлетающих к аноду рентгеновской трубки диагностической установки, в среднем составляет 160000 км/с. Определить длину волны коротковолновой границы сплошного рентгеновского спектра. Зависимостью массы электрона от скорости пренебречь.

Решение

Кинетическая энергия электронов при их ударе об анод превращается в энергию фотона рентгеновского излучения, следовательно, можно записать:

Отсюда легко выразить и рассчитать минимальную длину волны рентгеновского излучения:

№ 1.1.5.

В качестве экрана для защиты врача-рентгенолога от рентгеновского излучения в диагностической установке используют свинец толщиной 0,5 см. Его коэффициент поглощения равен 52,5 см-1. Какой толщины нужно взять алюминий, имеющий коэффициент поглощения 0,765 см-1, чтобы он экранировал в той же степени?

Решение

В соответствии с законом поглощения интенсивность прошедшего пучка рентгеновских лучей определяется выражением:

,

где Φ0 – интенсивность падающего пучка, μ – коэффициент поглощения вещества, l – толщина слоя.

Поскольку и свинцовая и алюминиевая пластинки экранируют одинаково, то интенсивности прошедших через них рентгеновских пучков будут одинаковы, т.е. Φс = Φа. Отсюда

,

следовательно,

№ 1.1.6.

При увеличении толщины слоя графита на 0,5 см интенсивность прошедшего пучка рентгеновских лучей уменьшилась в 3 раза. Определить линейный коэффициент ослабления графита для данного излучения.

Решение

Интенсивность прошедшего пучка рентгеновского излучения определяется выражением

, (1)

где J0 – интенсивность рентгеновского пучка, падающего на графит, J – интенсивность прошедшего пучка, μ – линейный коэффициент ослабления рентгеновского излучения, d – толщина слоя графита.

По условию задачи . С учетом этого (1) перепишется:

. (2)

Проведя сокращение и логарифмирование обеих частей (2), после несложных преобразований получим:

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Определить коротковолновую границу λmin сплошного спектра рентгеновского излучения, если рентгеновская трубка работает под напряжением U = 30 кВ.

Вычислить максимальную длину волны в спектре рентгеновских лучей, которые испускает трубка рентгенодиагностической установки, находящаяся под напряжением 50 кВ.

Определить частоту излучения рентгенодиагностической установки, если известно, что при увеличении анодного напряжения в 1,5 раза она изменилась на 5∙1018 с-1.

Для регулирования лучевой нагрузки на пациента используется графитовый щиток. Определить линейный коэффициент ослабления графита, если при увеличении толщины слоя графита на 0,5 см интенсивность прошедшего пучка рентгеновских лучей уменьшилась в 3 раза.

При проведении рентгеновской диагностики для защиты пациента используется свинцовый экран. Сколько слоев половинного ослабления содержит экран, если он уменьшает интенсивность пучка рентгеновских лучей в 16 раз?

Источник

Рентгеновское излучение напряжение сила тока

Спектр рентгеновского излучения.

Рентгеновская трубка.

В рентгеновской трубке на катоде происходит термоэлектронная эмиссия, затем происходит разгон электронов в электрическом поле и торможение в материале анода, сопровождаемое появлением рентгеновского излучения. Схема трубки представлена на рис. 2.

Рис.2. Схема рентгеновской трубки.

Подробнее о процессах, происходящих в рентгеновской трубке:

Нить накала, благодаря току от специального низковольтного источника, имеет температуру поверхности порядка 2000 – 2500 К, при которой электроны вырываются из нити (явление термоэлектронной эмиссии). Эти электроны тут же подхватываются сильнейшим электрическим полем: напряжение между катодом и анодом (он традиционно называется антикатодом), создаваемое специальным высоковольтным источником, может регулироваться в пределах от нескольких киловольт до сотен киловольт.

Фокусирующий электрод находится в электрическом контакте с нитью накаливания, так что его можно считать частью катода. Его задача – так искривить силовые линии разгоняющего поля, чтобы электроны образовали узкий пучок, несмотря на их кулоновское взаимное отталкивание.

Антикатод рентгеновской трубки изготавливается из тяжелых тугоплавких металлов (вольфрам, молибден), торможение электронов сопровождается появлением рентгеновского излучения.

