Меню

Способы регулирования напряжения генератора постоянного тока

Регулирование напряжения в цепях постоянного тока

Сегодня, как в промышленности, так и в гражданской сфере, есть немало установок, электроприводов, технологий, где для питания требуется не переменное, а постоянное напряжение. К таким установкам относятся различные промышленные станки, строительное оборудование, двигатели электротранспорта (метро, троллейбус, погрузчик, электрокар), и другие установки постоянного тока разного рода.

Напряжение питания для некоторых из этих устройств должно быть изменяемым, чтобы например изменяющийся ток питания электродвигателя приводил бы к соответствующему изменению скорости вращения его ротора.

Один из первых способов регулировки постоянного напряжения — регулирование при помощи реостата. Затем можно вспомнить схему двигатель — генератор — двигатель, где опять же регулированием тока в обмотке возбуждения генератора достигалось изменение рабочих параметров конечного двигателя.

Но эти системы не экономичны, они считаются устаревшими, и гораздо более современными являются схемы регулирования на базе тиристоров. Тиристорное регулирование более экономично, более гибко, и не приводит к увеличению массо-габаритных параметров установки целиком. Однако, обо всем по порядку.

Реостатное регулирование (регулирование при помощи добавочных резисторов)

Регулирование при помощи цепи последовательно соединенных резисторов позволяет изменять ток и напряжение питания электродвигателя путем ограничения тока в его якорной цепи. Схематически это выглядит как цепочка добавочных резисторов, присоединенных последовательно к обмотке двигателя, и включенных между ней и плюсовой клеммой источника питания.

Реостатное регулирование ДПТ

Часть резисторов может быть по мере надобности шунтирована контакторами, чтобы соответствующим образом изменился ток через обмотку двигателя. Раньше в тяговых электроприводах такой метод регулирования был распространен весьма широко, и за неимением альтернатив приходилось мириться с очень низким КПД в силу значительных тепловых потерь на резисторах. Очевидно, это наименее эффективный метод — лишняя мощность просто рассеивается в виде ненужного тепла.

Регулирование по системе двигатель — генератор — двигатель

Здесь напряжение для питания мотора постоянного тока получается на месте, при помощи генератора постоянного тока. Приводной мотор вращает генератор постоянного тока, который и питает в свою очередь мотор исполнительного механизма.

Регулирование рабочих параметров двигателя исполнительного механизма достигается путем изменения тока обмотки возбуждения генератора. Больше ток обмотки возбуждения генератора — большее напряжение подается на конечный двигатель, меньше ток обмотки возбуждения генератора — меньшее напряжение, соответственно, подается на конечный двигатель.

Регулирование по системе двигатель — генератор — двигатель

Данная система, на первый взгляд, более эффективна, чем просто рассеивание энергии в виде тепла на резисторах, однако и она отличается своими недостатками. Во-первых, система содержит две дополнительные, довольно габаритные, электрические машины, которые необходимо время от времени обслуживать. Во-вторых, система инерционна — соединенные три машины не в состоянии резко изменить свой ход. В результате снова КПД получается низким. Однако, на протяжении некоторого времени такие системы использовались на заводах в 20 веке.

Метод тиристорного регулирования

С появлением во второй половине 20 века полупроводниковых приборов, появилась возможность создания малогабаритных тиристорных регуляторов для двигателей постоянного тока. Двигатель постоянного тока теперь просто подключался к сети переменного тока через тиристор, и, варьируя фазу открывания тиристора, стало возможным получить плавное регулирование скорости вращения ротора двигателя. Этот метод позволил совершить рывок в подъеме КПД и быстродействия преобразователей для питания моторов постоянного тока.

Метод тиристорного регулирования ДПТ

Метод тиристорного регулирования и сейчас используется, в частности, для управления скоростью вращения барабана в автоматических стиральных машинах, где в качестве привода служит коллекторный высокооборотный мотор. Справедливости ради отметим, что аналогичный метод регулирования работает и в тиристорных диммерах, способных управлять яркостью свечения ламп накаливания.

Регулировка на базе ШИМ со звеном переменного напряжения

Постоянный ток при помощи инвертора преобразуется в переменный ток, который затем при помощи трансформатора повышается или понижается, после чего выпрямляется. Выпрямленное напряжение подается на обмотки электродвигателя постоянного тока. Возможно дополнительное импульсное регулирование посредством ШИМ-модуляции, тогда достигаемый эффект на выходе несколько похож на тиристорное регулирование.

