Меню

Сила тока в колебательном контуре изменяется по гармоническому закону

Электромагнитные колебания

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур — это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания — периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент: . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия. Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же — координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть: . Конденсатор перезаряжается — на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия. Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть: . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Аналогия. Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти: . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть: . Ток убывает, конденсатор заряжается (рис. 8 ).

Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода: . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Данный момент идентичен моменту , а данный рисунок — рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия. Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

Здесь, как вы уже поняли, — жёсткость пружины, — масса маятника, и — текущие значения координаты и скорости маятника, и — их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона. Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими, если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока — ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной 0)’ alt='(I > 0)’/> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора — это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае — заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если 0′ alt=’I > 0′/> , то заряд левой пластины возрастает, и потому 0′ alt=’\dot > 0′/> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если — функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

Читайте также:  Конденсаторы для цепей переменного тока

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз — по закону синуса:

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс — резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Источник

СВОБОДНЫЕ НЕЗАТУХАЮЩИЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ.

Свободные незатухающие электромагнитные колебания можно получить в электрической цепи, состоящей из последовательно соединенных конденсатора емкостью С, катушки индуктивностью L и резистора сопротивлением R:

Такую электрическую цепь называют колебательным контуром, потому что в ней могут происходить периодические изменения электрического заряда и разности потенциалов на обкладках конденсатора, а также электрического тока в цепи. Периодические колебания перечисленных физических величин достаточно вызвать даже при кратковременном подключении конденсатора колебательного контура к источнику постоянного тока. Однако, из-за потерь электрической энергии, связанной с нагреванием катушки и резистора, имеющих электрическое сопротивление R, колебания в контуре будут затухающими.

Свободные незатухающие электромагнитные колебания можно получить только в идеализированном случае, когда можно пренебречь электрическим сопротивлением (R 0) контура. Такие свободные незатухающие колебания называют еще собственными электромагнитными колебаниями.

Можно доказать, что в колебательном контуре происходят гармонические колебания заряда, согласно закону:

где : q — мгновенное значение заряда конденсатора;

q — амплитудное значение электрического заряда;

w — собственная частота колебаний в контуре.

Форма записи (через cos или sin) не имеет значения, так как отличие будет определяться лишь начальными условиями, а именно различной начальной фазой колебаний. Зная связь между зарядом конденсатора и разностью потенциалов на его обкладках:

можно аналогично записать гармонические колебания разности потенциалов:

где: U — мгновенное значение напряжения на обкладках конденсатора;

U — амплитудное значение напряжения;

w — собственная частота колебаний в контуре.

Сила тока является первой производной от электрического заряда по времени:

Поэтому гармонические колебания силы тока в колебательном контуре будут происходить по закону:

где: i — мгновенное значение тока в контуре;

J = q w — амплитудное значение тока;

w — собственная частота колебаний в контуре.

Циклическая частота w называется собственной частотой электромагнитных колебаний, она зависит только от параметров колебательного контура, а именно — от емкости конденсатора С и индуктивности L:

Период собственных электромагнитных колебаний, соответственно, вычисляется по формуле (Формула Томсона.):

Физические процессы, происходящие в колебательном контуре, сопровождается непрерывными преобразованиями одного вида энергии в другой, а именно: энергия электрического заряда конденсатора превращается в энергию магнитного поля катушки и наоборот. При этом, в полном соответствии с законом сохранения и превращения энергии, полная энергия в колебательном контуре остается величиной постоянной:

где: U и J — соответственно напряжение на обкладках конденсатора и сила тока в контуре в любой момент времени; U и J — амплитудные (максимальные) значения этих же величин.

ПЕРИОД И ЧАСТОТА КОЛЕБАНИЙ.

Важнейшей характеристикой механических, электрических, электромагнитных и всех других видов колебаний является период-время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5 с. Период колебаний больших качелей — около 2 с, а период колебаний струны может быть от десятых до десятитысячных долей секунды.

Другой величиной, характеризующей колебания, является частота (от слова «частое-число, показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащие тела, ток в проводнике и т. п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут: Гц): 1 Гц-это одно колебание в 1 с. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создает тон «ля» первой октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При таком токе электроны в .проводниках в течение 1 с текут попеременно 50 раз в одном направлении н столько же раз в обратном, т. е. совершают за 1 с 50 полных колебаний.