Сила тока в рентгеновской трубке весьма невелика. Она определяется очень скромной производительностью нити накала — числом электронов, вырывающихся из нее за одну секунду. Так что сила тока в рентгеновских трубках измеряется не в амперах, а в миллиамперах. Но анодное напряжение – громадное, так что электрическая мощность трубки оказывается весьма ощутимой. Оценим порядок этой величины.

Напомним, что электрическая мощность участка цепи равна произведению силы тока I на напряжение U , действующее на этом участке: N = IU . При напряжении на трубке U = 100 кВ = 10 5 В и возникшем в ней токе I = 5 мА = 5×10 -3 А мощность составит N = IU = 5×10 -3 А×10 5 В = =500 Вт = 0,5 кВт.

Таков уровень энергозатрат рентгеновской трубки от источника тока. Во что переходят эти 500 джоулей в секунду? Суммарная мощность потока быстрых электронов на подлете к антикатоду – 500 Вт. Суммарная мощность потока рентгеновских лучей, возникающих при торможении электронов, составляет около 1% от этой величины (то есть 5 Вт), а остальные 99% (495 Вт) – теплота, выделяемая на антикатоде. С такой тепловой нагрузкой может не справиться даже тугоплавкий вольфрам; поэтому рентгеновские трубки часто имеют систему принудительного охлаждения антикатода проточной водой. В некоторых моделях трубок защита антикатода от перегрева осуществляется его медленным вращением от небольшого электродвигателя.

Распределение быстрых электронов по всей площади антикатода упростило бы защиту от его перегрева, но этого не делается: желательно иметь точечный источник рентгеновского излучения, для этого надо фокусировать быстрые электроны в точку на поверхности антикатода.

Поток рентгеновского излучения, возникающий в поверхностном слое материала антикатода, направляется на пациента через каналы в защитной оболочке, охватывающей рентгеновскую трубку (на схеме не показана).

В онкологии, при лучевой терапии в некоторых методиках требуется жесткое рентгеновское излучение с энергией квантов до 45 — 50 МэВ. Создание рентгеновской трубки с рабочим напряжением 50 млн вольт невозможно. Излучение с энергией квантов столь высокого уровня получают на бетатронах.

Бетатрон.

Бетатрон – ускоритель электронов. Получаемый в нем поток быстрых электронов направляется на мишень, при их торможении возникает поток жесткого рентгеновского излучения.

Существуют так же методики воздействия на ткани организма непосредственно быстрыми электронами.

Схема бетатрона представлена на рис. 3. Мощный электромагнит бетатрона работает на переменном токе. Его переменное магнитное поле создает в тороидальной камере вихревое электрическое поле, разгоняющее пучок электронов. Кроме того, это магнитное поле удерживает разгоняемые электроны на круговой орбите.


Рис. 3. Схема бетатрона.

В разгонной камере создается глубокий вакуум: остаточное давление воздуха – 10 -6 мм рт. столба. Электроны вводятся в камеру через патрубок камеры с помощью инжектора (на схеме не показан).

Инжектор представляет собой устройство типа «электронная пушка», применяемое в электронно-лучевых трубках. Электроны выходят из катода пушки благодаря термоэлектронной эмиссии и разгоняются по прямолинейной траектории. Анодное напряжение U в пушке – порядка 50 кВ. Какова работа сил электрического поля eU, такова и кинетическая энергия электрона mV 2 /2 на выходе электронной пушки:

Подставляя сюда e = 1,6·10 -19 Кл – заряд электрона; m =9,1·10 -31 кг– его массу, нетрудно вычислить достигаемую электроном скорость. Она получается порядка V=10 8 м/с. Такова скорость электронов, достигнутая в инжекторе. Следовательно, такова начальная скорость движения электрона по круговой орбите в разгонной камере (вектор V на схеме рис. 3).

Для сравнения: скорость света в вакууме с=3·10 8 м/с.

Разгонная камера выполняет вторую, основную стадию работы бетатрона как ускорителя. Электроны ускоряет вихревое электрическое поле, возникающее благодаря явлению электромагнитной индукции. Суть этого явления – в том, что переменное магнитное поле создает электрическое поле.

Переменное магнитное поле создается переменным током, питающим электромагнит бетатрона, и многократно усиливается атомами ферромагнитного сердечника электромагнита. Напряженность Е вихревого электрического поля пропорциональна скорости изменения индукции В магнитного поля.