Регулировка на базе ШИМ со звеном переменного напряжения

Наличие трансформатора и инвертора в принципе приводит к удорожанию системы в целом, однако современная полупроводниковая база позволяет строить конверторы в виде готовых малогабаритных устройств с питанием от сети переменного тока, где трансформатор стоит высокочастотный импульсный, и в итоге габариты получаются небольшими, а КПД уже достигает 90%.

Импульсное управление

Система импульсного управления моторами постоянного тока похожа по своему устройству на импульсный DC-DC преобразователь. Этот метод является одним из наиболее современных, и именно его используют сегодня в электрокарах и внедряют в метро. Звено понижающего преобразователя (диод и дроссель) объединено в последовательную цепь с обмоткой мотора, и регулируя ширину подаваемых на звено импульсов, добиваются требуемого среднего тока через обмотку мотора.

Импульсное управление двигателем постоянного тока

Такие импульсные системы управления, по сути — импульсные преобразователи, отличаются более высоким КПД — более 90%, и обладают отличным быстродействием. Здесь открываются широкие возможности для рекуперации электроэнергии, что весьма актуально для станков с большой инерционностью и для электрокаров.

Источник

Регулирование напряжения в цепях постоянного тока

Довольно большое количество промышленных электроприводов и технологических процессов для своего питания используют постоянный ток. Причем в таких случаях довольно часто необходимо изменять значение этого напряжения. Такие виды транспорта как метрополитен, троллейбусы, электрокары и другие виды транспорта получают питающее напряжения из сетей постоянного тока с неизменным напряжением. Но ведь многие из них нуждаются в изменении значения напряжения, подводимого к якорю электродвигателя. Классическими средствами получения необходимых значений являются резистивное регулирование и система генератор-двигатель, или система Леонардо. Но эти системы являются устаревшими, и встретить их можно довольно редко (особенно систему генератор-двигатель). Более современными и активно внедряемыми сейчас являются системы тиристорный преобразователь-двигатель, импульсный преобразователь двигатель. Рассмотрим каждую систему более подробно.

Резисторное регулирование

Для регулирования пускового тока и напряжения, подводимого к электродвигателю, в якорную цепь последовательно якорю (или якорю и обмотке возбуждения в случае двигателя последовательного возбуждения) подключают резисторы:

Резистивно-контакторная схема управления

Таким образом, регулируется ток, подводимый к электрической машине. Контакторы К1, К2, К3 шунтируют резисторы при необходимости изменения какого-либо параметра или координаты электропривода. Этот способ довольно еще широко распространен, особенно в тяговых электроприводах, хотя ему сопутствуют большие потери в резисторах и, как следствие, довольно низкий КПД.

Читайте также:  Газообразные проводники электрического тока

Система генератор-двигатель

В такой системе необходимый уровень напряжения формируется путем изменения потока возбуждения генератора:

Система генератор-двигатель с приводным двигателем постоянного тока

Наличие в такой системе трех электромашин, больших массогабаритных показателей и длительного времени ремонта при поломках, а также дорогостоящего обслуживания и большую инерционность такой установки сделали КПД такой машины очень низким. Сейчас систем генератор-двигатель практически не осталось, все они активно заменяются на системы тиристорный преобразователь – двигатель ТП-Д, который обладает рядом преимуществ.

Тиристорный преобразователь – двигатель

Получила свое массовое развитие в 60-х годах, когда начали появляться тиристоры. Именно на их базе были созданы первые статичные маломощные тиристорные преобразователи. Такие устройства подключались напрямую к сетям переменного тока:

Структурная схема тиристорного электпропривода постоянного тока

Регулирование напряжения происходит путем изменения угла открывания тиристора. Регулирование через тиристорный преобразователь имеет ряд преимуществ перед установкой генератор-двигатель, такие как высокое быстродействие и КПД, плавное регулирование напряжения постоянного и много других.

Преобразователь с промежуточным звеном постоянного напряжения

Здесь все немного сложнее. Чтоб получить постоянное напряжение необходимой величины применяют еще вспомогательные устройства, а именно инвертор, трансформатор, выпрямитель:

инвертор в цепи постоянного тока

Здесь постоянный ток преобразуют в переменный с помощью инвертора тока, потом с помощью трансформатора понижают или повышают (в зависимости от надобности), а потом снова выпрямляют. Значительно удорожает установку наличие трансформатора и инвертора, укрупняет систему, чем снижает КПД. Но есть и плюс – гальваническая развязка между сетью и нагрузкой из – за наличия трансформатора. На практике такие устройства встречаются крайне редко.

