Меню

Схемы защиты тиристоров по напряжению

Защита тиристоров

date image2015-04-06
views image4050

facebook icon vkontakte icon twitter icon odnoklasniki icon

Тиристоры являются приборами, критичными к скоростям нарастания прямого тока diA/dt и прямого напряжения duAC/dt. Тиристорам, как и диодам, присуще явление протекания обратного тока восстановления, резкое спадание которого до нуля усугубляет возможность возникновения перенапряжений с высоким значением duAC/dt. Такие перенапряжения являются следствием резкого прекращения тока в индуктивных элементах схемы, включая малые индуктивности монтажа. Поэтому для защиты тиристоров обычно используют различные схемы ЦФТП, которые в динамических режимах осуществляют защиту от недопустимых значений diA/dt и duAC/dt.

В большинстве случаев внутреннее индуктивное сопротивление источников напряжения, входящих в цепь включенного тиристора, оказывается достаточным, чтобы не вводить дополнительную индуктивность LS . Поэтому на практике чаще возникает необходимость в ЦФТП, снижающих уровень и скорость перенапряжений при выключении (рис. 7).

Рис. 7. Типовая схема защиты тиристора

Для этой цели обычно используют RC-цепи, подключаемые параллельно тиристору. Существуют различные схемотехнические модификации RC-цепей и методики расчета их параметров для разных условий использования тиристоров.

Для запираемых тиристоров применяются цепи формирования траектории переключения, аналогичных по схемотехнике ЦФТП транзисторов.

Вольт-амперные характеристики тиристора

Вольт-амперная характеристика тиристора при различных токах управления прибора изображена на рис. 4.3. Обратная ветвь характеристики соответствует обратной полярности анодного напряжения , указанного на рисунке. При разомкнутой цепи управления или отсутствии тока управления обратная ветвь характеристики тиристора аналогична обратной ветви полупроводникового диода того же класса. В рабочем диапазоне напряжений от нуля до повторяющегося импульсного обратного напряжения , составляющего несколько сотен вольт, через прибор протекает очень маленький, порядка долей миллиампера, обратный ток . Благодаря этому тиристор при обратном включении обладает весьма большим сопротивлением. Если к управляющему электроду УЭ тиристора приложить положительное (относительно катода) напряжение, то в цепи управления будет протекать ток , вследствие чего возрастает прямой ток, протекающий от анода к катоду тиристора. Прямая ветвь характеристики тиристора изображена в первом квадранте системы координат, которой соответствует прямое анодное напряжение (рис. 4.3). Рабочим диапазоном, как и в случае обратной ветви, является диапазон напряжений от нуля до импульсного напряжения в закрытом состоянии .Прямая ветвь характеристики имеет три характерные области. Первая область расположена между началом координат и точкой . Эта часть характеристики аналогична обратной ветви ВАХ p–n-перехода. Вторая область от точки до точки соответствует неустойчивому электрическому состоянию, при котором тиристор даже при незначительном превышении напряжения, называемого напряжением переключения , переходит в состояние малого сопротивления (точка ). Отрезок характеристики носит название участка с отрицательным дифференциальным сопротивлением. В отличие от участка характеристики с положительным сопротивлением, на котором увеличение напряжения сопровождается увеличением тока, на участке отрицательного дифференциального сопротивления увеличение тока происходит при снижении напряжения.

Рис. 4.3. Вольт-амперная характеристика тиристора

Третья область характеристики от точки до точки является областью высокой проводимости или малого сопротивления. Эта часть характеристики аналогична прямой ветви характеристики полупроводникового диода и соответствует проводящему состоянию тиристора.

Если через цепь управления пропустить ток , то напряжение переключения тиристора из закрытого состояния в открытое уменьшится. Если ток управления увеличивать и дальше, то, начиная с некоторого значения, называемого током управления-спрямления , участок характеристики с отрицательным сопротивлением исчезает, ВАХ спрямляется и становится похожей на прямую ветвь ВАХ полупроводникового диода. При токе управления , превышающем ток управления-спрямления , тиристор обладает малым сопротивлением.

Особенностью тиристора является то, что он, переключенный в открытое состояние, будет находиться в этом состоянии сколь угодно долго даже при снятии управляющего сигнала. Это свойство позволяет включать тиристор с помощью коротких импульсов тока и тем самым значительно снизить затраты энергии на управление тиристором. Для переключения тиристора из открытого состояния в закрытое необходимо путем уменьшения напряжения в цепи нагрузки снизить прямой анодный ток до некоторого малого значения, называемого током удержания .