Читайте также:  Резистор как определить переменный или постоянный ток

На протяжение всего разгона электрон испытывает действие силы F = eE, направленной, как и вектор скорости V, по касательной к траектории разгона.

Электроны удерживаются на круговой орбите силой Лоренца f .

Сила Лоренца – это сила, с которой магнитное поле действует на движущуюся в нем заряженную частицу, в данном случае –на электрон:

Здесь V – скорость движения электрона в магнитном поле с индукцией В;

α – угол между векторами V и B; в данном случае вектор магнитной индукции В перпендикулярен плоскости круговой орбиты, так что Sin α = 1, и формула (2) упрощается: f = qVB. (2′)

Сила Лоренца всегда перпендикулярна векторам V и B. На схеме рис 3 она направлена к центру О траектории электронов.

Чем быстрее будет двигаться электрон, тем больше должна быть и сила f, удерживающая его на орбите постоянного радиуса r; следовательно, для разгона электрона следует использовать возрастающее, но не убывающее магнитное поле.

Рис.4. Зависимость силы переменного тока в обмотке электромагнита от времени. Представлен один цикл колебаний тока. При частоте 50 Гц период Т=0,02 с.

Ускоренное движение электронов в разгонной камере будет происходить при протекании в обмотке электромагнита тока первой четверти цикла ( от t = 0 до t = Т/4 на рис. 4). В начале этой четверти инжектор вбрасывает в разгонную камеру очередную порцию электронов. Они подхватываются электрическим вихрем, разгоняющим электроны (по часовой стрелке на схеме рис.3). Разгон происходит в течение ¼ Т = 0,005с. За эти 5 миллисекунд электроны совершают в камере порядка 10 6 оборотов. Если за один оборот электрическое поле увеличивает энергию электрона на ΔЕ = 50 эВ, то за N=10 6 оборотов кинетическая энергия электрона достигнет значения Е = 50 МэВ.

В конце первой четверти цикла Т поток ускоренных в камере электронов смещается с орбиты разгона и либо выводится из камеры, либо направляется на тормозную мишень внутри камеры для получения тормозного рентгеновского излучения.

При необходимости, описанные события могут повторяться с частотой 50 Гц.

Спектр рентгеновского излучения.

Спектр излучения – это график зависимости интенсивности излучения от его длины волны или частоты.

Рис. 5 иллюстрирует характер спектра излучения рентгеновской трубки. Он представляет собой сочетание двух типов спектров: непрерывного и линейчатого. Оба они отражают взаимодействие быстрых катодных электронов рентгеновской трубки с электронами материала антикатода. Непрерывная компонента суммарного спектра – это тормозное излучение. На него накладывается линейчатый спектр характеристического излучения, и он – тоже результат взаимодействия быстрых катодных электронов с электронами атомов, но – со своими особенностями.

Источник



Физика рентгеновских лучей

Рентгенология — раздел радиологии, изучающий воздействие на организм животных и человека рентгеновского излучения, возникающие от этого заболевания, их лечение и профилактику, а также методы диагностики различных патологий при помощи рентгеновских лучей (рентгенодиагностика). В состав типового рентгенодиагностического аппарата входит питающее устройство (трансформаторы), высоковольтный выпрямитель, преобразующий переменный ток электрической сети в постоянный, пульт управления, штатив и рентгеновская трубка.

Рентгеновские лучи — это вид электромагнитных колебаний, которые образуются в рентгеновской трубке при резком торможении ускоренных электронов в момент их столкновения с атомами вещества анода. В настоящее время общепризнанной считается точка зрения, что рентгеновские лучи по своей физической природе являются одним из видов лучистой энергии, спектр которых включает также радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи и гамма-лучи радиоактивных элементов. Рентгеновское излучение можно характеризовать как совокупность его наименьших частиц — квантов или фотонов.

Roentgen

Рис. 1 — передвижной рентгеновский аппарат:

A — рентгеновская трубка;
Б — питающее устройство;
В — регулируемый штатив.

Roentgen

Рис. 2 — пульт управления рентгеновским аппаратом (механический — слева и электронный — справа):

A — панель для регулирования экспозиции и жёсткости;
Б — кнопка подачи высокого напряжения.

