Меню

Сдвиг по фазе по току между обмотками

Понятие сдвига фазы в аналоговых цепях

Рассмотрим, что такое сдвиг фазы, и как это фундаментальное электрическое явление связано с различными конфигурациями схем.

В данной статье рассказывается о сдвиге фазы, о влиянии схемы, вызывающем опережение или отставание напряжения или тока на выходе схемы относительно входа. В частности, нам будет интересно то, как реактивные нагрузки и цепи будут влиять на сдвиг фазы в схеме. Сдвиг фазы может иметь всевозможные последствия, независимо от того, работаете ли вы с генераторами, усилителями, петлями обратной связи, фильтрами и т.п. Например, вы ожидаете, что ваша инвертирующая схема на операционном усилителе будет давать сдвиг фазы на 180°, но вместо этого она возвращает синфазный сигнал и вызывает проблемы с автоколебаниями. Или, например, подключение измерительных щупов для анализа цепи может внести свое влияние. Или, возможно, у вас есть резонансный контур, который используется в петле обратной связи автогенератора, но контур обеспечивает сдвиг фазы только 90°, тогда как вам нужно 180°. Вы должны изменить контур, но как?

Сдвиг фазы для реактивных нагрузок

Частотно-зависимый сдвиг фазы происходит из-за влияния реактивных компонентов: конденсаторов и катушек индуктивности. Это относительная величина, и поэтому она должна быть задана как разность фаз между двумя точками. В данной статье «сдвиг фазы» будет означать разницу по фазе между выходом и входом. Говорят, что конденсатор вызывает отставание напряжения от тока на 90°, в то время как индуктивность вызывает отставание тока от напряжения на 90°. В векторной форме это обозначается +j или -j в индуктивном и емкостном реактивном сопротивлении соответственно. Но емкость и индуктивность в некоторой степени существуют во всех проводниках. Так почему же они не вызывают сдвиги фаз на 90°?

Все наши эффекты сдвига фазы будут моделироваться цепями RC и RL. Все схемы могут быть смоделированы как источник с некоторым внутренним сопротивлением, рассматриваемая схема и нагрузка, следующая за схемой. Внутренний импеданс источника также называется его выходным сопротивлением. Я считаю, что проще всего говорить о входном и выходном импедансе и о каскадах, поэтому позвольте мне перефразировать: все схемы могут быть смоделированы как выход одного каскада с некоторым выходным импедансом, питающий следующий каскад, который нагружен входным импедансом следующего каскада. Это важно, потому что это уменьшает сложность цепей до гораздо более простых RLC-цепей, фильтров и делителей напряжения.

Взгляните на следующую схему.

Рисунок 1 Конденсатор, шунтирующий предыдущий каскад, и нагрузка 10 кОм Рисунок 1 – Конденсатор, шунтирующий предыдущий каскад, и нагрузка 10 кОм

Это будет моделировать некоторую цепь источника (например, усилитель) с выходным сопротивлением 50 Ом, который имеет нагрузку 10 кОм и шунтируется конденсатором 10 нФ. Здесь должно быть понятно, что схема, по сути, является RC-фильтром нижних частот, выполненным из R1 и C1. Из базового анализа цепей мы знаем, что сдвиг фазы напряжения в RC-цепи будет изменяться от 0° до -90°, и моделирование подтверждает это.

Рисунок 2 Логарифмические АЧХ и ФЧХ нашей схемы с шунтирующим конденсатором Рисунок 2 – Логарифмические АЧХ и ФЧХ нашей схемы с шунтирующим конденсатором

Для низких частот фаза выходного сигнала не зависит от конденсатора. Когда мы доберемся до частоты среза (fср) RC-фильтра, фаза падает до -45°. Для частот выше частоты среза фаза приближается к своему асимптотическому значению -90°.

Эта фазо-частотная характеристика моделирует сдвиг фазы, вызванный любым шунтирующим конденсатором. Шунтирующий конденсатор вызовет сдвиг фазы на резистивной нагрузке между 0° и -90°. Конечно, также важно помнить и об ослаблении.

