Меню

Схема стабилизатора тока крен5а

Линейный стабилизатор КР142ЕН5А (КРЕН5А)

По своим техническим характеристикам отечественная КР142ЕН5А является трехвыводным линейным стабилизатором постоянного напряжения положительной полярности, на вход которого можно подать до +15 В и получить на выходе фиксированные +5 В. Это микросхема времен СССР, производится с 80-х годов по настоящее время. Добавив к ней небольшое количество других элементов, можно получить регулируемый выход.

Кренка 142ЕН из СССР

Её использовали в различных бытовых приборах для стабилизации напряжения. Например, в стабилизированных блоках питания домашних миникомпьютеров ZX Spectrum, автоматических определителях номера телефона, измерительной технике и всюду, где появлялась необходимость в пятивольтовом питании.

Сегодня, советская КР142ЕН5А морально устарела. Её место, в современных электронных приборах, занимают более компактные и технически совершенные интегральные схемы (ИС). Несмотря на это, она про востребована для ремонта старого оборудования и применяется в учебных целях для изучения принципов работы микросхем в российских технических ВУЗах.

  1. Распиновка
  2. Характеристики
  3. Электрические параметры
  4. Аналоги
  5. Особенности маркировки
  6. Содержание драгметаллов
  7. Типовая схема включения
  8. Регулируемый блок питания
  9. Производители

Распиновка

КР142ЕН5А имеет следующую цоколевку. Первые подобные микросхемы выпускались в прямоугольном металлополимерном КТ-28-2. Для отвода тепла и крепления к монтажной плате он оснащался фланцем c крепежным отверстием диаметром 3.6 мм. В настоящее время устройство продолжают выпускать в зарубежном корпусе ТО-220, который имеет три пластичных вывода: 1 – вход, 2 – общий, 3 – выход. Их расположение показано на рисунке ниже.

 КР142ЕН5А цоколевка

Металлизированный фланец физически соединен с общим выводом — 2.

Характеристики

Предельно допустимые характеристики КР142ЕН5А, сильно зависят от температуры её корпуса (ТКОРП.) и приводятся в даташит производителей отдельно от остальных. Перечислим их:

  • максимальное напряжение на входе (UВХ.) до 15 В, при ТКОРП. = — 45 …+ 70 °C;

при ТКОРП. = — 45 …+ 100 °C:

  • выходное напряжение (UВЫХ.) находится в диапазоне 4.9 … 5.1 В;
  • рассеиваемая мощность (РМАКC.) без радиатора не более 1.5 Вт., с теплоотводом до 10 Вт;
  • предельный выходной ток (при Р ≤ РМАКC.) IМАКC. до 1.5 А.

Электрические параметры

Кроме максимально допустимых значений у КР142ЕН5А есть электрические параметры. Они приводятся совместно с дополнительными условиями их измерения. Все значения в этом перечне справедливы только при условии температуры окружающей среды ТОКР. = + 25 О С.

Электрические параметры КР142ЕН5А

Аналоги

Линейный стабилизатор напряжения КР142ЕН5А является аналогом зарубежных микросхем первого поколения серии LM7805, впервые представленных в 70-х годах американской компанией Fairchild Semiconductor. Это популярная импортная ИС из серии 78xx, так как имеет на выходе наиболее распространенные для питания различных приборов +5 В. Современными аналогами микросхемы являются: А7805Т, KIA7805, L7805CV, LM7805. Отечественную КР142ЕН5В можно так же рассмотреть в качестве полноценной замены.

Особенности маркировки

Условная маркировка кренок

Не все экземпляры КР142ЕН5А имеют полную маркировку на корпусе. Вместо неё указывается условный код, по которому и узнают “кренку”. В этом случае на корпус наносится следующая информация: марка завода-изготовителя, тип микросхемы, год и неделя выпуска.

Встречается так же и другое сокращенное обозначение данного устройства – КРЕН 5А.

Содержание драгметаллов

КР142ЕН5А из-за крайне малого содержания драгметаллов не представляет интереса для скупщиков. А вот другие 142ЕН5 и К142ЕН5 – её аналоги, выпускавшиеся в специальном металлокерамическом корпусе 4116.4-3, имели позолоченные контакты. Они предназначались для нужд военной промышленности и экспериментальных работах. Содержат следующее количество драгметаллов в граммах: золото — 0,0246; серебро — 0,046; платина – 0; МПГ -0.

Типовая схема включения

Типовое подключение КРЕН 5А

В техническом описании приводится типовая схема включения КР142ЕН5А. В ней минимальная емкость керамического или танталового конденсатора С1 = 2,2 мкФ, а для С2 = 1 мкФ. При использовании электролитических конденсаторов, их емкость должна быть больше 10 мкФ, это касается как С1, так и С2.

Регулируемый блок питания

Довольно часто, с применением КР142ЕН5А, делают регулируемый блок питания. На выходе приведенной ниже схеме, можно настроить положительное напряжение в диапазоне от 5.6 до 13 вольт.

Схема регулируемого блока питания на КРЕН 5А

Напряжение +15 В подается на вход стабилизатора. С выхода микросхемы (ножка 3), через транзистор VT1 КТ502А, оно поступает на общий вывод микросхемы (ножка 2). Его величина регулируется переменным резистором R2. При изменении сопротивления на R2, на выходе стабилизатора можно добиться 5.6 В. Оно получаются из суммы напряжений: на выходе (5 В) и между выводами коллектором-эмиттером транзистора VT1. Так как VT1 в данном случае полностью открыт, напряжение на нем равно 0.6 В. Емкость С1 нужна для предотвращения возбуждения микросхемы, а С2 для сглаживания пульсаций.

Рекомендуем также посмотреть видео со схемой регулируемого блока питания, с помощью можно менять полярность напряжения на выходе от +5В до -5В и наоборот.

Производители

Основным отечественным производителем КР142ЕН5А, в настоящее время, является ЗАО «Группа Кремний Эл». Предприятие является правопреемником Брянского завода полупроводниковых приборов, основанного ещё в Советском Союзе. Кроме него, такую же микросхему выпускает Белорусский УП «Завод Транзистор» , г.Минск. Это предприятие является филиалом ОАО «Интеграл». Кликнув по наименованию производителя, можно скачать datasheet на устройство.

Источник

Стабилизаторы тока

В каждой электрической сети периодически возникают помехи, отрицательно влияющие на стандартные параметры тока и напряжения. Данная проблема успешно решается с помощью различных устройств, среди которых очень популярны и эффективны стабилизаторы тока. Они имеют различные технические характеристики, что делает возможным их использование совместно с любыми бытовыми электроприборами и оборудованием. Особые требования предъявляются к измерительному оборудованию, требующему стабильного напряжения.

  1. Общее устройство и принцип работы стабилизаторов тока
  2. Диодный стабилизатор тока
  3. Схемы стабилизаторов тока на КРЕН
  4. Стабилизатор тока на двух транзисторах
  5. Регулируемый стабилизатор постоянного тока
  6. Мощный импульсный стабилизатор тока
  7. Стабилизатор на LM2576

Общее устройство и принцип работы стабилизаторов тока

Знание основных принципов работы стабилизаторов тока способствует наиболее эффективному использованию этих устройств. Электрические сети буквально насыщены различными помехами, негативно влияющими на работу бытовых приборов и электрооборудования. Для преодоления отрицательных воздействий используется схема простого стабилизатора напряжения и тока.

Стабилизаторы тока

В каждом стабилизаторе имеется основной элемент – трансформатор, обеспечивающий работу всей системы. Самая простая схема включает в свой состав выпрямительный мост, соединенный с различными типами конденсаторов и резисторов. Их основными параметрами считаются индивидуальная емкость и предельное сопротивление.

Сам стабилизатор тока работает по очень простой схеме. Когда ток поступает на трансформатор, его предельная частота изменяется. На входе она будет совпадать с частотой электрической сети и составит 50 Гц. После того как будут выполнены все преобразования тока, предельная частота на выходе снизится до 30 Гц. В схеме преобразования участвуют высоковольтные выпрямители, с помощью которых определяется полярность напряжения. Конденсаторы непосредственно участвуют в стабилизации тока, а резисторы снижают помехи.

Диодный стабилизатор тока

Во многих конструкциях светильников имеются диодные стабилизаторы, более известные как стабилизаторы тока для светодиодов. Как и все типы диодов, светодиоды обладают нелинейной вольтамперной характеристикой. То есть, при изменяющемся напряжении на светодиоде, происходит непропорциональное изменение тока.

С ростом напряжения вначале наблюдается очень медленное возрастание тока, в результате, свечение светодиода отсутствует. Затем, когда напряжение достигает порогового значения, начинается излучение света и очень быстрое возрастание тока. Дальнейший рост напряжения приводит к катастрофическому увеличению тока и перегоранию светодиода. Значение порогового напряжения отражается в технических характеристиках светодиодных источников света.

Светодиоды с высокой мощностью требуют установки теплоотвода, поскольку их работа сопровождается выделением большого количества тепла. Кроме того, для них требуется и достаточно мощный стабилизатор тока. Правильная работа светодиодов также обеспечивается стабилизирующими устройствами. Это связано с сильным разбросом порогового напряжения даже у однотипных источников света. Если два таких светодиода подключить параллельно к одному источнику напряжения, по ним будет проходить ток разной величины. Разница может быть настолько существенной, что один из светодиодов сразу же сгорит.

Таким образом, не рекомендуется включение светодиодных источников света без стабилизаторов. Данные устройства устанавливают ток заданного значения без учета напряжения, приложенного к схеме. К наиболее современным приборам относится двухвыводной стабилизатор для светодиодов, применяющийся для создания недорогих решений по управлению светодиодами. В его состав входит полевой транзистор, обвязочные детали и другие радиоэлементы.

Схемы стабилизаторов тока на КРЕН

Данная схема стабильно работает с использованием таких элементов, как КР142ЕН12 или LM317. Они являются регулируемыми стабилизаторами напряжения, работающими с током до 1,5А и входным напряжением до 40В. В нормальном тепловом режиме эти устройства способны рассеивать мощность до 10Вт. Эти микросхемы обладают низким собственным потреблением, составляющим примерно 8мА. Данный показатель остается неизменным даже при изменяющемся токе, проходящем через КРЕН и измененном входном напряжении.

Читайте также:  Nt50509 уменьшение тока подсветки

Элемент LM317 способен удерживать на основном резисторе постоянное напряжение, регулируемое в определенных пределах с помощью подстроечного резистора. Основной резистор с неизменным сопротивлением обеспечивает стабильность проходящего через него тока, поэтому он известен еще, как токозадающий резистор.

Стабилизатор на КРЕН отличается простотой и может использоваться в качестве электронной нагрузки, зарядки аккумуляторов и в других областях.

Стабилизатор тока на двух транзисторах

Благодаря своему простому исполнению, в электронных схемах очень часто используются стабилизаторы на двух транзисторах. Их основным недостатком считается не вполне стабильный ток в нагрузках при изменяющемся напряжении. Если же не требуется высоких токовых характеристик, то данное стабилизирующее устройство вполне сгодится для решения многих несложных задач.

Кроме двух транзисторов в схеме стабилизатора присутствует токозадающий резистор. Когда на одном из транзисторов (VT2) увеличивается ток, возрастает напряжение на токозадающем резисторе. Под действием этого напряжения (0,5-0,6В) начинает открываться другой транзистор (VT1). При открытии этого транзистора, другой транзистор – VT2 начинает закрываться. Соответственно, уменьшается и количество тока, протекающего через него.

В качестве VT2 используется биполярный транзистор, однако в случае необходимости возможно создать регулируемый стабилизатор тока на полевом транзисторе MOSFET, используемом в качестве стабилитрона. Его выбор осуществляется исходя из напряжения 8-15 вольт. Данный элемент используется при слишком высоком напряжении источника питания, под действием которого затвор в полевом транзисторе может быть пробит.

Более мощные стабилитроны MOSFET рассчитаны на более высокое напряжение – 20 вольт и более. Открытие таких стабилитронов происходит при минимальном значении напряжения на затворе 2 вольта. Соответственно, происходит и увеличение напряжения, обеспечивающего нормальную работу схемы стабилизатора тока.

Регулируемый стабилизатор постоянного тока

Иногда возникает необходимость в стабилизаторах тока с возможностью регулировок в широком диапазоне. В некоторых схемах может использоваться токозадающий резистор с пониженными характеристиками. В этом случае необходимо применять усилитель ошибки, основой которого служит операционный усилитель.

С помощью одного токозадающего резистора происходит усиление напряжения в другом резисторе. Это состояние называется усиленным напряжением ошибки. С помощью опорного усилителя сравниваются параметры опорного напряжения и напряжения ошибки, после чего выполняется регулировка состояния полевого транзистора.

Для такой схемы требуется отдельное питание, которое подается к отдельному разъему. Питающее напряжение должно обеспечивать нормальную работу всех компонентов схемы и не превышать уровня, достаточного для пробоя полевого транзистора. Правильная настройка схемы требует установки ползунка переменного резистора в самое верхнее положение. С помощью подстроечного резистора выставляется максимальное значение тока. Таким образом, переменный резистор позволяет выполнять регулировку тока от нуля до максимального значения, установленного в процессе настройки.

Мощный импульсный стабилизатор тока

Стабилизаторы тока

Широкий диапазон питающих токов и нагрузок не всегда является основным требованием к стабилизаторам. В некоторых случаях решающее значение отводится высокому коэффициенту полезного действия прибора. Эту задачу успешно решает микросхема импульсного стабилизатора тока, заменяющая компенсационные стабилизаторы. Приборы этого типа позволяют создавать высокое напряжение на нагрузке даже при наличии невысокого входного напряжения.

Кроме того, существует повышающий стабилизатор тока импульсного типа. Они используются вместе с нагрузками, питающее напряжение которых превышает входное напряжение стабилизирующего устройства. В качестве делителей выходного напряжения используются два резистора, задействованные в микросхеме, с помощью которой входное и выходное напряжение поочередно уменьшается или увеличивается.

Источник



Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Помню в начале 90-х годов стабилизаторы КР142ЕН5А (или как их ещё называли КРЕН5А) были очень популярны: их ставили и в клоны спектрумов и в АОНы, везде где работала ТТЛ и 5-вольтовая К-МОП логика. На сегодняшний день КРЕН5А может показаться монстром в большом корпусе TO-220, с большим падением напряжения (2,5 В), относительно небольшим током (2 А). Сейчас того место которое раньше занимал КРЕН5А на плате, хватит на более мощный импульсный преобразователь. А если поставить современный линейный преобразователь аналогичный старичку, то освободим достаточно пространства. Но на тот момент интегральный линейный стабилизатор обладал несомненными преимуществами по сравнению стабилизаторами на дискретных элементах.

Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования.

Стабилизатор КР142ЕН5А цоколевка

kr142en5-tsokolevka

Раньше при использовании КР142ЕН5А часто пользовались нумерацией выводов от военного аналога 142ЕН5А в металлокерамическом корпусе 4116.4-3. Выводы обозначались так Вход – 17, Общий – 8, Выход – 2. Правильно нумеровать выводы по стандарту для корпусов КТ-28-2 (ТО-220), т.е. так Вход – 1, Общий – 2, Выход – 3.

Схема включения КР142ЕН5А

kren5a-shema

Минимальные емкости конденсаторов:

Параметр Входной С1 Выходной С2
Минимальная емкость для керамического или танталового, мкФ 2,2 1
Минимальная емкость для электролитического, мкФ 10 10

Стабилизатор КР142ЕН5А характеристики

  • Полярность напряжения — положительная;
  • Выходное напряжение — 5 В;
  • Выходной ток — 2 А;
  • Максимальное входное напряжение — 15 В;
  • Разность напряжения вход-выход — 2,5 В;
  • Мощность рассеивания (без теплоотвода) — 1,5 Вт;
  • Мощность рассеивания (с теплоотводом) — 10 Вт;
  • Точность выходного напряжения — ±0,1 В;
  • Диапазон рабочих температур — -45…+70 °C;

Модификации стабилизатора: КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Удивительно, но последняя буква в обозначении стабилизатора напряжения КР142ЕН5 определяет не только второстепенные параметра, но такой важный параметр как напряжение стабилизации: ЕН5Б и ЕН5Г стабилизируют на уровне 6В ! В то время как ЕН5А и ЕН5B – 5В. Отличия ЕН5В и ЕН5Г от ЕН5А и ЕН5Б в худшей стабильности поддержания выходного напряжения: ±4% против ±2% .

Тип
Выходное напряжение, В 4,9…5,1 5,88…6,12 4,82…5,18 5,79…6,21
Температурный коэффициент напряжений, 0,02 0,02 0,03 0,03
Максимальный выходной ток, А 2 2 1,5 1,5

Аналоги

Прототипом для отечественной разработки КР142ЕН5А был стабилизатор А7805Т фирмы «Fairchild Semiconductor». И конечно выпускалось большое количество аналогичных стабилизаторов другими фирмами. В обозначении обычно присутствует код 7805,перед ним может быть буквенное обозначение характеризующее изготовителя.

10 thoughts on “ Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г ”

По идее — стабилизатор для 5-вольтовой логики. На практике — без цепей корректировки не обойтись. Как минимум диод или низкоомный прецизионный резистор ему в «общий», иначе 133, 155, 555 серии сбоили по-черному. Это я о КР142ЕН5А. Остальные, разве что 561 и 564 серию устраивали, со стабилитроном в подпорке. Как результат, для питания логических схем, практически не использовались, а применялись (с небольшой доработкой) в простеньких блоках питания с напряжением 5-15 В, что и обуславливало их распространенность.

«Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования. » — ХА ХА ХА . Я их продолжаю использовать в схемах с 32разрядными ARM процессорами

Чего-чего? КРЕН5А без стабилитрона, диода или резистора даёт чистые 5 вольт, а с ними — завышает. Это значит (если у вас 155 и 555 серия сбоили) что у вас было большое сопротивление от КРЕН5А до потребителей, либо была убогая разводка питания к корпусам микросхем, либо и то, и то.
Стабилитрон, диод или резистор просто повышают напряжение (а стабильность, как ни странно, снижают), причём сильно повышают.
У меня никогда в жизни не сбоили серии 155 и 555 при питании от КРЕН5А безо всяких подпорок, а ведь платы бывали большими, и не только 155 и 555 на них были, практически утыкаться в ограничение по току доводилось…
Однако соглашусь с тем, что лучше КРЕН5А ставить как можно ближе к потребителю, чтобы не было между ними длинных проводов и разъёмов.

Если в обычных схемах с ТТЛ-логикой кренки работали нормально, то с процессором Z80 иногда сбоили. Изредка встречались кренки со слегка заниженным напряжением. В свое время использовал их наверное сотнями на Спектрумы…

Стабилизаторы 7805 функциональный аналог КРЕНки — топология и характеристики (кроме выходного напряжения) у них различны! — и при одинаковой нагрузке (и прочих условиях) греются они по разному. Даже 7805 от разных производителей и то совсем разные встречаются … Так что лучше переплатить за бренд, чем брать ноунейм с перекошенной маркировкой.
Непосредственно КРЕН5 90-х годов вполне сносно работают с контроллерами avr-mega, разве что греются сильнее современных 7805.

Читайте также:  Подключение микрофонов по току

142б выдержит 25 вольт?

Косяк этих чипов в другом. Крен5(включая специсполнения) и 7805 или 7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно вольт до 25 но такое использование их это адская машина). Отсюда очень неприятные особенности для использования отечественных вариантов, неудобно заморачиваться подбором диапазона входных напряжений, он вообще никакой. Ниже не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к кз. Между входным и общим может быть ом 15-25 на остывшем. То есть за счет такого шунтирования и этим подсадки входного напряжения(если схема без дополнений типа слабых диодов в цепи общего или резисторов) то что за стабилизатором выживает обычно, не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное. И как это счастье исполь

Косяк этих чипов в другом. Крен5(включая специсполнения) и 7805 или 7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно вольт до 25 но такое использование их это адская машина). Отсюда очень неприятные особенности для использования отечественных вариантов, неудобно заморачиваться подбором диапазона входных напряжений, он вообще никакой. Ниже не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к кз. Между входным и общим может быть ом 15-25 на остывшем. То есть за счет такого шунтирования и этим подсадки входного напряжения(если схема без дополнений типа слабых диодов в цепи общего или резисторов) то что за стабилизатором выживает обычно, не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное. И как это счастье использовать? Кто не очень ориентируется в применении для них коротко поясню при включении (запуске) источника до момента заряда питаемых цепей по выходу(обычных конденсатов фильтрации питания) перепад вход-выход может быть близким к значению при кз выхода(схема стабилизатора имеет защиту на этот случай, это её нормальная функция) то есть для 142ен5а(или б), кр142ен5а, кр142ен5б это допустимые не более 15В. В то время как LM7805, LM7806, заявленные как аналоги вообще то, допускают до 35В. То есть запитывать крен отеч. для обеспечения минимального перепада(в работе он снижается на значение выходного напряжения 5 или 6 вольт в зависимости от того какой чип буква а или б,в,г) надо или от предварительного стабилизатора или какого то другого источника(батареи) напряжение которого никогда не привысит 15В. В авто это не годится, при пробое регулятора в генераторе напряжение бортсети при выключенных фарах легко поднимается до 25В, батарея будет кипеть, ограничение будут осуществлять диоды в выпрямителе генератора, есть у них такая особенность превращаться в этом режиме в стабилитроны). Источник типа адаптера питания небольшого …на холостом ходу на вторичках трансформатора там как правило очень увеличенное от номинального значения напряжение, слпротивление тонких проводов обмоток и потери в сердечнике делают сильно зависимым выходное напряжение от нагрузки. Итого 2,5-3В запас на работу схемы в чипе в норм режиме, еще вольта 4 на колебания сети и запас чтоб ниже уровня пульсаций схема не уходила и получается входной диапазон от 13-15 В допустимый. Это извините хе…ня с которой просто иметь дело не хочется. Хотя в целом схема и работа чипа устраивают вполне. Кто протащил жту технологию? Почему 15 а не 35 В как у аналога(или образца для подражания)? Вредительство какое то….или думать не думали(появились наши аналоги по моему ко второй половине восьмидесятых и вот такие «странные» ). Поправьте меня кто знает другие версии положения дел по этим чипам. Внимательно просматривайте тех документацию производителей.
Столько много написал не поленился потому что кому то пригодится, если прочтет мой коммент вдумчиво

Косяк этих чипов в другом. Крен5(включая специсполнения) и стабилизаторы 7805,7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно до 25В но такое использование их это адская машина). Отсюда очень неприятные особенности при использования отечественных вариантов, неудобен подбором диапазона входных напряжений, он вообще никакой. Ниже напряжение не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к короткому замыканию между входным и общим может быть ом 15-25 на остывшем, уже вышедшем из строя. То есть за счет такого шунтирования по входу и этим подсадки напряжения почти до нуля (если схема стабилизации без дополнений типа слабых диодов в цепи общего или резисторов), всё что низковольтное за стабилизатором выживает обычно, за счет такого характера отказа не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное(перепад вход-выход макс.). И как это счастье использовать? Кто не очень ориентируется в применении на практике, для них коротко поясню: при включении (запуске) источника до момента заряда питаемых цепей по выходу(обычных конденсатов фильтрации питания) перепад вход-выход может быть близким к значению при кз выхода(схема стабилизатора имеет защиту на этот случай, это её нормальная функция) то есть для 142ен5а(или б), кр142ен5а, кр142ен5б это допустимые не более 15В. В то время как LM7805, LM7806, заявленные как аналоги вообще то, допускают до 35В(есть ограничения по области безопасной работы значение выходного тока при таком варианте до 0.5А примерно, при максимальном перепаде то есть 30-29 Вольт) . Поэтому корректно запитывать крен отечественный, для обеспечения допустимого перепада(в работе он снижается на значение выходного напряжения 5 или 6 вольт в зависимости от того какой чип буква а или б,в,г), надо или от предварительного стабилизатора или какого то другого источника(батареи) напряжение которого никогда не превысит 15В. В авто например это не получается в аварийном режиме бортсети(при 12В варианте), при пробое регулятора в генераторе напряжение бортсети при выключенных фарах легко поднимается до 25В, батарея будет кипеть, ограничение будут осуществлять диоды в выпрямителе генератора(есть у них такая предусмотренная специально особенность превращаться в этом режиме в стабилитроны). Источник типа адаптера питания небольшого …на холостом ходу на вторичках трансформатора там как правило очень увеличенное от номинального значения напряжение, сопротивление тонких проводов обмоток и потери в сердечнике делают сильно зависимым выходное напряжение от нагрузки. Итого 2,5-3В запас на работу схемы в чипе в норм режиме, еще вольта 4 на колебания сети и запас чтоб ниже уровня пульсаций схема не уходила и получается входной диапазон от 13-15 В допустимый, для адаптера не подойдёт. Получается с таким стабилизатором иметь дело совсем не хочется. Хотя в целом схема и работа чипа устраивают вполне. Кто протащил эту технологию? Почему 15 а не 35 В как у аналога(или образца для подражания)? Вредительство какое то….или думать не думали(появились наши аналоги по моему ко второй половине восьмидесятых и вот такие «странные»). Поправьте меня кто знает другие версии положения дел по этим чипам. Внимательно просматривайте тех документацию производителей.
Лучше уж использовать просто транзистор(или составной) и стабилитрон и обычную классическую схему без сюрпризов с коэффициентом стабилизации около 30 чего часто вполне достаточно, а в коллекторе транзистора плавкий резистор(«японский вариант»), или же какую то схему защиты в дополнение. Или применять импортные варианты чипа LM7805(6) и аналогичные других фирм.

Читайте также:  Ретроградный ток венозной крови

Источник

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

КРЕН, «кренка» — бытовое название интегральных стабилизаторов напряжения серии 142. Размеры её корпуса не позволяют нанести полную маркировку серии (КР142ЕН5А и т.п.), поэтому разработчики ограничились кратким вариантом – КРЕН5А. «Кренки» получили широкое распространение как в промышленности, так и в любительской практике.

Что из себя представляют стабилизаторы напряжения КРЕН 142

Микросхемы серии 142 завоевали популярность из-за простоты получения стабильного напряжения – несложная обвязка, отсутствие регулировок и настроек. Достаточно подать питание на вход, и получить стабилизированное напряжение на выходе. Наибольшую известность и распространение получили нерегулируемые интегральные стабилизаторы в корпусах ТО-220 на напряжение до 15 вольт:

  • КР142ЕН5А, В – 5 вольт;
  • КР142ЕН5Б, Г – 6 вольт;
  • КР142ЕН8А, Г – 9 вольт;
  • КР142ЕН8Б, Д – 12 вольт;
  • КР142 ЕН8В, Е – 15 вольт;
  • КР142 ЕН8Ж, И – 12,8 вольт.

В случаях, когда надо получить более высокое стабильное напряжение, применяются приборы:

  • КР142ЕН9А – 20 вольт;
  • КР42ЕН9Б – 24 вольта;
  • КР142ЕН9В – 27 вольт.

Эти микросхемы также выпускаются в планарном исполнении с несколько отличающимися электрическими характеристиками.

Серия 142 включает в себя и другие интегральные стабилизаторы. К микросхемам с регулируемым выходным напряжением относятся:

  • КР142ЕН1А, Б – с пределами регулирования от 3 до 12 вольт;
  • КР142ЕН2Б – с пределами 12…30 вольт.

Эти приборы выпускаются в корпусах с 14 выводами. Также в эту категорию входят трехвыводные стабилизаторы с одинаковым выходным диапазоном 1,2 – 37 вольт:

  • КР142ЕН12 положительной полярности;
  • КР142ЕН18 отрицательной полярности.

В серию входит микросхема КР142ЕН6 – двуполярный стабилизатор с возможностью регулировки выходного напряжения от 5 до 15 вольт, а также включение в качестве нерегулируемого источника ±15 вольт.

Все элементы серии имеют встроенную защиту от перегрева и короткого замыкания на выходе. А переполюсовку по входу и подачу внешнего напряжения на выход они не любят – время жизни в таких случаях исчисляется секундами.

Модификации микросхемы

Модификации микросхем, входящих в серию, отличаются корпусом. Большинство однополярных нерегулируемых стабилизаторов выполнено в «транзисторном» корпусе TO-220. Он имеет три вывода, этого хватает не во всех случаях. Поэтому часть микросхем выпускались в многовыводных корпусах:

  • DIP-14;
  • 4-2 – то же самое, но в керамической оболочке;
  • 16-15.01 – планарный корпус для монтажа на поверхность (SMD).

В таких исполнениях выпускаются, в основном, регулируемые и двуполярные стабилизаторы.

Основные технические характеристики

Кроме выходного напряжения, для стабилизатора важен ток, который он может обеспечить под нагрузкой.

Тип микросхемы Номинальный ток, А
К(Р)142ЕН1(2) 0,15
К142ЕН5А, 142ЕН5А 3
КР142ЕН5А 2
К142ЕН5Б, 142ЕН5Б 3
КР142ЕН5А 2
К142ЕН5В, 142ЕН5В, КР142ЕН5В 2
К142ЕН5Г, 142ЕН5Г, КР142ЕН5Г 2
К142ЕН8А, 142ЕН8А, КР142ЕН8А 1,5
К142ЕН8Б, 142ЕН8Б, КР142ЕН8Б 1,5
К142ЕН8В, 142ЕН8В, КР142ЕН8В 1,5
КР142ЕН8Г 1
КР142ЕН8Д 1
КР142ЕН8Е 1
КР142ЕН8Ж 1,5
КР142ЕН8И 1
К142ЕН9А, 142ЕН9А 1,5
К142ЕН9Б, 142ЕН9Б 1,5
К142ЕН9В, 142ЕН9В 1,5
КР142ЕН18 1,5
КР142ЕН12 1,5

Этих данных достаточно для предварительного решения о возможности применения того или иного стабилизатора. Если нужны дополнительные характеристики, их можно найти в справочниках или в интернете.

Назначение выводов и принцип работы

По принципу работы все микросхемы серии относятся к линейным регуляторам. Это означает, что входное напряжение распределяется между регулирующим элементом (транзистором) стабилизатора и нагрузкой так, что на нагрузке падает напряжение, которое задается внутренними элементами микросхемы или внешними цепями.

Если входное напряжение увеличивается, транзистор прикрывается, если уменьшается – приоткрывается таким образом, чтобы на выходе напряжение оставалось постоянным. При изменении тока нагрузки стабилизатор отрабатывает так же, поддерживая неизменным напряжение нагрузки.

Схема линейного регулятора напряжения.

У этой схемы есть недостатки:

  1. Через регулирующий элемент постоянно протекает ток нагрузки, поэтому на нём постоянно рассеивается мощность P=Uрегулятора⋅Iнагрузки. Эта мощность расходуется впустую, и ограничивает КПД системы – он не может быть выше Uнагрузки/ Uрегулятора.
  2. Напряжение на входе должно превышать напряжение стабилизации.

Но простота применения, дешевизна прибора перевешивают недостатки, и в диапазоне рабочих токов до 3 А (и даже выше) что-то более сложное применять бессмысленно.

Габаритные размеры КР142ЕН.

У регуляторов напряжения с фиксированным напряжением, а также у регулируемых стабилизаторов новых разработок (К142ЕН12, К142ЕН18) в трех- и четырехвыводном исполнении выводы обозначаются цифрами 17,8,2. Такое нелогичное сочетание выбрано, очевидно, для соответствия выводов с микросхемами в корпусах DIP. На самом деле такая «дремучая» маркировка сохранилась только в технической документации, а на схемах пользуются обозначениями выводов, соответствующим зарубежным аналогам.

Обозначение по технической документации Обозначение на схемах Назначение вывода
Стабилизатор с фиксированным напряжением Стабилизатор с регулируемым напряжением Стабилизатор с фиксированным напряжением Стабилизатор с регулируемым напряжением
17 In Вход
8 GND ADJ Общий провод Опорное напряжение
2 Out Выход

Микросхемы старой разработки К142ЕН1(2) в 16-выводных планарных корпусах имеют следующее назначение выводов:

Назначение Номер вывода Номер вывода Назначение
Не используется 1 16 Вход 2
Фильтр шума 2 15 Не используется
Не используется 3 14 Выход
Вход 4 13 Выход
Не используется 5 12 Регулировка напряжения
Опорное напряжение 6 11 Токовая защита
Не используется 7 10 Токовая защита
Общий 8 9 Выключение

Недостатком планарного исполнения служит большое количество излишних выводов прибора.
Стабилизаторы КР142ЕН1(2) в корпусах DIP14 имеют другое назначение выводов.