Roentgen

Рис. 3 — блок-схема типичного рентгенаппарата

1 — сеть;
2 — автотрансформатор;
3 — повышающий трансформатор;
4 — рентгеновская трубка;
5 — анод;
6 — катод;
7 — понижающий трансформатор.

Механизм образования рентгеновского излучения

Рентгеновские лучи образуются в момент столкновения потока ускоренных электронов с веществом анода. При взаимодействии электронов с мишенью 99% их кинетической энергии превращается в тепловую энергию и только 1% — в рентгеновское излучение.

Рентгеновская трубка состоит из стеклянного баллона, в который впаяны 2 электрода: катод и анод. Из стеклянного баллона выкачен воздух: движение электронов от катода к аноду возможно лишь в условиях относительного вакуума (10 -7 –10 -8 мм. рт. ст.). На катоде имеется нить накала, являющаяся плотно скрученной вольфрамовой спиралью. При подаче электрического тока на нить накала происходит электронная эмиссия, при которой электроны отделяются от спирали и образуют рядом с катодом электронное облачко. Это облачко концентрируется у фокусирующей чашечки катода, задающей направление движения электронов. Чашечка — небольшое углубление в катоде. Анод, в свою очередь, содержит вольфрамовую металлическую пластину, на которую фокусируются электроны, — это и есть место образования рентгеновских лучей.

Читайте также:  Сопротивление постоянному току токоведущего контура

Roentgen

Рис. 4 — устройство рентгеновской трубки: А — катод;
Б — анод;
В — вольфрамовая нить накала;
Г — фокусирующая чашечка катода;
Д — поток ускоренных электронов;
Е — вольфрамовая мишень;
Ж — стеклянная колба;
З — окно из бериллия;
И — образованные рентгеновские лучи;
К — алюминиевый фильтр.

К электронной трубке подключены 2 трансформатора: понижающий и повышающий. Понижающий трансформатор раскаляет вольфрамовую спираль низким напряжением (5—15 вольт), в результате чего возникает электронная эмиссия. Повышающий, или высоковольтный, трансформатор подходит непосредственно к катоду и аноду, на которые подаётся напряжение 20–140 киловольт. Оба трансформатора помещаются в высоковольтный блок рентгеновского аппарата, который наполнен трансформаторным маслом, обеспечивающим охлаждение трансформаторов и их надёжную изоляцию.

После того как при помощи понижающего трансформатора образовалось электронное облачко, включается повышающий трансформатор, и на оба полюса электрической цепи подаётся высоковольтное напряжение: положительный импульс — на анод, и отрицательный — на катод. Отрицательно заряженные электроны отталкиваются от отрицательно заряженного катода и стремятся к положительно заряженному аноду — за счёт такой разности потенциалов достигается высокая скорость движения — 100 тыс. км/с. С этой скоростью электроны бомбардируют вольфрамовую пластину анода, замыкая электрическую цепь, в результате чего возникает рентгеновское излучение и тепловая энергия.

Рентгеновское излучение подразделяется на тормозное и характеристическое. Тормозное излучение возникает из-за резкого замедления скорости электронов, испускаемых вольфрамовой спиралью. Характеристическое излучение возникает в момент перестройки электронных оболочек атомов. Оба этих вида образуются в рентгеновской трубке в момент столкновения ускоренных электронов с атомами вещества анода. Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического рентгеновских излучений.

RoentgenРис. 5 — принцип образования тормозного рентгеновского излучения. RoentgenРис. 6 — принцип образования характеристического рентгеновского излучения.

Основные свойства рентгеновского излучения

  1. Рентгеновские лучи невидимы для визуального восприятия.
  2. Рентгеновское излучение обладает большой проникающей способностью сквозь органы и ткани живого организма, а также плотные структуры неживой природы, не пропускающие лучи видимого света.
  3. Рентгеновские лучи вызывают свечение некоторых химических соединений, называемое флюоресценцией.
    • Сульфиды цинка и кадмия флюоресцируют жёлто-зелёным цветом,
    • Кристаллы вольфрамата кальция — фиолетово-голубым.
  4. Рентгеновские лучи обладают фотохимическим действием: разлагают соединения серебра с галогенами и вызывают почернение фотографических слоёв, формируя изображение на рентгеновском снимке.
  5. Рентгеновские лучи передают свою энергию атомам и молекулам окружающей среды, через которую они проходят, проявляя ионизирующее действие.
  6. Рентгеновское излучение оказывает выраженное биологическое действие в облучённых органах и тканях: в небольших дозах стимулирует обмен веществ, в больших — может привести к развитию лучевых поражений, а также острой лучевой болезни. Биологическое свойство позволяет примененять рентгеновское излучение для лечения опухолевых и некоторых неопухолевых заболеваний.