Аналогичный взгляд на последовательный конденсатор (например, конденсатор емкостной связи по переменному току) показывает типовой эффект подобной схемы.

Рисунок 3 Схема с последовательным конденсатором. Рисунок 3 – Схема с последовательным конденсатором. Рисунок 4 . и графики ее амплитудно-частотной и фазо-частотной характеристик Рисунок 4 – . и графики ее амплитудно-частотной и фазо-частотной характеристик

В этом случае сдвиг фазы начинается с +90°, а фильтр является фильтром верхних частот. За пределами частоты среза, в конечном итоге, устанавливается значение 0°. Итак, мы видим, что последовательный конденсатор всегда будет вносить сдвиг фазы между +90° и 0°.

Усилитель с общим эмиттером

Имея в распоряжении эту информацию, мы можем применить RC-модель к любой цепи, к какой захотим. Например, этот усилитель с общим эмиттером.

Рисунок 5 Усилитель с общим эмиттером с сопротивлением обратной связи в цепи эмиттера (смещение не показано) Рисунок 5 – Усилитель с общим эмиттером с сопротивлением обратной связи в цепи эмиттера (смещение не показано)

Частотные характеристики данного усилителя будут плоскими примерно до 10 МГц.

Рисунок 6 Логарифмические амплитудно-частотная и фазо-частотная характеристики усилителя с общим эмиттером Рисунок 6 – Логарифмические амплитудно-частотная и фазо-частотная характеристики усилителя с общим эмиттером

Только после примерно 10 МГц мы видим изменения сдвига фазы – ниже 180°, что мы и ожидаем, поскольку схема с общим эмиттером представляет собой инвертирующий усилитель. Выходной импеданс усилителя, пренебрегая эффектом Эрли, равен R2 = 3 кОм, что довольно высоко.

Теперь мы поставили на выходе шунтирующий конденсатор. Что мы можем ожидать от фазы?

Рисунок 7 Усилитель с общим эмиттером с шунтирующим конденсатором на выходе Рисунок 7 – Усилитель с общим эмиттером с шунтирующим конденсатором на выходе

Исходя из нашего опыта, мы ожидаем, что частота среза будет составлять 53 Гц, ниже которой сдвиг фазы должен быть 180° (без влияния конденсатора), и выше которой сдвиг фазы будет равен 180° — 90° = 90° (а также большие потери). Моделирование подтверждает наши подозрения:

Читайте также:  Эффективное напряжение переменного тока 220в

Рисунок 8 Графики АЧХ и ФЧХ для усилителя с общим эмиттером с емкостной нагрузкой Рисунок 8 – Графики АЧХ и ФЧХ для усилителя с общим эмиттером с емкостной нагрузкой

Обратите внимание, что это эквивалентно тому, если бы фаза изменялась от -180° до -270°. Теперь мы начинаем понимать, что питание емкостной нагрузки может привести к неожиданным изменениям фазы, что может нанести ущерб усилителю с неожиданной обратной связью.

В более распространенном сценарии на выходе используется последовательно включенный конденсатор связи, как показано на следующей схеме.

Рисунок 9 Усилитель с общим эмиттером с последовательно включенным на выходе конденсатором Рисунок 9 – Усилитель с общим эмиттером с последовательно включенным на выходе конденсатором

Я изменил номиналы элементов схемы и добавил резистивную нагрузку 100 кОм. Теперь мы имеем фильтр верхних частот, состоящий из C1 и R3, с частотой среза всего 1,6 Гц. Мы ожидаем, что сдвиг фазы будет равен -90° на частотах ниже 1,6 Гц и -180° на частотах выше частоты среза, что подтверждается моделированием.

Рисунок 10 Графики АЧХ и ФЧХ для усилителя с общим эмиттером с конденсатором связи по переменному току Рисунок 10 – Графики АЧХ и ФЧХ для усилителя с общим эмиттером с конденсатором связи по переменному току

Конденсатор связи с таким номиналом подошел бы для сигналов звуковой частоты, поскольку область сдвига фазы -90° (и, следовательно, затухания) значительно ниже 10 Гц.