Рассмотренный режим переключения тиристора в открытое состояние за счет увеличения анодного напряжения используется только в схемах с динисторами. В большинстве практических схем включение тиристора происходит по цепи управляющего электрода, т. е. путем подачи на него отпирающего импульса напряжения. Сущность этого метода заключается в следующем. В исходном состоянии тиристор закрыт, ток управления равен нулю. Напряжение источника питания выбирается меньше напряжения переключения тиристора и принимается равным максимальному допустимому прямому напряжению . В этом состоянии рабочая точка тиристора 1 располагается на прямой ветви ВАХ, соответствующей . Через тиристор и нагрузку протекает небольшой ток, соответствующий точке 1 этой ветви характеристики. Для открытия тиристора в нужный момент времени на его управляющий электрод подается импульс управления, создающий в цепи управляющего электрода ток управления, превышающий ток управления-спрямления . Тиристор открывается, и рабочая точка 2 переходит на прямую ветвь характеристики . Ток, протекающий через тиристор в открытом состоянии, рассчитывается из соотношения , где – падение напряжения на открытом тиристоре, которое определяется как проекция рабочей точки 2 на ось прямого напряжения . Определение токов и напряжений тиристора удобно проводить с помощью линии нагрузки (рис. 4.3). Подробности ее построения приведены в подразд. 3.7. Здесь же просто ограничимся констатацией того, что для построения линии нагрузки на осях и откладываются две точки с координатами: на ось абсцисс и на ось прямого тока.Координаты точек 1 и 2 пересечения этой линии с вольт-амперной характеристикой определяют ток и напряжение на тиристоре соответственно в закрытом и открытом состояниях.

Читайте также:  Величина касательного напряжения коэффициент

Тиристоры выпускаются на диапазон прямых токов от десятков миллиампер до нескольких сотен ампер и напряжения от десятков вольт до нескольких киловольт.

К основным параметрам тиристора можно отнести

допустимое значение среднего прямого тока

максимальный постоянный прямой ток

максимально допустимое напряжение – определяется по наименьшему из значений прямого и обратного напряжений, соответствующих началу крутого нарастания обратного тока

обратный ток тиристора

напряжение и ток удержания, соответствующие переходу тиристора из закрытого состояния в открытое

Динамические параметры тиристора характеризуют время перехода тиристора из закрытого состояния в открытое (время включения tвкл) и время восстановления запирающих свойств (время выключения tв)

Силовые тиристоры характеризуются параметрами, аналогичными тем, которые рассматривались выше для силовых диодов. Но, кроме того, в технических условиях приводятся параметры цепи управления тиристоров, а также дополнительные параметры, характеризующие силовую цепь тиристора:

Напряжение переключения: постоянное — , импульсное — (десятки – сотни вольт).

Напряжение в открытом состоянии – падение напряжения на тиристоре в открытом состоянии ( ).

Обратное напряжение – напряжение, при котором тиристор может работать длительное время без нарушения его работоспособности (единицы – тысячи вольт).

Постоянное прямое напряжение в закрытом состоянии – максимальное значение прямого напряжения, при котором не происходит включение тиристора (единицы – сотни вольт).

Неотпирающее напряжение на управляющем электроде – наибольшее напряжение, не вызывающее отпирание тиристора (доли вольт).

Запирающее напряжение на управляющем электроде – напряжение, обеспечивающее требуемое значение запирающего тока управляющего электрода (единицы – десятки вольт).

Ток в открытом состоянии – максимальное значение тока открытого тиристора (сотни миллиампер – сотни ампер).

Обратный ток (доли миллиампер).

Отпирающий ток – наименьший ток управляющего электрода, необходимый для включения тиристора (десятки миллиампер).

Ток утечки – это ток, протекающий через тиристор с разомкнутой цепью управления при прямом напряжении между анодом и катодом.

Ток удержания – минимальный прямой ток, проходящий через тиристор при разомкнутой цепи управления, при котором тиристор еще находится в открытом состоянии.

Время включения – это время от момента подачи управляющего импульса до момента снижения напряжения тиристора до 10 % от начального значения при работе на активную нагрузку (единицы – десятки микросекунд).

Время выключения , называемое также временем восстановления управляющей способности тиристора. Это время от момента, когда прямой ток тиристора становится равным нулю, до момента, когда прибор снова будет способен выдерживать прямое напряжение между анодом и катодом. Это время в основном определяется временем рассасывания неосновных носителей в зонах полупроводника (десятки — сотни микросекунд).

Читайте также:  Как защитить свой компьютер от перепадов напряжения

Источник



5. Защита электронных устройств от перенапряжения

Для защиты радиоэлектронного оборудования традиционно применяют плавкие предохранители. Обычно в них используют тонкие неизолированные проводники калиброванного сечения, рассчитанные на заданный ток перегорания. Наиболее надежно эти приспособления работают в цепях переменного тока повышенного напряжения. С понижением рабочего напряжения эффективность их применения снижается. Обусловлено это тем, что при перегорании тонкой проволоки в цепи переменного тока возникает дуга, распыляющая проводник. Предельным напряжением, при котором может возникнуть такая дуга, считается напряжение 30. 35 6. При низковольтном питании происходит просто плавление проводника. Процесс этот занимает более продолжительное время, что в ряде случаев не спасает современные полупроводниковые приборы от повреждения.
Тем не менее, плавкие предохранители и поныне широко используют в низковольтных цепях постоянного тока, там, где от них не требуется повышенное быстродействие.
Там, где плавкие предохранители не могут эффективно решить задачу защиты радиоэлектронного оборудования и приборов от токовых перегрузок, их можно с успехом использовать в схемах защиты электронных устройств от перенапряжения.
Принцип действия этой защиты прост: при превышении уровня питающего напряжения срабатывает пороговое устройство, устраивающее короткое замыкание в цепи нагрузки, в результате которого проводник предохранителя плавится и разрывает цепь нагрузки.
Метод защиты аппаратуры от перенапряжения за счет принудительного пережигания предохранителя, конечно, не является идеальным, но получил достаточно широкое распространение благодаря своей простоте и надежности. При использовании этого метода и выбора оптимального варианта защиты стоит учитывать, насколько быстродействующим должен быть автомат защиты, стоит ли пережигать предохранитель при кратковременных бросках напряжения или ввести элемент задержки срабатывания. Желательно также ввести в схему индикацию факта перегорания предохранителя.
Простейшее защитное устройство [4.1], позволяющее спасти защищаемую радиоэлектронную схему, показано на рис. 4.1. При пробое стабилитрона включается тиристор и шунтирует нагрузку, после чего перегорает предохранитель. Тиристор должен быть рассчитан на значительный, хотя и кратковременный ток. В схеме совершенно не допустимо использование суррогатных предохранителей, поскольку в противном случае могут одновременно выйти из строя как защищаемая схема, так и источник питания, и само защитное устройство.


Рис. 4.1. Простейшая защита от перенапряжения

Рис. 4.2. Помехозащищенная схема защиты нагрузки от превышения напряжения

Усовершенствованная схема защиты нагрузки от превышения напряжения, дополненная резистором и конденсатором [4.2], показана на рис. 4.2. Резистор ограничивает предельный ток через стабилитрон и управляющий переход тиристора, конденсатор снижает вероятность срабатывания защиты при кратковременных бросках питающего напряжения.
Следующее устройство (рис. 4.3) защитит радиоаппаратуру от выхода из строя при случайной переполюсовке или превышении
напряжения питания, что нередко бывает при неисправности генератора в автомобиле [4.3].
При правильной полярности и номинальном напряжении питания диод VD1 и тиристор VS1 закрыты, и ток через предохранитель FU1 поступает на выход устройства.


Рис. 4.3. Схема защиты радиоаппаратуры с индикацией аварии

Если полярность обратная, то диод VD1 открывается, и сгорает предохранитель FU1. Лампа EL1 загорается, сигнализируя об аварийном подключении.
При правильной полярности, но входном напряжении, превышающем установленный уровень, задаваемый стабилитронами VD2 и VD3 (в данном случае — 16 Б), тиристор VS1 открывается и замыкает цепь накоротко, что вызывает перегорание предохранителя и зажигание аварийной лампы EL1.
Предохранитель FU1 должен быть рассчитан на максимальный ток, потребляемый радиоаппаратурой.
Элементы ГТЛ-логики обычно работоспособны в узком диапазоне питающих напряжений (4,5. 5,5 Б). Если аварийное снижение питающего напряжения не столь опасно для «здоровья» микросхем, то повышение этого напряжения совершенно недопустимо, поскольку может привести к повреждению всех микросхем устройства.
На рис. 4.4 приведена простая и довольно эффективная схема защиты 7777-устройств от перенапряжения, опубликованная в болгарском журнале [4.4]. Способ защиты предельно прост: как только питающее напряжение превысит рекомендуемый уровень всего на 5% (т.е. достигнет величины 5,25 Б) сработает пороговое устройство и включится тиристор. Через него начинает протекать ток короткого замыкания, который пережигает плавкий предохранитель FU1. Разумеется, в качестве предохранителя нельзя использовать суррогатные предохранители, поскольку в таком случае может выйти из строя блок питания, защищающий схему тиристор, а затем и защищаемые микросхемы.
Недостатком устройства является отсутствие индикации перегорания предохранителя. Эту функцию в устройство несложно ввести самостоятельно. Примеры организации индикации разрыва питающей цепи приведены также в главе 36 книги [1.5].