Импульсные преобразователи постоянного напряжения

Это пожалуй самые современные устройства регулирования в цепях постоянного тока. Его можно сравнить с трансформатором, поскольку поведение импульсного преобразователя подобно трансформатору с плавно меняющимся количеством витков:

Импульсные преобразователи цепи постоянного тока

Такие системы активно заменяют электроприводы с резистивным регулированием, путем подключения их к якорю машины последовательно, вместо резистивно-контакторной группы. Их довольно часто применяю в электрокарах, а также довольно большую популярность они обрели в подземном транспорте (метрополитен). Такие преобразователи выделяют минимум тепла, что не нагревает тоннелей и могут реализовывать режим рекуперативного торможения, что является большим плюсом для электроприводов с частым пуском и торможением.

Большим плюсом таких устройств есть то, что они могут осуществить рекуперацию энергии в сеть, плавно регулируют скорость нарастания тока, обладают высоким КПД и быстродействием.

Источник



Большая Энциклопедия Нефти и Газа

Регулирование — напряжение — генератор — постоянный ток

Регулирование напряжения генераторов постоянного тока осуществляется с помощью электромагнитных вибра-ционных реле. Обычно три электромагнитных реле, осуществляющих соответственно регулирование напряжения, ограничение максимальной силы тока и отключение батареи от генератора при неработающем генераторе, объединяют в один блок, называемый реле-регулятором. [1]

Предназначены ддя регулирования напряжения генераторов постоянного тока к оборотов двигателей постоянного тока путем жзмененйя сопротивления в цепях обмоток возбуждения машин. [2]

Рассмотрим систему регулирования напряжения генератора постоянного тока , состоящую только из основных элементов, и на этом примере выясним особенности одноконтурных систем, распространив затем эти выводы на любые одноконтурные системы. [3]

Регуляторы возбуждения предназначены для регулирования напряжения генераторов постоянного тока и возбудителей машин переменного тока, а также для регулирования скорости вращения ( выше номинальной) электродвигателей постоянного тока. [5]

На рис. 35 показана схема регулирования напряжения генератора постоянного тока с помощью трехступенчатого ЭМУ продольного поля с обмоткой самовозбуждения. Генератор Г приводится во вращение дизельным двигателем ДД, генератор питает двигатель Д, связанный с рабочим механизмом. [7]

Электронный регулятор Севзапэлектромонтаж, построенный по компенсационному принципу, предназначается для регулирования напряжения генератора постоянного тока и скорости вращения шунтового электродвигателя. [9]

Выясним, как связана неточность регулирования со статизмом системы на примере регулирования напряжения генератора постоянного тока . На рис. 47 представлена характеристика зависимости напряжения генератора от тока нагрузки при автоматическом регулировании напряжения статическим регулятором. [11]

Основное преимущество угольных регуляторов напряжения состоит в том, что они допускают регулирование напряжения генераторов постоянного тока большой мощности , величина тока возбуждения которых достигает 15 а и более. [12]

Составить схему набора и рассчитать переходный процесс на модели МН-7 в системе регулирования напряжения генератора постоянного тока , принципиальная и структурная схемы которой приведены соответственно на рис. 7 — 22 и 7 — 23 при скачкообразном изменении напряжения сети переменного тока ( 1 в), от которой через выпрямительный мост питается обмотка возбуждения генератора. В системе регулирования электромашинный усилитель используется как вольтодобавочная машина. Бареттер Б, стоящий в цепи одной из обмоток управления электромашинного усилителя, является нелинейным сопротивлением, инерционностью которого можно пренебречь. Обмотки управления электромашинного усилителя У и У2 имеют одинаковые числа витков и сопротивления. Генератор работает на холостом ходу. [13]

Составить схему набора и рассчитать переходный процесс на модели МН-7 в системе регулирования напряжения генератора постоянного тока , принципиальная и структурная схемы которой приведены соответственно на рис. 11 — 23 и 11 — 24 при скачкообразном изменении напряжения сети переменного тока ( 1 в), от которой через выпрямительный мост питается обмотка возбуждения генератора. В системе регулирования электромашинный усилитель используется как вольтодобавочная машина. Бареттер Б, стоящий в цепи одной из обмоток управления электромашинного усилителя является нелинейным сопротивлением, инерционностью которого можно пренебречь. [14]

Однако часто встречаются нелинейные САР, в которых сам регулирующий орган работает в релейном режиме. Типичным примером двухпозиционного релейного регулирования с релейным режимом работы регулирующего органа является вибрационное регулирование напряжения генератора постоянного тока . [15]

Источник

РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ ГЕНЕРАТОРОВ

Напряжение генераторов постоянного и переменного тока зависит от частоты вращения ротора, значения отдаваемого тока, магнит­ного потока возбуждения, сопротивления обмотки якоря (у гене­ратора постоянного тока) и полного сопротивления обмотки ста­тора (у генераторов переменного тока).