Конечно, такого рода эффекты не ограничиваются конденсаторами. Индуктивности будут оказывать противоположное влияние: шунтирующие катушки индуктивности вызывают сдвиг фазы от 0° (ниже fср) до +90° (значительно выше fср), в то время как последовательно включенные катушки индуктивности вызывают сдвиг фазы от 0° (выше fср) до -90° (ниже fср) , Однако в этом случае необходимо быть осторожным, чтобы не создавать проблемных замыканий на землю, поскольку катушки индуктивности для постоянного тока будут представлять собой короткое замыкание.

Рисунок 11 Усилитель с общим эмиттером с катушкой индуктивности на выходе. Эта последовательно включенная индуктивность будет оказывать очень малое влияние на схему на низких частотах. На высоких частотах всё будет по-другому. Рисунок 11 – Усилитель с общим эмиттером с катушкой индуктивности на выходе. Эта последовательно включенная индуктивность будет оказывать очень малое влияние на схему на низких частотах. На высоких частотах всё будет по-другому.

Заключение

Мы заложили основу для понимания сдвига фазы в аналоговых схемах. Рассматривая выход схемы как источник с выходным сопротивлением, мы можем эффективно моделировать влияние реактивных нагрузок на фазу схемы. Таким образом, можно моделировать как пассивные, так и активные схемы, что дает нам полезные инструменты для простого анализа и проектирования. В следующей статье мы проверим эти концепции, применив их к схемам на операционных усилителях и к резонансным контурам.

Источник

Что такое фаза, фазовый угол и сдвиг фаз

Говоря о переменном токе, часто оперируют такими терминами как «фаза», «фазовый угол», «сдвиг фаз». Обычно это касается синусоидального переменного или пульсирующего тока (полученного путем выпрямления синусоидального тока).

Поскольку периодическое изменение ЭДС в сети или тока в цепи — это гармонический колебательный процесс, то и функция, описывающая данный процесс, — гармоническая, то есть синус или косинус, в зависимости от начального состояния колебательной системы.

Аргументом функции в данном случае является как раз фаза, то есть положение колеблющейся величины (тока или напряжения) в каждый рассматриваемый момент времени относительно момента начала колебаний. А сама функция принимает значение колеблющейся величины, в этот же момент времени.

Что такое фаза, фазовый угол и сдвиг фаз

Чтобы лучше понять значения термина «фаза», обратимся к графику зависимости напряжения в однофазной сети переменного тока от времени. Здесь мы видим что, напряжение изменяется от некоторого максимального значения Um до -Um, периодически проходя чрез ноль.

Что такое фаза

Напряжение в однофазной сети

В процессе изменения, напряжение принимает множество значений в каждый момент времени, периодически (спустя период времени Т) возвращаясь к тому значению, с которого начиналось наблюдение за данным напряжением.

Можно сказать, что в любой момент времени напряжение находится в определенной фазе, которая зависит от нескольких факторов: от времени t, прошедшего от начала колебаний, от угловой частоты, и от начальной фазы. То что стоит в скобках — полная фаза колебаний в текущий момент времени t. Пси — начальная фаза.

Фазовый угол

Начальную фазу называют в электротехнике еще начальным фазовым углом, поскольку фаза измеряется в радианах или в градусах, как и все обычные геометрические углы. Пределы изменения фазы лежат в интервале от 0 до 360 градусов или от 0 до 2*пи радиан.

На приведенном выше рисунке видно, что в момент начала наблюдения за переменным напряжением U, его значение не было нулем, то есть фаза уже успела в данном примере отклониться от нуля на некоторый угол Пси, равный около 30 градусов или пи/6 радиан — это и есть начальный фазовый угол.