Более крупные единицы частоты-килогерц (пишут: кГц), равный 1000 Гц, и мегагерц (пишут: МГц), равный 1000 кГц, или 1000000 Гц.

Вынужденные электромагнитные колебания. Установившиеся вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение методом векторных диаграмм. Явление резонанса. Резонанс токов и напряжений.

Вынужденные колебания.

Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями.

Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Периодический внешний источник обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.

Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω.

Если частота ω свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника.

Читайте также:  Защита по квадрату тока

Для установления стационарных вынужденных колебаний необходимо некоторое время Δt после включения в цепь внешнего источника. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.

Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока.

Рассмотрим последовательный колебательный контур, то есть RLC-цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рис. 2.3.1):

где – амплитуда, ω – круговая частота.

Вынужденные колебания в контуре

Предполагается, что для электрической цепи, изображенной на рис. 2.3.1, выполнено условие квазистационарности. Поэтому закон Ома можно записать для мгновенных значений токов и напряжений:

Величина – это перенесенная с изменением знака из правой части уравнения в левую ЭДС самоиндукции катушки. Эту величину принято называть напряжением на катушке индуктивности.

Уравнение вынужденных колебаний можно записать в виде

где uR(t), uC(t) и uL(t) – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами UR, UC и UL. При установившихся вынужденных колебаниях все напряжения изменяются с частотой ω внешнего источника переменного тока. Для наглядного решения уравнения вынужденных колебаний можно использовать метод векторных диаграмм.

На векторной диаграмме колебания определенной заданной частоты ω изображаются с помощью векторов (рис. 2.3.2).

Изображение гармонических колебаний A cos (ωt + φ1), B cos (ωt + φ2) и их суммы C cos (ωt + φ) с помощью векторов на векторной диаграмме Длины векторов на диаграмме равны амплитудам колебаний A и B, а наклон к горизонтальной оси определяется фазами колебаний φ1 и φ2. Взаимная ориентация векторов определяется относительным фазовым сдвигом Δφ = φ1 – φ2. Вектор, изображающий суммарное колебание, строится на векторной диаграмме по правилу сложения векторов:

Для того, чтобы построить векторную диаграмму напряжений и токов при вынужденных колебаниях в электрической цепи, нужно знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для всех участков цепи.

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением R, конденсатору емкости C и катушки индуктивности L. Во всех трех случаях напряжения на резисторе, конденсаторе и катушке равны напряжению источника переменного тока.

Резонанс

Явление возрастания амплитуды колебаний тока при совпадении частоты ω внешнего источника с собственной частотой ω электрической цепи называется электрическим резонансом. При резонансе

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений. Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R, L и C (так называемый резонанс токов).

При последовательном резонансе (ω = ω) амплитуды UC и UL напряжений на конденсаторе и катушке резко возрастают:

Было введено понятие добротности RLC-контура:

Таким образом, при резонансе амплитуды напряжений на конденсаторе и катушке в Q раз превышают амплитуду напряжения внешнего источника.

Резонансные кривые для контуров с различными значениями добротности Q. Рис. 2.3.4 иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды UC напряжения на конденсаторе к амплитуде напряжения источника от его частоты ω для различных значений добротности Q. Кривые на рис. 2.3.3 называются резонансными кривыми.

Источник



Колебательный контур

Разделы: Физика

Постановка задачи: Мы уже много знаем о механических колебаниях: свободные и вынужденные колебания, автоколебания, резонанс и т.д. Приступаем к изучению электрических колебаний. Тема сегодняшнего урока: получение свободных электромагнитных колебаний.

Вспомним вначале: Каким условиям должна соответствовать колебательная система, система, в которой могут возникать свободные колебания. Ответ: в колебательной системе должна возникать возвращающая сила и происходить превращение энергии из одного вида в другой.

(Разбор нового материала по презентации с подробным пояснением всех процессов и записью в тетради первых двух четвертей периода, 3 и 4-ые четверти описать дома, по образцу).

Колебательный контур – это электрическая цепь, в которой можно получить свободные электромагнитные колебания. К.К. состоит всего из двух приборов: катушки индуктивностью L и конденсатора электроёмкостью С. Идеальный колебательный контур не имеет сопротивления.

Чтобы сообщить энергию в К.К., т.е. вывести его из положения равновесия, нужно временно разомкнуть его цепь и поставить ключ с двумя положениями. Когда ключ замкнут на источник тока, то конденсатор заряжается до максимального заряда. Этим подают в К.К. энергию в виде энергии электрического поля. Когда ключ замкнут в правое положение, то источник тока отключен, К.К. предоставлен самому себе.