•Если учитывать (при грубом приближении) только основные фак­торы, то можно считать, что

Таким образом, для обеспечения постоянства напряжения гене­ратора при изменении частоты вращения ротора необходимо обратно пропорционально частоте изменять магнитный поток. Так как магнитный поток определяется силой тока возбуждения, регулирование напряжения осуществляется периодическим включе­нием в цепь возбуждения генератора и отключением из этой цепи добавочного резистора с постоянным сопротивлением. В настоя­щее время применяются вибрационные и полупроводниковые регу­ляторы напряжения.

Читайте также:  Формулы расчета мощности тока в однофазной сети

Вибрационный регулятор напряжения. Вибрационный регулятор (рис. 18,а) имеет добавочный резистор Rд, который включается по­следовательно с обмоткой возбуждения ОВ. При замыкании контак­тов 4, один из которых неподвижен, а другой расположен на якорьке 3, добавочный резистор замкнут накоротко. Основная обмот­ка ОО регулятора, намотанная на сердечнике 5, включена на пол­ное напряжение генератора. Пружина 2 оттягивает якорек вверх, удерживая контакты в замкнутом состоянии. При этом обмотка возбуждения ОВ через контакты, якорек и ярмо 1 подключена, минуя добавочный резистор.

При неработающем генераторе в основной обмотке 00 регуля­тора тока нет и контакты под действием пружины замкнуты. С увеличением частоты вращения сила тока возбуждения генерато­ра и его напряжение растут. При этом увеличивается сила тока основной обмотки 00 регулятора и намагничивание сердечника. Пока напряжение генератора меньше установленной величины, силы магнитного притяжения якорька к сердечнику недостаточно для преодоления силы натяжения пружины и контакты регуля­тора остаются замкнутыми, а ток в обмотку возбуждения про­ходит, минуя добавочный резистор.

При дальнейшем увеличении напряжения генератора наступает такой момент, когда сила магнитного притяжения якорька к сердечнику преодолевает силу натяжения пружины и контакты регулятора размыкаются. Вследствие этого в цепь обмотки возбуж­дения включается добавочный резистор, и напряжение генератора резко падает.

Уменьшение напряжения приводит к уменьшению тока в обмотке регулятора напряжения и, следовательно, силы притяжения якорька к сердечнику. В результате контакты регулятора вновь замыкаются, а затем при увеличении напряжения генератора размыкаются.

Описанный процесс периодически повторяется. В результате этого возникают пульсации напряжения (рис. 18, б). Среднее значение напряжения Uср, измеряемое вольтметром, определяет регули­руемое напряжение генератора. С увеличением частоты враще­ния увеличивается время разомкнутого состояния tр и уменьшается время замкнутого состояния t3. Это приводит к уменьшению тока возбуждения IB (рис. 19).

Напряжение генератора, поддерживаемое регулятором, зависит от силы натяжения пружины. Изменением силы натяжения пружины осуществляется регулировка напряжения генераторной установки.

Уменьшение пульсаций напряжения происходит следующим обра­зом. Пульсации напряжения генератора зависят от частоты колебаний якорька регулятора. Чтобы пульсации напряжения не оказывали влияния на работу потребителей, якорек регулятора должен колебаться с частотой не менее 30 Гц. Кроме того, с увеличением частоты колебаний якорька уменьшается износ контактов.

Частоту колебаний повышают применением специальных уско­ряющих обмоток, которые наматывают на сердечник регулятора, или ускоряющих резисторов. Наиболее часто применяют схему вибрационного регулятора напряжения с ускоряющим резистором (рис. 20). Здесь основная обмотка 00 регулятора подключается к генератору через ускоряющий резистор Rу, который включен последовательно с резистором Rд. Резистор Rу также является добавочным в цепи обмотки возбуждения генератора. Таким обра­зом, напряжение на обмотке регулятора равно разности между напряжением генератора и падением напряжения в ускоряющем резисторе.

Ускоряющее действие резистора Rу заключается в следующем.При замкнутых контактах регулятора через ускоряющий резистор походит ток только обмотки регулятора, величина которого составляет доли ампера. Напряжение, приложенное к обмотке регулятора, почти равно напряжению генератора, так как падение напряжения в ускоряющем резисторе очень незначительно.