В составе аргумента синусоидальной функции, Пси является константной, поскольку данный угол определяется в начале наблюдения за изменяющимся напряжением, и потом уже в принципе не изменяется. Однако его наличие определяет общий сдвиг синусоидальной кривой относительно начала координат.

По ходу дальнейшего колебания напряжения, текущий фазовый угол изменяется, вместе с ним изменяется и напряжение.

Для синусоидальной функции, если полный фазовый угол (полная фаза с учетом начальной фазы) равен нулю, 180 градусам (пи радиан) или 360 градусам (2*пи радиан), то напряжение принимает нулевое значение, а если фазовый угол принимает значение 90 градусов (пи/2 радиан) или 270 градусов (3*пи/2 радиан) то в такие моменты напряжение максимально отклонено от нуля.

Читайте также:  Зависимость силы тока от свойств проводника характеризуется

Фазовый сдвиг

Фазовый сдвиг

Обычно в ходе электротехнических измерений в цепях переменного синусоидального тока (напряжения), наблюдение ведут одновременно и за током и за напряжением в исследуемой цепи. Тогда графики тока и напряжения изображают на общей координатной плоскости.

В этом случае частота изменения тока и напряжения идентичны, но различны, если смотреть на графики, их начальные фазы. В этом случае говорят о фазовом сдвиге между током и напряжением, то есть о разности их начальных фазовых углов.

Фазовый сдвиг на осциллографе

Иными словами фазовый сдвиг определяет то, на сколько одна синусоида смещена во времени относительно другой. Фазовый сдвиг, как и фазовый угол, измеряется в градусах или радианах. По фазе опережает тот синус, период которого начинается раньше, а отстает по фазе тот, чей период начинается позже. Фазовый сдвиг обозначают обычно буквой Фи.

Фазовый сдвиг, например, между напряжениями на проводах трехфазной сети переменного тока относительно друг друга является константой и равен 120 градусов или 2*пи/3 радиан.

Источник



Фазосдвигающие трансформаторы

Фазовый сдвиг возникает в сетях переменного тока и представляет собой модуль разности начальных фаз. Являясь величиной постоянной, он не зависит от того, в какой момент начался отсчет. В электрических коммуникациях поток мощности пропорционален синусу угла этого модуля. Фазовый сдвиг возникает между направлением потока источника электричества в начале сети и приемником в ее конце.

Если линии электропередачи отличаются передаваемой мощностью, их потоки можно перераспределить. Для этого меняется фазовый сдвиг (его угол) между направлениями источника и приемника в трехфазной сети. В этом случае удается загрузить линии максимально корректно. При естественном распределении маломощные линии слишком нагружаются. Возрастают потери энергии. Мощные же линии ограничиваются в своей пропускной способности.

Схема устройства фазоповоротного трансформатора

Менять фазовый сдвиг можно при помощи специального оборудования. Им является фазосдвигающий трансформатор (ФСТ).

  • 1 Принцип работы
  • 2 Общая характеристика
  • 3 Конструкция
  • 4 Компаундирование

Принцип работы

Фазовый сдвиг лежит в основе работы представленного оборудования. Он появляется в момент прохождения и задержания в системе электрического сигнала. Специальные четырехполюсные приборы вносят сдвиг на пути между поступающим и исходящим напряжением.

Измеритель фазового сдвига может быть разным. Для этого применяются разные методы. Например, измерение фазового сдвига может выполняться при помощи компенсационного, осциллографического, преобразовательного подхода, а также метода дискретного подсчета.

В электрическую цепь сдвиг вводится при помощи фазовращателей. Это позволяет контролировать и регулировать весь процесс. При использовании мостовой схемы с фазовым сдвигом применяется, например, RC-фазовращатель. На плечи с равным сопротивлением подается напряжение. Между источником и приемником образуется сдвиг. Их напряжения сдвигаются относительно друг друга на 90º. Но сумма показателей всегда равна входному значению. Могут использоваться и другие схемы.