Назначение Номер вывода Номер вывода Назначение
Токовая защита 1 14 Выключение
Токовая защита 2 13 Цепи коррекции
Обратная связь 3 12 Вход 1
Вход 4 11 Вход 2
Опорное напряжение 5 10 Выход 2
Не используется 6 9 Не используется
Общий 7 8 Выход 1

У микросхем К142ЕН6 и КР142ЕН6, выпускаемых в разных вариантах корпуса с теплоотводом и однорядным расположением выводов, цоколёвка следующая:

Номер вывода Назначение
1 Вход сигнала регулировки обоих плеч
2 Выход «-»
3 Вход «-»
4 Общий
5 Коррекция «+»
6 Не используется
7 Выход «+»
8 Вход «+»
9 Коррекция «-»

Пример типовой схемы подключения

Для всех нерегулируемых однополярных стабилизаторов типовая схема одинакова:

Типовая схема подключения микросхемы КР142ЕН.

С1 должен иметь ёмкость от 0,33 мкФ, С2 – от 0,1. В качестве С1 может быть использован фильтрующий конденсатор выпрямителя, если проводники от него до входа стабилизатора имеют длину не более 70 мм.

Двуполярный стабилизатор К142ЕН6 обычно включается так:

Схема подключения двуполярного стабилизатора напряжения КРЕН.

Для микросхем К142ЕН12 и ЕН18 напряжение на выходе устанавливается резисторами R1 и R2.

Схема подключения К142ЕН12, К142ЕН8.

Для К142ЕН1(2) типовая схема включения выглядит сложнее:

Схема подключения К142ЕН1, К142ЕН2.

Кроме типовых схем включения интегральные для стабилизаторов серии 142 существуют и другие варианты, позволяющие расширить область применения микросхем.

Какие существуют аналоги

Для некоторых приборов серии 142 существуют полные зарубежные аналоги:

Микросхема К142 Зарубежный аналог
КРЕН12 LM317
КРЕН18 LM337
КРЕН5А (LM)7805C
КРЕН5Б (LM)7805C
КРЕН8А (LM)7806C
КРЕН8Б (LM)7809C
КРЕН8В (LM)78012C
КРЕН6 (LM)78015C
КРЕН2Б UA723C

Полный аналог означает, что микросхемы совпадают по электрическим характеристикам, по корпусу и расположению выводов. Но существуют еще и функциональные аналоги, которые во многих случаях замещают проектную микросхему. Так, 142ЕН5А в планарном корпусе не является полным аналогом 7805, но по характеристикам ей соответствует. Поэтому, если есть возможность установить один корпус вместо другого, то такая замена не ухудшит качество работы всего устройства.

Другая ситуация – КРЕН8Г в «транзисторном» исполнении не считается аналогом 7809 из-за того, что имеет меньший ток стабилизации (1 ампер против 1,5). Если это не критично и фактический потребляемый ток по цепи питания меньше 1 А (с запасом), то смело можно менять LM7809 на КР142ЕН8Г. И в каждом конкретном случае всегда надо прибегать к помощи справочника – зачастую можно подобрать что-то похожее по функционалу.

Как проверить работоспособность микросхем КРЕН

Микросхемы серии 142 имеют достаточно сложное устройство, поэтому мультиметром однозначно проверить её работоспособность невозможно. Единственный способ – собрать макет реального включения (на плате или навесным монтажом), который включает в себя, как минимум, входную и выходные ёмкости, подать на вход питание и проверить напряжение на выходе. Оно должно соответствовать паспортному.

Несмотря на доминирование на рынке микросхем зарубежного производства, приборы серии 142 удерживают свои позиции за счет качества изготовления и других потребительских свойств.

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Что такое реле напряжения и для чего оно нужно в квартире

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Расшифровка цифровой и буквенной маркировки SMD резисторов

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Что такое магнитный двигатель и как его сделать своими руками?

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Для чего нужен пирометр и как измерять температуру бесконтактным методом

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

На какой высоте должны быть розетки и выключатели от пола в квартире?

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Как правильно выбрать утюг для дома — ТОП лучших моделей утюгов

Источник

Схема стабилизатора тока крен5а

Стабилизаторы крен 142 – описание, характеристики и типовая схема

Трехвыводные стабилизаторы напряжения бывают фиксированные или регулируемые. Первые разработаны на конкретное выходное напряжение (в нашем случае 5 В). Вторые – регулируемые стабильники, которые позволяют установить необходимое напряжение в заявленных пределах.

Если вам не нужно ограничивать выходные параметры или настраивать сигнал на нестандартные параметры, то обратите внимание на стабилизатор с фиксированным напряжением КРЕН 142, который позволит использовать меньше деталей и поэтому станет лучшим выбором.

Схема КРЕН 142

Как выбрать стабилизатор по току? Устройство должно быть выбрано с номиналом, довольно близким к значению максимально возможного тока в цепи. Если стабилизатор будет слегка загружен, то со стабильностью часто бывает не всё в порядке. Однако схема должна быть подобрана оптимально и полезно во всех смыслах. То есть номинальный ток с большим запасом тоже ни к чему, поскольку ток короткого замыкания будет также слишком большим для того, чтобы защитить цепь.

Типовая схема включения КР142ен5а

Стабилизатор серии КР142ен5а с постоянным положительным напряжением на выходе в 5 В имеет широкое применение в самых различных электронных приборах. Сфера его использования – в качестве источника питания для логических систем, аппаратов высокоточного воспроизведения и других радиоэлектронных приборов. Электрическая схема КР142ЕН5А показана на рисунке ниже.

КРЕН 5в стабилизатор

Емкости С1, С2 играют корректирующую роль. С2 предназначена для сглаживания пульсации, а С1 – для защиты от вероятного высокочастотного возбуждения микросхемы. Ток нагрузки стабилизатора рассчитан до 2 А.

Если добавить в схему вспомогательные детали можно преобразовать её в источник с регулированием напряжения. При удалённом расположении КРЕН 142 (с длиной соединительных проводов один метр и более) от фильтрующих конденсаторов выпрямителя, к его входу следует присоединить конденсатор. Для регулирования напряжения на выходе используется внешний делитель. Для правильной работы устройства потребуется применение дополнительного радиатора. Эти модели являются аналогами импортных регуляторов серии 78xx.

Цоколевка и схема включения

Микросхема КР142ен5а рассчитана на максимальный ток 5 А, и она может его обеспечить. Но превышение тока грозит выходом устройства из строя. Ниже приводится вариант включения микросхемы. Разрешается производить монтаж микросхемы два раза, демонтаж один раз.

КРЕН 5в стабилизатор

Крепёж схемы к печатной плате выполняется методом распайки выводов корпуса, см. цоколевку микросхемы на рисунке.

КРЕН 5в стабилизатор

Характеристики стабилизатора

Микросхема кр142ен5а представляет собой стабилизатор компенсационного типа с регулируемым выходным напряжением положительной полярности.

  • защита от перегрева;
  • ограничение по току КЗ;
  • масса не более 1,4 г;
  • габариты 14,48х15,75 мм.

Предельные значения параметров режима эксплуатации и условий окружающей среды:

  • Температура хранения -55 … +150 С;
  • Температур кристалла в рабочем режиме -45 … +125 С.

Источник



Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Помню в начале 90-х годов стабилизаторы КР142ЕН5А (или как их ещё называли КРЕН5А) были очень популярны: их ставили и в клоны спектрумов и в АОНы, везде где работала ТТЛ и 5-вольтовая К-МОП логика. На сегодняшний день КРЕН5А может показаться монстром в большом корпусе TO-220, с большим падением напряжения (2,5 В), относительно небольшим током (2 А). Сейчас того место которое раньше занимал КРЕН5А на плате, хватит на более мощный импульсный преобразователь. А если поставить современный линейный преобразователь аналогичный старичку, то освободим достаточно пространства. Но на тот момент интегральный линейный стабилизатор обладал несомненными преимуществами по сравнению стабилизаторами на дискретных элементах.

Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования.

Стабилизатор КР142ЕН5А цоколевка

kr142en5-tsokolevka

Раньше при использовании КР142ЕН5А часто пользовались нумерацией выводов от военного аналога 142ЕН5А в металлокерамическом корпусе 4116.4-3. Выводы обозначались так Вход – 17, Общий – 8, Выход – 2. Правильно нумеровать выводы по стандарту для корпусов КТ-28-2 (ТО-220), т.е. так Вход – 1, Общий – 2, Выход – 3.

Схема включения КР142ЕН5А

kren5a-shema

Минимальные емкости конденсаторов:

Стабилизатор КР142ЕН5А характеристики

  • Полярность напряжения — положительная;
  • Выходное напряжение — 5 В;
  • Выходной ток — 2 А;
  • Максимальное входное напряжение — 15 В;
  • Разность напряжения вход-выход — 2,5 В;
  • Мощность рассеивания (без теплоотвода) — 1,5 Вт;
  • Мощность рассеивания (с теплоотводом) — 10 Вт;
  • Точность выходного напряжения — ±0,1 В;
  • Диапазон рабочих температур — -45…+70 °C;

Модификации стабилизатора: КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г

Удивительно, но последняя буква в обозначении стабилизатора напряжения КР142ЕН5 определяет не только второстепенные параметра, но такой важный параметр как напряжение стабилизации: ЕН5Б и ЕН5Г стабилизируют на уровне 6В ! В то время как ЕН5А и ЕН5B – 5В. Отличия ЕН5В и ЕН5Г от ЕН5А и ЕН5Б в худшей стабильности поддержания выходного напряжения: ±4% против ±2% .

Тип
Выходное напряжение, В 4,9…5,1 5,88…6,12 4,82…5,18 5,79…6,21
Температурный коэффициент напряжений, 0,02 0,02 0,03 0,03
Максимальный выходной ток, А 2 2 1,5 1,5

Аналоги

Прототипом для отечественной разработки КР142ЕН5А был стабилизатор А7805Т фирмы «Fairchild Semiconductor». И конечно выпускалось большое количество аналогичных стабилизаторов другими фирмами. В обозначении обычно присутствует код 7805,перед ним может быть буквенное обозначение характеризующее изготовителя.

10 thoughts on “ Стабилизатор напряжения КР142ЕН5А, КРЕН5А, КР142ЕН5Б, КР142ЕН5В, КР142ЕН5Г ”

По идее — стабилизатор для 5-вольтовой логики. На практике — без цепей корректировки не обойтись. Как минимум диод или низкоомный прецизионный резистор ему в «общий», иначе 133, 155, 555 серии сбоили по-черному. Это я о КР142ЕН5А. Остальные, разве что 561 и 564 серию устраивали, со стабилитроном в подпорке. Как результат, для питания логических схем, практически не использовались, а применялись (с небольшой доработкой) в простеньких блоках питания с напряжением 5-15 В, что и обуславливало их распространенность.

«Я не призываю использовать КР142ЕН5А в новых разработках, но информация по стабилизатору может понадобиться для ремонта старого оборудования. » — ХА ХА ХА . Я их продолжаю использовать в схемах с 32разрядными ARM процессорами

Чего-чего? КРЕН5А без стабилитрона, диода или резистора даёт чистые 5 вольт, а с ними — завышает. Это значит (если у вас 155 и 555 серия сбоили) что у вас было большое сопротивление от КРЕН5А до потребителей, либо была убогая разводка питания к корпусам микросхем, либо и то, и то.
Стабилитрон, диод или резистор просто повышают напряжение (а стабильность, как ни странно, снижают), причём сильно повышают.
У меня никогда в жизни не сбоили серии 155 и 555 при питании от КРЕН5А безо всяких подпорок, а ведь платы бывали большими, и не только 155 и 555 на них были, практически утыкаться в ограничение по току доводилось…
Однако соглашусь с тем, что лучше КРЕН5А ставить как можно ближе к потребителю, чтобы не было между ними длинных проводов и разъёмов.

Если в обычных схемах с ТТЛ-логикой кренки работали нормально, то с процессором Z80 иногда сбоили. Изредка встречались кренки со слегка заниженным напряжением. В свое время использовал их наверное сотнями на Спектрумы…

Стабилизаторы 7805 функциональный аналог КРЕНки — топология и характеристики (кроме выходного напряжения) у них различны! — и при одинаковой нагрузке (и прочих условиях) греются они по разному. Даже 7805 от разных производителей и то совсем разные встречаются … Так что лучше переплатить за бренд, чем брать ноунейм с перекошенной маркировкой.
Непосредственно КРЕН5 90-х годов вполне сносно работают с контроллерами avr-mega, разве что греются сильнее современных 7805.

142б выдержит 25 вольт?

Косяк этих чипов в другом. Крен5(включая специсполнения) и 7805 или 7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно вольт до 25 но такое использование их это адская машина). Отсюда очень неприятные особенности для использования отечественных вариантов, неудобно заморачиваться подбором диапазона входных напряжений, он вообще никакой. Ниже не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к кз. Между входным и общим может быть ом 15-25 на остывшем. То есть за счет такого шунтирования и этим подсадки входного напряжения(если схема без дополнений типа слабых диодов в цепи общего или резисторов) то что за стабилизатором выживает обычно, не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное. И как это счастье исполь

Читайте также:  Как найти напряжение тока при последовательном соединении

Косяк этих чипов в другом. Крен5(включая специсполнения) и 7805 или 7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно вольт до 25 но такое использование их это адская машина). Отсюда очень неприятные особенности для использования отечественных вариантов, неудобно заморачиваться подбором диапазона входных напряжений, он вообще никакой. Ниже не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к кз. Между входным и общим может быть ом 15-25 на остывшем. То есть за счет такого шунтирования и этим подсадки входного напряжения(если схема без дополнений типа слабых диодов в цепи общего или резисторов) то что за стабилизатором выживает обычно, не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное. И как это счастье использовать? Кто не очень ориентируется в применении для них коротко поясню при включении (запуске) источника до момента заряда питаемых цепей по выходу(обычных конденсатов фильтрации питания) перепад вход-выход может быть близким к значению при кз выхода(схема стабилизатора имеет защиту на этот случай, это её нормальная функция) то есть для 142ен5а(или б), кр142ен5а, кр142ен5б это допустимые не более 15В. В то время как LM7805, LM7806, заявленные как аналоги вообще то, допускают до 35В. То есть запитывать крен отеч. для обеспечения минимального перепада(в работе он снижается на значение выходного напряжения 5 или 6 вольт в зависимости от того какой чип буква а или б,в,г) надо или от предварительного стабилизатора или какого то другого источника(батареи) напряжение которого никогда не привысит 15В. В авто это не годится, при пробое регулятора в генераторе напряжение бортсети при выключенных фарах легко поднимается до 25В, батарея будет кипеть, ограничение будут осуществлять диоды в выпрямителе генератора, есть у них такая особенность превращаться в этом режиме в стабилитроны). Источник типа адаптера питания небольшого …на холостом ходу на вторичках трансформатора там как правило очень увеличенное от номинального значения напряжение, слпротивление тонких проводов обмоток и потери в сердечнике делают сильно зависимым выходное напряжение от нагрузки. Итого 2,5-3В запас на работу схемы в чипе в норм режиме, еще вольта 4 на колебания сети и запас чтоб ниже уровня пульсаций схема не уходила и получается входной диапазон от 13-15 В допустимый. Это извините хе…ня с которой просто иметь дело не хочется. Хотя в целом схема и работа чипа устраивают вполне. Кто протащил жту технологию? Почему 15 а не 35 В как у аналога(или образца для подражания)? Вредительство какое то….или думать не думали(появились наши аналоги по моему ко второй половине восьмидесятых и вот такие «странные» ). Поправьте меня кто знает другие версии положения дел по этим чипам. Внимательно просматривайте тех документацию производителей.
Столько много написал не поленился потому что кому то пригодится, если прочтет мой коммент вдумчиво

Читайте также:  Термоэлектрический генератор постоянного тока

Косяк этих чипов в другом. Крен5(включая специсполнения) и стабилизаторы 7805,7806 не одно и тоже. Перепад напряжения максимальный (вход-выход) у отечественных заявлен 15В , у импорта 35В. Можно было бы говорить что ошибка, но практика показывает действительно пробой происходит при превышении этих значений(отечественные выдерживают выборочно до 25В но такое использование их это адская машина). Отсюда очень неприятные особенности при использования отечественных вариантов, неудобен подбором диапазона входных напряжений, он вообще никакой. Ниже напряжение не хватит для нормальной работы схемы, выше сразу подходим к пределу за которым пробой очень вероятен. Из плюсов на этом фоне есть: когда кристалл пробивает как правило все три вывода приходят в состояние близкое к короткому замыканию между входным и общим может быть ом 15-25 на остывшем, уже вышедшем из строя. То есть за счет такого шунтирования по входу и этим подсадки напряжения почти до нуля (если схема стабилизации без дополнений типа слабых диодов в цепи общего или резисторов), всё что низковольтное за стабилизатором выживает обычно, за счет такого характера отказа не испытывает перенапряжения. И кристалл кажется сам по себе взят сильноточной версии(до 3А) может быть поэтому и такое малое максимальное входное(перепад вход-выход макс.). И как это счастье использовать? Кто не очень ориентируется в применении на практике, для них коротко поясню: при включении (запуске) источника до момента заряда питаемых цепей по выходу(обычных конденсатов фильтрации питания) перепад вход-выход может быть близким к значению при кз выхода(схема стабилизатора имеет защиту на этот случай, это её нормальная функция) то есть для 142ен5а(или б), кр142ен5а, кр142ен5б это допустимые не более 15В. В то время как LM7805, LM7806, заявленные как аналоги вообще то, допускают до 35В(есть ограничения по области безопасной работы значение выходного тока при таком варианте до 0.5А примерно, при максимальном перепаде то есть 30-29 Вольт) . Поэтому корректно запитывать крен отечественный, для обеспечения допустимого перепада(в работе он снижается на значение выходного напряжения 5 или 6 вольт в зависимости от того какой чип буква а или б,в,г), надо или от предварительного стабилизатора или какого то другого источника(батареи) напряжение которого никогда не превысит 15В. В авто например это не получается в аварийном режиме бортсети(при 12В варианте), при пробое регулятора в генераторе напряжение бортсети при выключенных фарах легко поднимается до 25В, батарея будет кипеть, ограничение будут осуществлять диоды в выпрямителе генератора(есть у них такая предусмотренная специально особенность превращаться в этом режиме в стабилитроны). Источник типа адаптера питания небольшого …на холостом ходу на вторичках трансформатора там как правило очень увеличенное от номинального значения напряжение, сопротивление тонких проводов обмоток и потери в сердечнике делают сильно зависимым выходное напряжение от нагрузки. Итого 2,5-3В запас на работу схемы в чипе в норм режиме, еще вольта 4 на колебания сети и запас чтоб ниже уровня пульсаций схема не уходила и получается входной диапазон от 13-15 В допустимый, для адаптера не подойдёт. Получается с таким стабилизатором иметь дело совсем не хочется. Хотя в целом схема и работа чипа устраивают вполне. Кто протащил эту технологию? Почему 15 а не 35 В как у аналога(или образца для подражания)? Вредительство какое то….или думать не думали(появились наши аналоги по моему ко второй половине восьмидесятых и вот такие «странные»). Поправьте меня кто знает другие версии положения дел по этим чипам. Внимательно просматривайте тех документацию производителей.
Лучше уж использовать просто транзистор(или составной) и стабилитрон и обычную классическую схему без сюрпризов с коэффициентом стабилизации около 30 чего часто вполне достаточно, а в коллекторе транзистора плавкий резистор(«японский вариант»), или же какую то схему защиты в дополнение. Или применять импортные варианты чипа LM7805(6) и аналогичные других фирм.

Источник