Такое состояние К.К. соответствует положению математического маятника в крайнем правом положении, когда его вывели из состояния покоя. Колебательный контур выведен из положения равновесия Заряд конденсатора – максимален и энергия заряженного конденсатора – энергия электрического поля максимальна. Будем рассматривать весь процесс, который происходит в нём по четвертям периода.

В 1-ый момент конденсатор заряжен до максимального заряда (нижняя обкладка заряжена положительно), энергия в нём сосредоточена в виде энергии электрического поля. Конденсатор замкнут сам на себя, и он начинает разряжаться. Положительные заряды по закону Кулона притягиваются к отрицательным, и возникает ток разрядки, направленный против часовой стрелки. Если бы на пути тока не было бы катушки индуктивности, то всё произошло бы мгновенно: конденсатор бы просто разрядился. Накопленные заряды компенсировали бы друг друга, энергия электрическая превратилась бы в тепловую. Но в катушке возникает магнитное поле, направление которого можно определить по правилу буравчика – «вверх». Магнитное поле — растущее и возникает явление самоиндукции, которое препятствует росту тока в нём. Ток растёт не мгновенно, а постепенно, в течение всей 1-ой четверти периода. За это время ток будет расти до тех пор, пока его поддерживает конденсатор. Как только конденсатор разрядится, ток больше не растёт, он к этому моменту достигнет максимального значения. Конденсатор разрядился, заряд равен 0, значит и энергия электрического поля равна 0. Но в катушке течёт максимальный ток, вокруг катушки существует магнитное поле, значит, произошло превращение энергии электрического поля в энергию магнитного поля. К концу 1-ой четверти периода в К.К.ток максимальный, энергия сосредоточена в катушке в виде энергии магнитного поля. Это соответствует, тому положению маятника, когда он проходит положение равновесия.

В начале 2-ой четверти периода, конденсатор разряжен, а ток достиг максимального значения и он должен был бы мгновенно исчезнуть, ведь конденсатор его не поддерживает. И ток действительно начинает резко убывать, но он течёт по катушке, и в ней возникает явление самоиндукции, которое препятствует любому изменению магнитного поля, вызывающего это явление. ЭДС самоиндукции поддерживает исчезающее магнитное поле, индукционный ток имеет то же направление, что и существующий. В К.К. ток течёт против часовой стрелки – в пустой конденсатор. В конденсаторе накапливается электрический заряд — на верхней обкладке – положительный заряд. Ток течёт до тех пор, пока его поддерживает магнитное поле, до конца 2-ой четверти периода. Конденсатор зарядится до максимального заряда (если не произойдёт утечки энергии), но противоположного направления. Говорят, конденсатор перезарядился. К концу 2-ой четверти периода ток исчезает, значит, энергия магнитного поля равна 0.Конденсатор перезарядился, его заряд равен ( – максимальному). Энергия сосредоточена в виде энергии электрического поля. В течение этой четверти произошло превращение энергии магнитного поля в энергию электрического поля. Состояние колебательного контура соответствует такому положению маятника, при котором он отклоняется в крайнее левое положение.

В 3-ей четверти периода происходит всё также, что и в 1-ой четверти, только противоположного направления. Конденсатор начинает разряжаться. Ток разрядки растёт постепенно, в течение всей четверти, т.к. быстрому росту его препятствует явление самоиндукции. Ток растёт до максимальной величины, пока конденсатор не разрядится. К концу 3-ей четверти энергия электрического поля превратится в энергию магнитного поля, полностью, если не будет утечки. Это соответствует такому положению маятника, когда он снова проходит положение равновесия, но в противоположном направлении.

Читайте также:  Регулировка тока сварки по сети

В 4-ой четверти периода происходит всё так же, как и во 2-ой четверти, только в противоположном направлении. Ток, поддерживаемый магнитным полем, постепенно убывает, поддерживаемый ЭДС самоиндукции и перезаряжает конденсатор, т.е. возвращает его к первоначальному положению. Энергия магнитного поля превращается в энергию электрического поля. Что соответствует возвращению математического маятника в первоначальное положение.

Анализ рассмотренного материала:

1. Можно ли колебательный контур рассматривать, как колебательную систему? Ответ: 1. В колебательном контуре происходит превращение энергии электрического поля в энергию магнитного поля и наоборот. 2. Явление самоиндукции играет роль возвращающей силы. Поэтому колебательный контур рассматривать, как колебательную систему. 3. Колебания в К.К. можно считать свободными.

2. Можно ли колебания в К.К. рассматривать, как гармонические? Анализируем изменение величины и знака заряда на обкладках конденсатора и мгновенного значения тока и его направления в цепи.

На графике видно:

  1. Заряд и сила тока изменяются по гармоническому закону, и мы можем записать соответствующие законы.
  2. Фазы колебаний тока и заряда не совпадают. Заряд опережает ток по фазе на периода.

3. Что в колебательном контуре колеблется? Какие физические тела совершают колебательные движения? Ответ: колеблются электроны, они совершают свободные колебания.

4. Какие физические величины изменяются при работе колебательного контура? Ответ: изменяются сила тока в цепи, заряд в конденсаторе, напряжение на обкладках конденсатора, энергия электрического поля и энергия магнитного поля.

5. Период колебаний в колебательном контуре зависит только от индуктивности катушки L и ёмкости конденсатора C. Формула Томсона: Т = 2π можно сравнить и с формулами для механических колебаний.

Источник

Физика

Электромагнитные колебания, возникающие в идеальном колебательном контуре (при отсутствии в нем активного сопротивления), описываются уравнениями, аналогичными уравнениям механических колебаний. В идеальном электромагнитном контуре заряд на обкладках конденсатора, разность потенциалов (напряжение) между его обкладками и сила тока в катушке индуктивности изменяются с течением времени по гармоническим законам.

Зависимость заряда на обкладках конденсатора от времени описывается уравнениями:

q ( t ) = q max sin ( ω t + φ 0 ) или q ( t ) = q max cos ( ω t + φ 0 ) ,

где q max — максимальное значение заряда ( амплитуда заряда ); φ — фаза колебаний, φ = ω t + φ 0 ; φ 0 — начальная фаза колебаний.

Для упрощения этих уравнений целесообразно пользоваться правилами:

1) если колебания начинаются при полностью заряженном конденсаторе (в начальный момент времени заряд конденсатора максимален), то для описания колебаний заряда выбирают формулу

q ( t ) = q max cos ω t ;

2) если колебания начинаются при полностью разряженном конденсаторе (в начальный момент времени заряд конденсатора равен нулю), то для описания колебаний заряда выбирают формулу

q ( t ) = q max sin ω t .

Зависимость напряжения между обкладками конденсатора от времени описывается уравнениями:

U ( t ) = U max sin ( ω t + φ 0 ) или U ( t ) = U max cos ( ω t + φ 0 ) ,

где U max — максимальное значение напряжения ( амплитуда напряжения ); φ — фаза колебаний, φ = ω t + φ 0 ; φ 0 — начальная фаза колебаний.

Для упрощения этих уравнений целесообразно пользоваться правилами:

1) если колебания начинаются при полностью заряженном конденсаторе (в начальный момент времени заряд конденсатора и разность потенциалов на его обкладках максимальны), то для описания колебаний напряжения выбирают формулу

U ( t ) = U max cos ω t ;

2) если колебания начинаются при полностью разряженном конденсаторе (в начальный момент времени заряд конденсатора и разность потенциалов на его обкладках равны нулю), то для описания колебаний напряжения выбирают формулу

U ( t ) = U max sin ω t .

Зависимость силы тока в катушке индуктивности от времени описывается уравнениями:

I ( t ) = I max sin ( ω t + φ 0 ) или I ( t ) = I max cos ( ω t + φ 0 ) ,

где I max — максимальное значение силы тока ( амплитуда силы тока ); φ — фаза колебаний, φ = ω t + φ 0 ; φ 0 — начальная фаза колебаний.

Для упрощения этих уравнений целесообразно пользоваться правилами:

1) если электромагнитные колебания начинаются при максимальной силе тока в катушке индуктивности, то для описания колебаний силы тока выбирают формулу

I ( t ) = I max cos ω t ;

2) если электромагнитные колебания начинаются при отсутствии силы тока в катушке индуктивности, то для описания колебаний силы тока выбирают формулу

I ( t ) = I max sin ω t .