При осуществлении внесения сдвига в систему могут применяться также индуктивные, емкостные, диэлектрические, поляризационные или ступенчатые фазовращатели. Выбор методики зависит от частот, которые присутствуют в цепи.

Для уменьшения величины погрешности при замерах малых сдвига используют подход умножения частоты. Для высоких и сверхвысоких частот применяют понижение при помощи гетеродинного преобразования.

Широкие возможности при измерении фазового сдвига открываются при использовании для их построения микропроцессора. Он работает совместно с измерителями. Наблюдения проводятся в установленном периоде. При этом удается вести их статистику (дисперсию, математическое ожидание, отклонения и т. д.).

Общая характеристика

Применение фазоповоротных трансформаторов началось еще с 1969 года в Великобритании. В Европе подобные агрегаты устанавливают с конца прошлого столетия. Их еще называют кросс-трансформаторами. Такие устройства обладают сложным устройством. Встречаются приборы двухтрансформаторной мостовой схемы с фазовым сдвигом или иные разновидности. Они предназначены для управления активной и реактивной мощностью для трехфазных сетей.

Применение представленных агрегатов позволяет в режиме максимальной загруженности снять напряжение и перераспределить его оптимальным образом. Установка такого сооружения обходится дорого. Однако оно окупается быстро. Условия работы коммуникаций энергоснабжения оптимизируется. Это особенно важно для мощных линий электропередач.

Конструкция оборудования сложна. Она включает в себя множество обмоток, регуляторов напряжения и соединений между тремя фазами. Одним из таких регуляторов может быть трансформатор фазового компаундирования.

Конструкция

Фазосдвигающие трансформаторы состоят из двух отдельных установок. Это последовательный и параллельный трансформаторы. Второй агрегат имеет первичную обмотку в виде треугольника. Она отвечает за организацию трехфазной системы со смещением на 90º. Вторичная обмотка может представлять собой изолированные фазы с отпаечным блоком и заземленным центром.

Вторичная обмотка параллельного трансформатора подключается к первичной обмотке последовательного аппарата при помощи выхода переключателя блока. Этот процесс осуществляется по схеме звезда.

Вторичные катушки последовательного агрегата имеют вид трех изолированных фаз. Они последовательно включаются в рассечку проводов. Они соотносятся по фазе. Их подводят к вектору источника напряжения с добавлением элемента, сдвинутого по фазе на 90º.

На выходе определяется нагрузка, равная сумме направлений напряжений генератора и элемента влияния фазоповоротного трансформатора. Основные характеристики воздействия прибора можно регулировать при помощи устройства отпаек. Настройку можно производить для каждой линии.

Читайте также:  Сила тока двигателя стиральной машины

Компаундирование

Стоимость фазоповоротных трансформаторов достаточно велика. В России пока не применяется ни одной подобной установки. Однако разрабатывается множество проектов по внедрению в энергетические коммуникации подобного оборудования. Это финансово оправдано особенно в масштабных, высоковольтных коммуникациях. Их эффективность работы значительно увеличивается. Оборудование не подвергается нагрузкам, меньше изнашивается. Оптимальное распределение электричества выгодно во всех отношениях. Поэтому представленное направление сегодня развивается и в нашей стране.

Возможно регулировать электричество в сети посредством управления напряжением генератора. Устройство, которое стабилизирует напряжение по току, называется компаундирующим. Если же прибор управляет величиной фазы нагрузки, его называют фазовым компаундированием. В этом случае геометрически складываются два сигнала. Первый из них пропорционален току, а второй – напряжению генератора.

Компаундирующие трансформаторы работают с однофазной сетью. Их вторичные обмотки соединяются в треугольник. Такие приборы при включении их в схему генератора компенсируют падение напряжения на источнике тока. На зажимах этот показатель изменится значительно меньше, чем без применения компаундирующего трансформатора.

Развитие системы распределения напряжения в энергетических сетях актуально для нашей страны. Представленное оборудование позволяет повысить качество электроснабжения, снизить затраты на осуществление этого процесса.

Источник

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник