Меню

Сопротивление растеканию тока заземляющего устройства что это такое

Сопротивление заземления.

Сопротивление заземления (сопротивление растеканию электрического тока) — величина «противодействия» растеканию электрического тока, поступающего в землю через заземлитель.

Величина измерения сопротивления заземления — Ом и оно должно быть минимально низким по значению. Идеальным случаем считается, если величина будет нулевая, это означает при пропускании «вредных» электротоков какое-либо сопротивление отсутствует, что гарантирует ПОЛНОЕ поглощение их землей. Так как достигнуть идеала практически невозможно, то вся электроника и электрооборудование создаются на основе некоторых нормированных величин сопротивления заземления равно 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

С подключением к электросетям имеющим 220 Вольт / 380 Вольт, заземление необходимо иметь для частных домов с рекомендованным сопротивлением не больше, чем 30 Ом.

Согласно ПУЭ 1.7.101, не должно превышать 4 Ом при подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора). Без проведения каких-либо дополнительных мероприятий выполняется данное условие, при правильном заземлении источника тока (генератора или трансформатора).

Выполняться должно стандартное требование для заземления дома при выполнении подключения к дому газопровода, но необходимо выполнять локальное заземление с сопротивлением не более 10 Ом, из-за использования опасного типа оборудования (для всех повторных заземлений ПУЭ 1.7.103).

Сопротивление заземления быть должно не больше чем 10 Ом (РД 34.21.122-87, п. 8) для заземления, которое используется при подключении молниеприемников.

Исходя из ПУЭ 1.7.101, требуется не более чем 2, 4 и 8 Ом сопротивление заземления для источника тока (генератора или трансформатора), соответственно при линейных напряжениях источника трехфазного тока: 660, 380 и 220 В или источника однофазного тока: 380, 220 и 127 В.

В устройствах защиты воздушных линий связи (например, радиочастотный кабель или локальная сеть на основе медного кабеля) сопротивление заземления к которому подключаются газовые разрядники должно быть не более 2 Ом, это необходимо для уверенного их срабатывания. Также встречаются экземпляры и с требованием значения в 4 Ом.

Заземление при выполнении подключения телекоммуникационного оборудования, иметь сопротивление должно не больше 2 или 4 Ом.

Сопротивление заземления

Сопротивление растеканию токов для подстанции не должно превышать 0,5 Ом (ПУЭ 1.7.90).

Но справедливы приведенные выше нормы сопротивления заземления только для нормальных грунтов, имеющих удельное электрическое сопротивление не превышающее 100 Ом*м (глина или суглинки).

Однако, если грунт обладает более высоким удельным электрическим сопротивлением, то очень часто (но не всегда) повышается минимальное значение сопротивление заземления на величину равную 0,01 от удельного сопротивления грунта.

Например, с удельным сопротивлением в 500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S при песчаных грунтах, повышается в 5 раз, вместо 30 Ом, оно становится 150 Ом.

Для произведения расчета сопротивления заземления были разработаны специальные методики и формулы, которые описывают зависимости от приведенных факторов.

Основным качественным показателем заземлителя является сопротивление заземления и зависит оно напрямую от следующих факторов:

1. Удельного сопротивления грунта

2. Конфигурации заземлителя, в частности от площади электрического контакта электродов заземлителя с грунтом

Удельное сопротивление грунта.

Определяет собой удельное сопротивление грунта уровень «электропроводности» земли как проводника равный тому, насколько хорошо в такой среде будет растекаться электрический ток, который поступает от заземлителя. Сопротивление заземления тем меньшее значение будет иметь, чем у этой величины будет меньший размер.

Удельное электрическое сопротивление грунта (Ом*м) — измеряемая величина, которая зависит от состава грунта, плотности и размеров прилегания его частиц друг к другу, а также температуры, влажности грунта и концентрации растворимых в нем химических веществ (щелочных и кислотных остатков, солей).

Так как точное измерение этого параметра возможно только в ходе проведения специальных геологических изыскательных работ, то применяется обычно таблица ориентировочных величин — «удельное сопротивление грунта».

Конфигурация заземлителя.

Зависит напрямую сопротивление заземления от площади электрического контакта электродов заземлителя с грунтом, которая необходима быть как можно большей, потому что чем площадь поверхности заземлителя больше, тем сопротивление заземления меньше.