При размыкании контактов ток возбуждения генератора, который вследствие явления самоиндукции не может изменяться скачком, в первый момент сохраняет свою величину и направление. Ток возбуждения проходит по ускоряющему резистору, что приво­дит к резкому увеличению падения напряжения на нем и резкому уменьшению напряжения на обмотке регулятора. Скачкообразное уменьшение напряжения в ос­новной обмотке 00 регулятора в момент размыкания контактов резко уменьшает в ней ток, а следовательно, и силу притя­жения якоря регулятора к се­рдечнику. Благодаря этому кон­такты быстро замыкаются вновь. В результате частота колебаний якоря увеличива­ется до 150—250 Гц и, сле­довательно, уменьшается пуль­сация напряжения. При при­менении ускоряющих устройств возникает отрицательное явление, связанное с увеличением напряжения генератора при увеличении частоты вращения ротора. Возрастание напряжения с увеличением частоты вращения ротора предотвращается при помощи выравнивающих обмоток или выравнивающих резисторов.

Для стабилизации напряжения наибольшее распространение получили схемы с выравнивающими обмотками (рис. 21).

Выравнивающую обмотку ВО включают в цепь через контакты регулятора последовательно с обмоткой возбуждения ОВ генератора. Ее наматывают на сердечник таким образом, чтобы ее магнитный по­ток противодействовал магнитному потоку основной обмотки 00 ре­гулятора. Магнитный поток, создаваемый выравнивающей обмоткой, значительно меньше магнитного потока, создаваемого основной обмоткой регулятора.

При увеличении частоты вращения ротора в результате увеличе­ния времени разомкнутого состояния контактов уменьшается сила то­ка не только в основной, но и в выравнивающей обмотке. Поэ­тому уменьшение магнитного потока, создаваемого основной об­моткой, сопровождается таким же по величине уменьшением магнит­ного потока, создаваемого выравнивающей обмоткой, и результи­рующий магнитный поток почти не изменяется. В результате размыкание контактов регулятора происходит независимо от частоты вращения ротора при напряжении, установленном регулировкой.

Рабочая температура регулятора меняется в значительных преде­лах (от -50 до +125 °С). Сопротивление основной обмотки регулятора напряжения, выполняемой из меди, изменяется от тем­пературы (возрастает на 40% при нагреве обмотки на 100 °С). Поэ­тому при повышении температуры основной обмотки уменьшается ток в ней и, следовательно, магнитный поток. В результате регулятор начинает работать при напряжении, большем того, на которое он от­регулирован.

Температурная компенсация осуществляется следующим обра­зом.

Для уменьшения влияния температуры на работу вибрацион­ного регулятора последовательно основной обмотке регулятора, которую выполняют с меньшим сопротивлением, включают доба­вочный резистор из нихрома или константана. Сопротивление этих материалов практически не* меняется от температуры. В резуль­тате суммарное изменение сопротивления цепи основной обмотки регулятора от температуры в несколько раз уменьшится. Таким образом, возрастание регулируемого напряжения составит пример­но 10% при нагреве на 100 °С. В ряде регуляторов роль термокомпенсационного резистора выполняет ускоряющий резистор.

Для более полной термокомпенсации вместе с резистором применяют биметаллическую пластину, на которой подвешивают якорек регулятора. Биметаллическая пластина имеет два слоя. Материалы слоев обладают резко отличающимися коэффициентами теплового расширения.

Читайте также:  Общая сила тока при смешанном соединении резисторов

Биметаллическую пластину приклепывают к якорьку и закреп­ляют на ярме регулятора. При этом слой материала с малым коэф­фициентом температурного расширения обращен к сердечнику. При повышении температуры пластина изгибается и создает усилие, направленное против усилия пружины, и таким образом способствует вступлению регулятора в работу при меньшем напря­жении. Таким образом и обеспечивается температурная компенсация.

Для термокомпенсации применяют также магнитные шунты. Маг­нитный шунт МШ (см. рис. 26) представляет собой пластину из железоникелевого или иного термомагнитного сплава с магнитным сопротивлением, увеличивающимся при повышении температуры. Пластина закреплена в верхней части регулятора между сердечником и ярмом параллельно якорьку.

При повышении температуры магнитное сопротивление шунта возрастает. При низких температурах магнитное сопротивление шунта мало, и часть магнитного потока сердечника, минуя якорек, замыкается через магнитный шунт. Таким образом компенсируется изменение магнитного потока, возникающее в резуль­тате изменения сопротивления основной обмотки регулятора от температуры. Применение магнитного шунта исключает необходи­мость в термокомпенсационном резисторе и биметаллической пла­стине.