Читайте также:  Реле напряжения контроля 110в


Рис. 4.4. Схема защиты микросхем ТТЛ от перенапряжения


Рис. 4.5. Схема устройства защиты от перенапряжения, работающего на переменном и постоянном токе

Схема устройства, которое в случае аварии в электросети защитит телевизор, видеомагнитофон, холодильник и т.д. от перенапряжения, приведена на рис. 4.5 [4.5].
Напряжение срабатывания защиты определяется падением напряжения на составном стабилитроне VD5+VD6 и составляет 270 Б.
Конденсаторы С1 и С2 образуют совместно с резистором R1 RC-цепочку, которая препятствует срабатыванию устройства при импульсных выбросах в сети.
Схема работает следующим образом. При напряжении в сети до 270 В стабилитроны VD3, VD4 закрыты. Также закрыты и тиристоры VS1, VS2. При действующем напряжении более 270 В открываются стабилитроны VD3, VD4, и на управляющие электроды тиристоров VS1, VS2 поступает открывающее напряжение. В зависимости от полярности полупериода сетевого напряжения ток проходит либо через тиристор VS1, либо через VS2. Когда ток превышает 10 А, срабатывают автоматические выключатели (пробки, плавкие предохранители), отключая электроприборы от электросети. Нагрузка (на рисунке не показана) подключается параллельно тиристорам. Проверить работоспособность устройства можно с помощью ЛАТРа.
Устройство работоспособно и на постоянном токе.


Рис. 4.6. Схема релейного устройства защиты от перенапряжения с самоблокировкой

Устройство защиты от перенапряжения (рис. 4.6) выгодно отличается от предыдущих тем, что в нем не происходит необратимого повреждения элемента защиты [4.6]. Вместо этого при напряжении свыше 14,1 В пробивается цепочка стабилитронов VD1 — VD3, включается и самоблокируется тиристор VS1, срабатывает реле К1 и своими контактами отключает цепь нагрузки.
Восстановить исходное состояние устройства защиты можно только после вмешательства оператора — для этого следует нажать на кнопку SB1. Устройство также переходит в рабочий ждущий режим после кратковременного отключения источника питания. К числу недостатков данного устройства защиты относится его высокая чувствительность к кратковременным перенапряжениям.
Устройство (патент DL-WR 82992) [4.7], принципиальная схема которого приведена на рис. 4.7, может применяться для защиты нагрузки от недопустимо высокого выходного напряжения. В нормальных условиях транзистор VT1 работает в режиме, когда напряжение между его коллектором и эмиттером небольшое, и на транзисторе рассеивается небольшая мощность (ток базы определяется резистором R1). Сопротивление стабилитрона VD2 в этом случае большое и тиристор VS1 закрыт.


Рис. 4.7. Схема полупроводникового реле защиты нагрузки от перенапряжения

При возрастании напряжения на выходе устройства выше определенной величины через стабилитрон начинает протекать ток, который приводит к открыванию тиристора. Транзистор VT1 при этом закрывается, и напряжение на выходе устройства становится близко к нулю. Отключить защиту можно только отключением источника питания.
Описанное устройство должно включаться в выходную цепь стабилизаторов так, чтобы сигнал обратной связи подавался из цепи, расположенной за системой защиты. При номинальном выходном напряжении 12 В и токе 1 А в устройстве можно применить транзистор КТ802А, тиристор КУ201А — КУ201К, стабилитрон — Д814Б. Сопротивление резистора R1 должно быть 39 Ом (мощность рассеивания при отсутствии системы автоматики, отключающей стабилизатор от сети, составляет 10 Вт), R2 — 200 Ом, R3 — 1 кОм.

Источник