В роли заземлителя, чаще всего, из-за простоты выполнения монтажа используется вертикальный электрод, который имеет вид стержня, уголка или трубы.

Чтобы максимально увеличить площадь контакта заземлителя с грунтом, необходимо провести следующие мероприятия:

  • Увеличить длину (глубину) электрода.
  • Использовать несколько коротких электродов соединенных вместе и размещенных на небольшом расстоянии друг от друга (контур заземления).

Площади единичных электродов в таком случае просто складываются вместе.

Источник

Сопротивление заземления

Сопротивление заземления (сопротивление растеканию электрического тока) определяется как величина «противодействия» растеканию электрического тока в земле, поступающего в неё через заземлитель.

Измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай — нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании «вредных» электротоков, что гарантирует их ПОЛНОЕ поглощение землей.

Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

    для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом

При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)

Подробнее об этом на странице «Заземление дома».

    при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом
    (ПУЭ 1.7.103; для всех повторных заземлений)

Читайте также:  Принцип действия генератора постоянного тока назначение коллектора в генераторе постоянного тока

Подробнее об этом на странице «Заземление газового котла / газопровода».

для заземления, использующегося для подключения молниеприёмников, сопротивление заземления должно быть не более 10 Ом (РД 34.21.122-87, п. 8)

Подробнее об этом на странице «Молниезащита и заземление».

  • для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление
    не более 2 или 4 Ом
  • для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • Приведённые выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением
    не более 100 Ом*м (например, глина / суглинки).

    Если грунт имеет более высокое удельное электрическое сопротивление — то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину 0,01 от удельного сопротивления грунта.

    Например, при песчаных грунтах с удельным сопротивлением
    500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз — до 150 Ом (вместо 30 Ом).

    Расчёт сопротивления заземления

    Для расчёта сопротивления заземления существуют специальные формулы и методики, описывающие зависимости от описанных факторов. Они представлены на странице «Расчёт заземления».

    Качество заземления

    Сопротивление заземления является основным качественным показателем заземлителя и напрямую зависит от:

    • удельного сопротивления грунта
    • конфигурации заземлителя, в частности: площади электрического контакта электродов заземлителя с грунтом

    Удельное сопротивление грунта

    Параметр определяет собой уровень «электропроводности» земли как проводника = как хорошо будет растекаться в такой среде электрический ток, поступающий от заземлителя. Чем меньший размер будет иметь эта величина, тем меньше будет сопротивление заземления.

    Удельное электрическое сопротивление грунта (Ом*м) — это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, его влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

    Обычно используется таблица ориентировочных величин «удельное сопротивление грунта», т.к. его точное измерение возможно только в ходе проведения специальных геологических изыскательных работ.

    Конфигурация заземлителя

    Сопротивление заземления напрямую зависит от площади электрического контакта электродов заземлителя с грунтом, которая должна быть как можно большей. Чем больше площадь поверхности заземлителя, тем меньше сопротивление заземления.

    Чаще всего, из-за наименьшей сложности монтажа, в роли заземлителя используется вертикальный электрод в виде стержня/трубы/уголка.

    Для увеличения площади контакта заземлителя с грунтом:

    • увеличивается длина (глубина) электрода
    • используется несколько соединенных вместе коротких электродов, размещенных на некотором расстоянии друг от друга (контур заземления). В таком случае площади единичных электродов просто складываются вместе, что подробно описано на отдельной странице о расчёте заземления.

    Заземление одиночное Заземление из нескольких электродовЗаземление многоэлектродное

    Различные отраслевые нормы

    Сопротивление заземления для кабелей городской телефонной сети с медными жилами (из ОСТ 45.82-96, п. 8)

    Для металлических экранов и оболочек кабелей приняты следующие значения (зависимость от удельного электрического сопротивления грунта (УЭС)):

    Источник

    

    Измерение сопротивления растеканию тока заземляющего устройства

    Измерение сопротивления растеканию тока заземляющего устройства

    Измерение сопротивления растеканию тока заземляющего устройства выполняется с целью проверки элементов имеющихся на объекте заземляющих устройств на соответствие проектным техническим условиям и требованиям нормативной документации. Такие работы выполняются при проведении всех видов испытаний электрооборудования.

    Средства и метод измерения сопротивления заземлителей

    Для проведения данных работ чаще всего применяется измерители сопротивления заземлителя Ф4103-М1, М416 или ИС-20. Замеры проводится по компенсационному методу, где применяются вспомогательные заземлители и потенциальные электроды-штыри (зонды).