Недостатки вибрационных регуляторов состоят в следующем. Вибрирующие контакты и пружины являются основным недо­статком вибрационных регуляторов, затрудняющим их настройку и повышающим чувствительность к вибрации. В результате изменения характеристик пружин вибрационные устройства подвер­жены разрегулировкам.

Обычный вибрационный регулятор напряжения может приме­няться с генераторами, у которых сила тока возбуждения не более 1,5—1,8 А. При больших значениях силы тока значительно сокра­щается срок службы контактов.

Особенно сказываются недостатки вибрационных регуляторов при работе с генераторными установками переменного тока, у которых сила тока возбуждения значительно больше, чем у гене­раторов постоянного тока. Чтобы получить возможность использо­вать вибрационный регулятор с мощными генераторами, применя­ют следующие способы. Часто используют не один, а два регуля­тора напряжения. Для этого обмотку возбуждения генератора раз­деляют на две одинаковые по своим параметрам и параллельно включенные ветви. Сила тока каждой ветви регулируется своим регулятором. При этом сила тока, разрываемого контактами, уменьшается вдвое.

Для уменьшения силы тока разрыва применяют также двухсту­пенчатое регулирование напряжения. Двухступенчатый регулятор напряжения имеет две пары контактов и добавочный резистор с меньшим сопротивлением. Подробно работа двухступенчатого регу­лятора рассмотрена на конкретном примере. Недостатки вибрационных регуляторов вызвали в последние годы применение с мощными генераторами полупроводниковых регуляторов напряже­ния.

Полупроводниковые регуляторы напряжения. В полупроводнико­вых регуляторах сила тока возбуждения регулируется при помощи транзисторов, эмиттерноколлекторная цепь которого включена по­следовательно с обмоткой возбуждения генератора.

Транзистор работает аналогично контактам вибрационного регу­лятора. При повышении напряжения генератора выше заданного уровня транзистор переключается в закрытое состояние (разомкну­тые контакты). При понижении уровня регулируемого напряжения транзистор переключается в открытое состояние (замкнутые кон­такты). В состоянии «открыт» сопротивление транзистора составляет доли ома, в состоянии «закрыт» — бесконечно большое значение. Полупроводниковые регуляторы напряжения могут выполняться контактно-транзисторными и бесконтактными.

Контактно-транзисторный регулятор (рис. 22) содержит в своей схеме вибрационное реле, управляющее транзистором Т.

Работает регулятор следующим образом. До момента достиже­ния генератором регулируемого значения напряжения Ur силы тока обмотки вибрационного реле недостаточно, чтобы контакты замкну­лись. При этом транзистор открыт, так как через него проте­кает ток базы по цепи: «плюс» генератора, переход эмиттер-база, резистор Rб, корпус генератора.

Через обмотку возбуждения ОВ в этом случае протекает полный ток возбуждения, и напряжение генератора возрастает с возрастанием частоты вращения ротора. Полное отпирание тран­зистора осуществляется подбором сопротивления резистора Rб.

При достижении напряжением генератора регулируемого значе­ния ток в основной обмотке OO реле достигает значения, при котором реле срабатывает. При замкнутых контактах потенциалы базы и эмиттера становятся равными, так как контакты шунтиру­ют переход эмиттер — база. Вследствие этого ток базы становится равным нулю, что приводит к запиранию транзистора.

В результате запирания транзистора ток возбуждения, под­держиваемый э.д.с. самоиндукции обмотки возбуждения, протекая через гасящий диод Дr, уменьшается. При этом уменьшается напряжение генератора Ur, контакты реле размыкаются, и тран­зистор открывается. Затем процесс повторяется.

Гасящий контур, выполняемый обычно в виде диода Дr, явля­ется обязательным элементом любого транзисторного регулятора. Если бы его не было, э.д.с. самоиндукции обмотки возбуждения, возникающая в момент закрытого состояния транзистора и достига­ющая несколько сотен вольт, могла бы вызвать пробой коллектор­ного перехода и отказ транзистора в работе.

В контактно-транзисторном регуляторе напряжения через контакты протекает незначительный ток, благодаря чему увеличива­ется срок их службы. Однако надежность работы регулятора по-прежнему определяется усталостной прочностью и возможной разрегулировкой пружины. Указанный недостаток исключен в бес­контактных схемах регулирования напряжения.

Бесконтактный регулятор напряжения (рис. 23) содержит тран­зистор T1, который выполняет функции контактов в контактно транзисторном регуляторе. Управление транзистором T1 осуществля­ется резисторами R1, R2 и стабилитроном Д1.

При напряжении генератора меньше регулируемого значения напряжение на резисторе R1, включенном параллельно стабилитро­ну Д1, меньше значения, соответствующего пробою стабилитрона. Стабилитрон при этом не проводит ток. следовательно, ток базы транзистора T1 равен нулю. Транзистор T1 при этом закрыт, что соответствует разомкнутому состоянию контактов, а транзистор Т2 открыт.

При достижении генератором уровня напряжения, соответ­ствующего регулируемому значению, напряжение на резисторе R1 повышается до значения, при котором стабилитрон пробивается, т. е. его сопротивление в обратном направлении резко уменьша­ется. В результате возникает ток базы транзистора T1, проте­кающий по цепи: «плюс» генератора, переход эмиттер — база тран­зистора T1, стабилитрон Д1, резистор R2, «минус» генератора. Транзистор T1 при этом открывается, что соответствует замкнутому состоянию контактов, транзистор Т2 запирается, а ток возбуждения и напряжение генератора уменьшаются. Вследствие этого напряже­ние на стабилитроне снижается ниже напряжения стабилизации, и он запирается, прерывая ток базы транзистора T1. Транзистор T1 запи­рается, а транзистор Т2 переключается в открытое состояние и т. д. Соотношение сопротивлений резисторов R1 и R2 определяет уровень регулируемого напряжения.

Схемы бесконтактных регуляторов, применяемых на практике, имеют ряд дополнительных элементов, улучшающих рабочие ха­рактеристики. Назначение дополнительных элементов рассмотрено на примерах схем конкретных регуляторов.

Источник

Способы регулирования напряжения генератора постоянного тока

Большая Энциклопедия Нефти и Газа

Регулирование — напряжение — генератор — постоянный ток

Регулирование напряжения генераторов постоянного тока осуществляется с помощью электромагнитных вибра-ционных реле. Обычно три электромагнитных реле, осуществляющих соответственно регулирование напряжения, ограничение максимальной силы тока и отключение батареи от генератора при неработающем генераторе, объединяют в один блок, называемый реле-регулятором. [1]

Предназначены ддя регулирования напряжения генераторов постоянного тока к оборотов двигателей постоянного тока путем жзмененйя сопротивления в цепях обмоток возбуждения машин. [2]

Рассмотрим систему регулирования напряжения генератора постоянного тока , состоящую только из основных элементов, и на этом примере выясним особенности одноконтурных систем, распространив затем эти выводы на любые одноконтурные системы. [3]

Регуляторы возбуждения предназначены для регулирования напряжения генераторов постоянного тока и возбудителей машин переменного тока, а также для регулирования скорости вращения ( выше номинальной) электродвигателей постоянного тока. [5]

На рис. 35 показана схема регулирования напряжения генератора постоянного тока с помощью трехступенчатого ЭМУ продольного поля с обмоткой самовозбуждения. Генератор Г приводится во вращение дизельным двигателем ДД, генератор питает двигатель Д, связанный с рабочим механизмом. [7]

Электронный регулятор Севзапэлектромонтаж, построенный по компенсационному принципу, предназначается для регулирования напряжения генератора постоянного тока и скорости вращения шунтового электродвигателя. [9]

Выясним, как связана неточность регулирования со статизмом системы на примере регулирования напряжения генератора постоянного тока . На рис. 47 представлена характеристика зависимости напряжения генератора от тока нагрузки при автоматическом регулировании напряжения статическим регулятором. [11]

Основное преимущество угольных регуляторов напряжения состоит в том, что они допускают регулирование напряжения генераторов постоянного тока большой мощности , величина тока возбуждения которых достигает 15 а и более. [12]

Составить схему набора и рассчитать переходный процесс на модели МН-7 в системе регулирования напряжения генератора постоянного тока , принципиальная и структурная схемы которой приведены соответственно на рис. 7 — 22 и 7 — 23 при скачкообразном изменении напряжения сети переменного тока ( 1 в), от которой через выпрямительный мост питается обмотка возбуждения генератора. В системе регулирования электромашинный усилитель используется как вольтодобавочная машина. Бареттер Б, стоящий в цепи одной из обмоток управления электромашинного усилителя, является нелинейным сопротивлением, инерционностью которого можно пренебречь. Обмотки управления электромашинного усилителя У и У2 имеют одинаковые числа витков и сопротивления. Генератор работает на холостом ходу. [13]