При решении задач на электромагнитные гармонические колебания следует помнить, что одно полное колебание происходит за время, равное периоду колебаний; при этом любая из величин, изменяющихся по гармоническому закону (заряд, напряжение, сила тока), проходит ряд последовательных состояний, возвращаясь в исходное состояние с начальным значением соответствующей величины:

1. Если колебания начинаются при полностью заряженном конденсаторе (рис. 10.13), то через время, равное:

  • четверти периода ( t = T /4), конденсатор полностью разряжается, а в катушке индуктивности течет максимальный ток в определенном направлении;
  • половине периода ( t = T /2), ток в катушке индуктивности полностью исчезает, а на обкладках конденсатора вновь появляется максимальный заряд, однако обкладки конденсатора меняют знак (полярность);
  • трем четвертям периода ( t = 3 T /4), в катушке индуктивности сила тока вновь принимает максимальное значение, однако ток в этом случае течет в противоположном направлении;
  • периоду ( t = T ), колебательный контур возвращается в исходное состояние: конденсатор полностью заряжен, его обкладки имеют исходную полярность, ток в катушке индуктивности отсутствует.

2. Если колебания начинаются при максимальном токе в катушке индуктивности (рис. 10.14), то через время, равное:

  • четверти периода ( t = T /4), ток в катушке полностью исчезает, а на обкладках конденсатора появляется максимальный заряд;
  • половине периода ( t = T /2), ток в катушке вновь принимает максимальное значение, однако направление тока при этом противоположно первоначальному, конденсатор полностью разряжается;
  • трем четвертям периода ( t = 3 T /4), в катушке индуктивности ток вновь отсутствует, а обкладки конденсатора заряжаются полностью, однако полярность обкладок (знак заряда) противоположная;
  • периоду ( t = T ), колебательный контур возвращается в исходное состояние: в катушке течет максимальный ток в первоначальном направлении, а конденсатор полностью разряжен.

Мгновенные значения (значения в один и тот же произвольный момент времени) заряда на обкладках конденсатора, напряжения между ними и силы тока в катушке связаны между собой соотношениями:

  • величины заряда на обкладках конденсатора и напряжения между ними —

где q ( t ) — мгновенное значение заряда на обкладках конденсатора; C — электроемкость конденсатора; U ( t ) — мгновенное значение напряжения на его обкладках;

  • величины заряда на обкладках конденсатора и модуля силы тока в катушке индуктивности —

где I ( t ) — мгновенное значение силы тока в катушке индуктивности; ω — циклическая частота колебаний; q * ( t ) — мгновенное значение заряда на обкладках конденсатора, q * ( t ) = q max cos(ω t + π/2).

Максимальные значения заряда на обкладках конденсатора, напряжения между ними и силы тока в катушке связаны между собой соотношениями:

  • величины максимального заряда на обкладках конденсатора и максимального значения напряжения —

где q max — максимальный заряд на обкладках конденсатора; C — электроемкость конденсатора; U max — максимальная разность потенциалов (напряжение) между обкладками конденсатора;

  • величины максимального заряда на обкладках конденсатора и максимального значения силы тока в катушке индуктивности —

где I max — максимальное значение силы тока в катушке индуктивности; ω — циклическая частота колебаний; q max — максимальный заряд на обкладках конденсатора.

Пример 10. В идеальном контуре возбуждены электромагнитные гармонические колебания, в результате которых напряжение между обкладками конденсатора изменяется по закону

U ( t ) = 0,50 cos π t / 2 ,

где U — напряжение в вольтах; t — время в секундах.

Найти величину заряда на обкладках конденсатора через 0,50 с после начала колебаний, если конденсатор имеет электроемкость 20 мкФ.

Решение . Напряжение на обкладках конденсатора изменяется по гармоническому закону и через указанное время t = 0,50 с составляет

U = 0,50 cos π / 4 = 0,25 2 В.

Величина заряда на обкладках конденсатора связана с разностью потенциалов (напряжением) между ними формулой

где q — искомый заряд в указанный момент времени; C — электроемкость конденсатора, C = 20 мкФ; U — рассчитанная разность потенциалов (напряжение) между обкладками конденсатора в тот же момент времени, U = 0,25 2 В.

Отсюда следует, что искомый заряд определяется произведением

q = 20 ⋅ 10 − 6 ⋅ 0,25 2 ≈ 7,1 ⋅ 10 − 6 Кл = 7,1 мкКл.

Через 0,50 с после начала колебаний заряд конденсатора равен 7,1 мкКл.

Источник