    Геометрические размеры имеющихся заземлителей определяются методом прямых измерений. Их состояние оценивается визуально после вскрытия контура. Для учёта текущей проводимости грунта вводятся поправочные коэффициенты.

    Проведение измерений по компенсационным методам

    Такие диагностические работы выполняются по трех- или четырехпроводному методу.

    При применении четырехроводного метода используются четыре электрода-штыря (два токовых и два потенциальных), установленных через определенное расстояние (разнос).

    Применение такого количества электродов исключает влияние на результат измерений переходного сопротивления в местах подключения измерительных кабелей, а также их сопротивление. Это особенно важно в тех случаях, когда измеряемое сопротивление является малой величиной.

    При трехпроводном методе используется только один потенциальный и два токовых штыря. В этом случае измеренная величина заземляющего устройства будет включать в себя величину сопротивления измерительного кабеля потенциального электрода-штыря.

    Во время проведения измерений отсоединение грозозащитных тросов оболочек кабелей и других естественных заземлителей не требуется. Измерительные кабеля не должны располагаться рядом с массивными металлоконструкциями и находиться параллельно линии электропередач.

    Другие методы измерений

    Для определения величины сопротивления заземлителей существуют другие методы:

    • мостовой (практически не применяется);
    • определение сопротивления измерением тока, протекающего через заземление и падения напряжения на нем (испытание способом вольтметра-амперметра с одно- и двухлучевой схемой расположения вспомогательных электродов или применением измерителей МС – 07 или МС-08).

    Оформление результатов

    Измерение сопротивления растеканию тока заземляющего устройства, результаты обработки данных и вычислений оформляется соответствующим протоколом. В этом протоколе обязательно указываются: схема расположения заземляющих электродов, план контура заземления, метод определения сопротивления.

    Если по результатам изменение сопротивления заземляющего устройства велико, намечаются пути снижения этого сопротивления (обработка грунта солями, добавления в него влагозадерживаюших веществ, увлажнение грунта, изменение заземляющего контура и другие).

    Источник

    Измерение сопротивления контура заземления

    При использовании электрических приборов всегда существует риск поражения электрическим током. Эта вероятность происходит из свойств упорядоченного потока заряженных частиц: он проходит через тот участок цепи, в котором сопротивление имеет минимальное значения. В разное время производители приборов и комплектующих пытались бороться с этим и обезопасить человека от вредного или даже смертельного воздействия тока. Но в конечном итоге наиболее простым и надежным остается заземление.

    Читайте также:  Расчет напряжение тока в цепи с катушкой индуктивности

    Измерение сопротивления1

    Заземление применяется на промышленных предприятиях и в загородных домах. Особую роль оно играет в случае, когда мощность прибора превышает критические значения. Человеку достаточно получить удар силой 0.1 ампера, чтобы гарантированно погибнуть. Также не стоит забывать, что даже исправное оборудование может служить источником опасности. Это может случиться из-за разряда молнии и по некоторым другим причинам. Следовательно, к вопросу установки заземления стоит подходить ответственно и учитывать все нюансы.

    Испытания заземления

    Существует множество споров по поводу монтажа заземления и норм растекания тока по нему. Но в одном специалисты сходятся абсолютно единогласно — проверять качество установленного контура должен проверять специалист. Эта процедура позволит быть уверенным с правильном монтаже заземления в доме и позволит обезопасить себя и близких от опасного воздействия электрического тока. Испытания проводятся как на предприятиях, где часто работают генераторы и двигатели высокой мощности, так и в частных домах — измерение сопротивления заземления делается одним и тем же способом.

    Измерение сопротивления2

    Существует две основных разновидности испытаний: приемо-сдаточные и эксплуатационные. Первые проводятся в случаях, когда установка (или участок сети) уже полностью смонтированы и готовы к непосредственному использованию. Перед тем, как измерить сопротивление заземления, определяют, готов ли контур к поглощению токов в случае необходимости и соответствуют ли его параметры заявленным требованиям. Помимо всего прочего, необходимо регулярно контролировать, чтобы установленное заземление не теряло своих свойств с течением времени. Для этого проводятся эксплуатационные испытания — специалист проверяет готовый участок сети, который уже используется. Для осуществления такой процедуры нужно освободить сеть от потребителей, так что весь процесс требует небольшой подготовки.

    Чем измеряют заземление

    Для измерения этой величины применяется омметр — прибор, который изменяет сопротивление. При этом устройств для определения сопротивления заземления должны иметь определенные характеристики. Самая главная: очень низкая проводимость на входе. Диапазон измерений у таких приборов крайне небольшой: обычно он составляет от 1 до 1000 Ом. Точность измерения в аналоговых приборах не превышает 0.5–1 Ом, а в цифровых — до 0.1 Ома.

    Несмотря на повальное распространение китайских и европейских приборов, самым популярным остается М416, разработанный еще в СССР. Устройство имеет четыре диапазона измерения: от 0 до 10 Ом, от 0.5 до 50, от 2 до 200 и от 100 до 1000. Работает прибор от трех «пальчиковых» батареек. Несмотря на это, мобильным его назвать трудно — размеры корпуса не слишком комфортны.

    Более продвинутой версией является Ф4103 — промышленный омметр с большим входным сопротивлением. Он еще менее транспортабельный, но имеет большее количество диапазонов измерения. Большой плюс такого прибора: работа с огромным диапазоном сигналов (от постоянного и пульсирующего тока — до переменного с частотой 300 Гц). Также порадует пользователя и диапазон рабочих температур: от –25 до 55 градусов по Цельсию.

    Измерение сопротивления4

    Как нужно измерять сопротивление

    Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

    Измерение сопротивления5

    В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

    1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
    2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
    3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

    Измерение сопротивления6

    Нормы для каждого из типов

    Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

    1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
    2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
    3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
    • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
    • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
    • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
    • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.
    Читайте также:  Привод постоянного тока с обратной связью по току

    Измерение сопротивления7

    Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

    От чего зависит сопротивление заземления

    Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

    1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
    2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
    3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

    Измерение сопротивления8

    Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

    Формула расчета

    Формула расчета сопротивления заземления одиночного вертикального заземлителя:

    Формула

    где:
    ρ — сопротивление грунта на единицу длины (Ом×м)
    L — протяженность заземлителя (в метрах)
    d — ширина заземлителя (в метрах)
    T — расстояние от поверхности земли до середины заземлителя (в метрах)

    Для электролитического заземления:

    Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

    Формула2

    ρ — сопротивление грунта на единицу длины (Ом×м);
    L — протяженность заземлителя (в метрах);
    d — ширина заземлителя (в метрах);
    T — расстояние от поверхности земли до середины заземлителя (в метрах);
    С — относительное содержание электролита в окружающем грунте.

    Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

    Измерение сопротивления9

    Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

    Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

    Итоги и выводы

    Заземление — важный элемент электрической цепи, который обеспечивает защиту от коротких замыканий, поражения током или попадания молнии в один из ее участков. Ключевым показателем здесь является сопротивление: чем оно меньше, чем больше тока «уведет» контур и тем ниже будет вероятность серьезного удара или повреждения оборудования. Сопротивление заземления регламентируется двумя документами: ПУЭ и ПТЭЭП. Первый используется для приема только что сданного участка сети, второй — для контроля уже эксплуатируемого участка.

    Измерение сопротивления10

    Нельзя пренебрегать нормами контроля, которые призваны проверить качество заземления и работу контура в условиях полной нагрузки. Процедуры производятся как непосредственно после создания цепи, так и в процессе ее использования. Частота проверок зависит от нагрузки на сети и целей, для которых используется контур. Нормы сопроивления при этом вовсе не отличаются. Различают три типа норм: для линий электропередач, трансформаторов и электрических установок. С повышением рабочего напряжения по экспоненте возрастает максимальная величина сопротивления. Также учитывается и ряд специфических показателей (например, удельная проводимость грунта). Исходя из нее можно получить максимальное регламентированное сопротивление.

    Основными способами для увеличения эффективности работы заземлителя является использование разных конфигураций проводника. Ключевая задача заключается в том, чтобы предельно повысить площадь прямого контакта контура с землей. Для этого используется один или несколько проводников. В последнем случае их могут соединять как последовательно, так и параллельно.

    Также для замера сопротивления контура заземления важно знать и поправочные коэффициенты — например, при вычислении минимально допустимого сопротивления заземления учитывается также удельное содержание материала в грунте и сопротивление повторного заземления. Для получения этого показателя нужно использовать специальное оборудование.

    Видео по теме

    Источник