Шкала электромагнитных колебаний

радиоволны инфракрасное излучение видимый свет ультрафиолетовое излучение рентгеновское излучение γ-излучение (гамма) космическое излучение
30 км–0,15 см 0,15 см–700 нм 700–400 нм 400–1,5 нм 1,5–3×10 -3 нм 3×10 -3 –1×10 -3 нм 1×10 -3 –5×10 -5 нм

Рентгеновские лучи имеют определённую длину волны и частоту колебаний. Длина волны (λ) и частота колебаний (ν) связаны соотношением: λ • ν = c, где c — скорость света, округлённо равная 300 000 км в секунду. Энергия рентгеновских лучей определяется формулой E = h • ν, где h — постоянная Планка, универсальная постоянная, равная 6,626 • 10 -34 Дж⋅с. Длина волны лучей (λ) связана с их энергией (E) соотношением: λ = 12,4 / E.

Рентгеновское излучение отличается от других видов электромагнитных колебаний длиной волны (см. таблицу) и энергией кванта. Чем короче длина волны, тем выше её частота, энергия и проникающая способность. Длина волны рентгеновского излучения находится в интервале

1,5–3×10 -3 нм

. Изменяя длину волны рентгеновского излучения, можно регулировать его проникающую способность. Рентгеновские лучи имеют очень малую длину волны, но большую частоту колебаний, поэтому невидимы человеческим глазом. Благодаря огромной энергии кванты обладают большой проникающей способностью, что является одним из главных свойств, обеспечивающих использование рентгеновского излучения в медицине и других науках.

Характеристики рентгеновского излучения

Интенсивность — количественная характеристика рентгеновского излучения, которая выражается количеством лучей, испускаемых трубкой в единицу времени. Интенсивность рентгеновского излучения измеряется в миллиамперах. Сравнивая её с интенсивностью видимого света от обычной лампы накаливания, можно провести аналогию: так, лампа на 20 Ватт будет светить с одной интенсивностью, или силой, а лампа на 200 Ватт — с другой, при этом качество самого света (его спектр) является одинаковым. Интенсивность рентгеновского излучения, по сути, это его количество. Каждый электрон создаёт на аноде один или несколько квантов излучения, следовательно, количество рентгеновских лучей при экспонировании объекта регулируется путём изменения количества электронов, стремящихся к аноду, и количества взаимодействий электронов с атомами вольфрамовой мишени, что можно осуществить двумя путями:

  1. Изменяя степень накала спирали катода при помощи понижающего трансформатора (количество электронов, образующихся при эмиссии, будет зависеть от того, насколько сильно раскалена вольфрамовая спираль, а количество квантов излучения будет зависеть от количества электронов);
  2. Изменяя величину высокого напряжения, подводимого повышающим трансформатором к полюсам трубки — кадоду и аноду (чем выше напряжение подаётся на полюса трубки, тем большую кинетическую энергию получают электроны, которые за счёт своей энергии могут взаимодействовать с несколькими атомами вещества анода поочерёдно — см. рис. 5; электроны с низкой энергией смогут вступить в меньшее число взаимодействий).
Читайте также:  Эффекты воздействия электрического тока

Интенсивность рентгеновского излучения (анодный ток), помноженная на выдержку (время работы трубки), соответствует экспозиции рентгеновского излучения, которая измеряется в мАс (миллиамперах в секунду). Экспозиция — это параметр, который, также как и интенсивность, характеризует количество лучей, испускаемых рентгеновской трубкой. Разница состоит лишь в том, что экспозиция учитывает ещё и время работы трубки (так, например, если трубка работает 0,01 сек., то количество лучей будет одним, а если 0,02 сек, то количество лучей будет другим — в два раза больше). Экспозиция излучения устанавливается рентгенологом на контрольной панели рентгеновского аппарата в зависимости от вида исследования, размеров исследуемого объекта и диагностической задачи.

Жёсткость — качественная характеристика рентгеновского излучения. Измеряется величиной высокого напряжения на трубке — в киловольтах. Определяет проникающую способность рентгеновских лучей. Регулируется величиной высокого напряжения, подводимого к рентгеновской трубке повышающим трансформатором. Чем выше разность потенциалов создаётся на электродах трубки, тем с большей силой электроны отталкиваются от катода и устремляются к аноду и тем сильнее их столкновение с анодом. Чем сильнее их столкновение, тем короче длина волны у возникающего рентгеновского излучения и выше проникающая способность данной волны (или жёсткость излучения, которая, так же как и интенсивность, регулируется на контрольной панели параметром напряжением на трубке — киловольтажем).

RoentgenРис. 7 — Зависимость длины волны от энергии волны:

λ — длина волны;
E — энергия волны

  • Чем выше кинетическая энергия движущихся электронов, тем сильнее их удар об анод и меньше длина волны образующегося рентгеновского излучения. Рентгеновское излучение с большой длиной волны и малой проникающей способностью называется «мягким», с малой длиной волны и высокой проникающей способностью — «жёстким».

RoentgenРис. 8 — Соотношение напряжения на рентгеновской трубке и длины волны образующегося рентгеновского излучения:

  • Чем выше напряжение подаётся на полюса трубки, тем сильнее на них возникает разность потенциалов, следовательно, кинетическая энергия движущихся электронов будет выше. Напряжение на трубке определяет скорость движения электронов и силу их столкновения с веществом анода, следовательно, напряжение определяет длину волны возникающего рентгеновского излучения.

Классификация рентгеновских трубок

  1. По назначению
    1. Диагностические
    2. Терапевтические
    3. Для структурного анализа
    4. Для просвечивания
  2. По конструкции
    1. По фокусности
      • Однофокусные (на катоде одна спираль, а на аноде одно фокусное пятно)
      • Двухфокусные (на катоде две спирали разного размера, а на аноде два фокусных пятна)
    1. По типу анода
      • Стационарный (неподвижный)
      • Вращающийся

Рентгеновские лучи применяются не только в рентгенодиагностических целях, но также и в терапевтических. Как было отмечено выше, способноcть рентгеновского излучения подавлять рост опухолевых клеток позволяет использовать его в лучевой терапии онкологических заболеваний. Помимо медицинской области применения, рентгеновское излучение нашло широкое применение в инженерно-технической сфере, материаловедении, кристаллографии, химии и биохимии: так, например, возможно выявление структурных дефектов в различных изделиях (рельсах, сварочных швах и пр.) с помощью рентгеновского излучения. Вид такого исследования называется дефектоскопией. А в аэропортах, на вокзалах и других местах массового скопления людей активно применяются рентгенотелевизионные интроскопы для просвечивания ручной клади и багажа в целях безопасности.

В зависимости от типа анода, рентгеновские трубки различаются по конструкции. В силу того, что 99% кинетической энергии электронов переходит в тепловую энергию, во время работы трубки происходит значительное нагревание анода — чувствительная вольфрамовая мишень часто сгорает. Охлаждение анода осуществляется в современных рентгеновских трубках при помощи его вращения. Вращающийся анод имеет форму диска, который распределяет тепло по всей своей поверхности равномерно, препятствуя локальному перегреву вольфрамовой мишени.

Конструкция рентгеновских трубок различается также по фокусности. Фокусное пятно — участок анода, на котором происходит генерирование рабочего пучка рентгеновского излучения. Подразделяется на реальное фокусное пятно и эффективное фокусное пятно (рис. 12). Из-за того, что анод расположен под углом, эффективное фокусное пятно меньше, чем реальное. Различные размеры фокусного пятна используются в зависимости от величины области снимка. Чем больше область снимка, тем шире должно быть фокусное пятно, чтобы покрыть всю площадь снимка. Однако меньшее фокусное пятно формирует лучшую чёткость изображения. Поэтому при производстве небольших снимков используется короткая нить накала и электроны направляются на небольшую область мишени анода, создавая меньшее фокусное пятно.

RoentgenРис. 9 — рентгеновская трубка со стационарным анодом. RoentgenРис. 10 — рентгеновская трубка с вращающимся анодом. RoentgenРис. 11 — устройство рентгеновской трубки с вращающимся анодом. RoentgenРис. 12 — схема образования реального и эффективного фокусного пятна.

Источник