Меню

Схемы тиристорных регуляторов для двигателей постоянного тока

ТИРИСТОРНЫЙ РЕГУЛЯТОР ЧАСТОТЫ ВРАЩЕНИЯ КОЛЛЕКТОРНОГО ЭЛЕКТРОДВИГАТЕЛЯ 230VAC НА ОТЕЧЕСТВЕННЫХ ДЕТАЛЯХ

Как известно, коллекторные электродвигатели могут работать как от сети переменного, так и постоянного тока. За эту возможность их часто называют универсальными электродвигателями. Наибольшее распространение для привода различных бытовых электроприборов, которые работают от сети переменного тока (миксеры, швейные машины, пылесосы, электродрели и др.), получили коллекторные электродвигатели последовательного возбуждения.

Для регулирования частоты вращения этих электродвигателей используют схемы двухполупериодного и однополупериодного питания. Схемы двухполупериодного питания отличаются усложненной силовой частью, которая состоит из четырех диодов и тиристора, что увеличивает стоимость, габариты регулятора и снижает надежность его работы. Кроме того, такой регулятор может иметь непростую схему управления силовым тиристором из-за наличия узла обратной связи на оптроне, который устраняет колебания частоты вращения вала двигателя на малой частоте вращения. В регуляторах где электродвигатель с силовым тиристором подключен к выходу выпрямительного моста, т.е. питается выпрямленным двухполупериодным пульсирующим напряжением, без принятия специальных мер электродвигатель может перегреваться, т.к. его обмотки допол­нительно обтекаются током от постоянной составляющей выпрямленного напряжения, которая в π/2 раза меньше амплитуды напряжения питания сети. В этом легко убедиться, включив в сеть переменного тока ( 230 В ) через диоды электромагнитное реле переменного тока с катушкой на напряжение 230 В .

Регулятор, выполненный по однополупериодной схеме питания, содержит всего лишь один силовой элемент — тиристор, т.е. значительно проще, соответственно его стоимость, габариты значительно меньше. Описываемый далее регулятор свободен от отмеченных недостатков. Его принципиальная схема приведена на рисунке ниже.

Предлагаемый регулятор выполнен для сети переменного тока напряжением 230 В , имеет маломощный делитель напряжения, конденсатор, который позволяет устранить « толчки » в работе электродвигателя при вращении вала на низких скоростях, и резистор, повышающий температурную стабильность тиристора. Кроме того, регулятор снабжен стабилизатором напряжения сети для схемы управления тиристором и отличает включением переключателя двухполупериодной работы электродвигателя, которое предпочтительней для индуктивной нагрузки, каковой является электродвигатель.

Резистор R1 и стабилитрон VD2 представляют собою делитель напряжения. Диод VD1 позволяет уменьшить мощность резистора R1 примерно вдвое. К стабилитрону VD2 подключен второй делитель напряжения из резисторов R2, R3, R4 и диода VD3 , в результате напряжение на делителе практически не зависит от колебания напряжения в сети. Диод VD4 предназначен для защиты тиристора VS1 от попадания на управляющий электрод отрицательного потенциала. Тиристор через контакты 1-2 переключателя SA2 соединен последовательно с коллекторным электродвигателем М1 последовательного возбуждения. При переводе переключателя SA2 в положение, при котором замкнуты контакты 1-3 , электродвигатель присоединяется к сети непосредственно, развивая при этом наибольшую мощность и частоту вращения.

Напряжение, снимаемое со второго делителя напряжения, через защитный диод VD4 прикладывается к уп­равляющему электроду тиристора. Регулируют частоту вращения электродвигателя путем перемещения движка потенциометра R3 , что приводит к изменению напряжения на управляющем электроде тиристора. Перемещением движка резистора R3 вверх увеличивается напряжение на управляющем электроде и тиристор открыт большую часть полупериода напряжения сети, соответственно частота вращения электродвигателя увеличивается. При перемещении движка резистора R3 вниз происходит обратный процесс.

Читайте также:  Owen logic pid регулятор

Наладка

Наладка регулятора сводится к подбору сопротивления резистора R2 и емкости конденсатора С1 . Для этого вместо электродвигателя включают лампу накаливания мощностью 75-100 Вт и перемещением движка резистора R3 добиваются плавного изменения ее яркости без скачков и сильных миганий, особенно в нижнем положении движка резистора R3 . Если лампа гаснет раньше крайнего нижнего положения движка резистора R3 , то необходимо уменьшить сопротивление резистора R2 , добиваясь таким образом отсутствия свечения лампы в этом положении движка резистора R3 . Конденсатор С1 обеспечивает устойчивую работу электродвигателя на малых оборотах. Для маломощных электродвигателей (мощностью примерно до 300 Вт ) емкость конденсатора должна составлять около 0,5 мкФ . С увеличением мощности электродвигателя емкость конденсатора не­обходимо увеличивать, подбирая ее величину опытным путем до исчезновения « толчков » в работе электродвигателя на низких частотах вращения.

Детали

Все детали регулятора – отечественные, из старых запасов.) В регуляторе использованы резисторы типа МЛТ , конденсатор — МБМ , переменный резистор — СП-5 0,5 Вт , желательно с линейной характеристикой, возможна установка резистора мощностью 0,25 Вт . Диоды серии Д226Б могут быть заменены Д237Б, Д237В или на КД105 с любым буквенным индексом. Стабилитрон Д817Г можно заменить двумя последовательно включенными стабилитронами типа Д817А . Вместо тиристора КУ202Н подойдут КУ202Л , КУ201М с учетом соответствия номинальному току электродвигателя.

К недостаткам данного типа регуляторов следует отнести наличие « мертвой зоны » при регулировании частоты вращения электродвигателя, которая лежит между режимами двухполупериодной и однополупериодной работы при верхнем положении движка резистора R3 , т.е. в этой зоне электродвигатель не регулируется. Так, при испытании регулятора с электродвигателем миксера в двухполупериодном режиме частота вращения выходного вала редуктора составляла 1000 об/мин , при переводе в однополупериодный режим и верхнем положении движка резистора R3 — 800 об/мин . Указанный недостаток во многих случаях может быть несущественным для электробытовых приборов, например, для тех же миксеров, для которых « мертвая зона » не попадает в необходимый диапазон регулирования частоты вращения электродвигателя и этот недостаток окупается простотой и малой стоимостью схемы.

Источник

Подборка схем регулятора оборотов двигателя постоянного тока

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания резистор. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Читайте также:  Пружинный регулятор давления газа типа fe

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Источник



Как сделать регулятор оборотов коллекторного двигателя 220В своими руками: схемы

Схема регулятора оборотов коллекторного двигателя 220в бывает двух типов стандартная и модифицированная. Все зависит непосредственно от регулятора, который вы используете.

Зачем они нужны

Множество бытовых приборов и электроинструментов не обходятся без коллекторного электродвигателя. Такая популярность подобного электродвигателя обусловлена универсальностью.

Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

Коллекторные электродвигатели

Конструкция любого коллекторного двигателя включает несколько основных элементов:

  • Коллектор,
  • Щетки,
  • Ротор,
  • Статор.

Работа стандартного коллекторного электродвигателя основана на следующих принципах.

  1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
  2. В результате подачи тока от источника 220в образуется поле магнитное.
  3. Под воздействием магнитного напряжения начинается вращение ротора.
  4. Щетки осуществляют передачу напряжения непосредственно на ротор устройства. Причем щетки обычно изготавливают на основе графита.
  5. Когда направление тока в роторе или статоре меняется, вал вращается в обратную сторону.
Читайте также:  Центробежный регулятор оборотов бензинового двигателя

Кроме стандартных коллекторных электродвигателей, существуют другие агрегаты:

  • Электромотор последовательного возбуждения. Их устойчивость к перегрузкам более внушительная. Часто встречаются в бытовых электроприборах,
  • Устройства параллельного возбуждения. У них сопротивление не отличается большими показателями, количество витков существенно больше, чем у аналогов,
  • Однофазный электромотор. Его очень легко изготовить своими руками, мощность на приличном уровне, а вот коэффициент полезного действия оставляет желать лучшего.

Регуляторы оборотов

Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:

  • Стандартная схема регулятора оборотов,
  • Модифицированные устройства контроля оборотов.

Разберемся в особенностях схем подробнее.

Стандартные схемы

Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:

  • Изготовить динистор не составит труда. Это важное преимущество устройства,
  • Регулятор отличается высокой степенью надежности, что положительно сказывается в течение его периода эксплуатации,
  • Позволяет комфортно для пользователя менять обороты двигателя,
  • Большинство моделей основаны на тиристорном регуляторе.

Если вас интересует принцип работы, то такая схема выглядит довольно просто.

  1. Заряд тока от источника 220 Вольт идет к конденсатору.
  2. Далее идет напряжение пробоя динистора через переменный резистор.
  3. После этого происходит непосредственно сам пробой.
  4. Симистор открывается. Этот элемент несет ответственность за нагрузку.
  5. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора.
  6. За счет подобного принципа работы происходит регулировка оборотов электродвигателя.
  7. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы.
  8. Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать.

Модифицированная схема

Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.

Наиболее часто применяемыми схемами являются две:

  • Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение,
  • Интегральная. Для работы интегрального устройства регулирования используется интегральный таймер, который отвечает за нагрузку на электродвигатель. Здесь могут быть задействованы всевозможные транзисторы. Это обусловлено наличием микросхемы в конструкции с большими параметрами выходного тока. При нагрузке менее 0,1 Ампер, все напряжение идет непосредственно на микросхему, обходя транзисторы. Чтобы регулятор работал эффективно, на затворе требуется наличие напряжения в 12 Вольт. Из этого вытекает, что электрическая цепь и напряжение питания обязаны отвечать данному диапазону.

Простой самодельный регулятор

Если вы не хотите покупать готовый регулятор оборотов для двигателя, его вполне можно попробовать изготовить своими руками для контроля мощности устройства.

Это дополнительные навыки для вас и определенная экономия средств для кошелька.

Источник