Составить схему набора и рассчитать переходный процесс на модели МН-7 в системе регулирования напряжения генератора постоянного тока , принципиальная и структурная схемы которой приведены соответственно на рис. 11 — 23 и 11 — 24 при скачкообразном изменении напряжения сети переменного тока ( 1 в), от которой через выпрямительный мост питается обмотка возбуждения генератора. В системе регулирования электромашинный усилитель используется как вольтодобавочная машина. Бареттер Б, стоящий в цепи одной из обмоток управления электромашинного усилителя является нелинейным сопротивлением, инерционностью которого можно пренебречь. [14]

Читайте также:  Сечение кабеля если ток до 1000а

Однако часто встречаются нелинейные САР, в которых сам регулирующий орган работает в релейном режиме. Типичным примером двухпозиционного релейного регулирования с релейным режимом работы регулирующего органа является вибрационное регулирование напряжения генератора постоянного тока . [15]

Источник

Регулирование напряжения генератора постоянного тока

Все потребители электрической энергии рассчитаны на определенную величину напряжения, отклонение от которой приводит к изменению их характеристик. Так, понижение напряжения приводит к уменьшению светового потока ламп накаливания, создает затруднение в пуске электродвигателей, уменьшает их скорость вращения и т. п. Повышение напряжения уменьшает срок службы электрооборудования, увеличивает скорость вращения электродвигателей, приводит к ложному срабатыванию различных агрегатов и устройств и т. д.

Напряжение авиационных генераторов зависит от скорости вращения якоря генератора, от нагрузки и от температуры окружающей среды. Все эти параметры не являются для авиационных генераторов постоянными величинами и в определенной степени влияют на их напряжение.

Так, изменение скорости вращения в пределах рабочего диапазона приводит к изменению напряжения генератора до 300%, изменение нагрузки от нуля до номинальной — на величину до 20%, изменение температуры окружающей среды от +50 до — 60° С — на величину до 20% номинальной.

Такое изменение напряжения нарушает нормальную работу потребителей, поэтому возникает необходимость регулировать напряжение. Регулировать напряжение также необходимо и для обеспечения параллельной работы авиационных генераторов.

Регулированием напряжения называется процесс поддержания напряжения постоянным независимо от изменения скорости вращения, нагрузки генератора и температуры окружающей среды.

Устройство, с помощью которого напряжение генератора поддерживается автоматически постоянным, называется регулятором напряжения.

Известно, что напряжение генератора

где I — ток в обмотке якоря генератора;

Rя сопротивление обмотки якоря генератора; Ф — магнитный поток полюсов; Се — конструктивная постоянная генератора; n скорость вращения якоря генератора; Е ЭДС генератора.

Из приведенной выше формулы видно, что при изменении величины тока нагрузки и скорости вращения якоря генератора его напряжение меняется, и что в то же время его можно поддерживать постоянным, если изменять определенным образом магнитный поток возбуждения генератора, а при электромагнитном возбуждении ток в обмотке возбуждения.

Читайте также:  Формулы расчета мощности тока в однофазной сети

Для регулирования тока возбуждения применяется различные регуляторы напряжения. В зависимости от способа регулирования тока возбуждения генераторов бывают регуляторы напряжения дискретного (импульсного) и реостатного типа.

На старых ВС, где мощность генераторов не превышала 1,5 кВт, применялись вибрационные регуляторы напряжения импульсного типа. При этом способе регулирования сопротивление в цепи обмотки возбуждения изменяется периодическим шунтированием добавочного сопротивления вибрирующими контактами с изменяющимся соотношением между временем замкнутого и разомкнутого состояния контактов.

При больших мощностях генераторов на контактах регулятора получается сильное искрение, которое создает большие помехи радиоприему и приводит к быстрому подгоранию контактов.

В настоящее время на летательных аппаратах применяются угольные регуляторы напряжения реостатного типа. При реостатном способе регулирования в цепь обмотки возбуждения включается реостат, сопротивление которого можно изменять плавно или ступенями.

На более новых ВС применяется электронный регулятор напряжения импульсного типа. Возврат к регулятором дискретного действия был обусловлен появлением мощных коммутаторов, выполненных на полупроводниковых элементах: транзисторах, тиристорах, диодах.

Источник



Регулирование напряжения в цепях постоянного тока

Довольно большое количество промышленных электроприводов и технологических процессов для своего питания используют постоянный ток. Причем в таких случаях довольно часто необходимо изменять значение этого напряжения. Такие виды транспорта как метрополитен, троллейбусы, электрокары и другие виды транспорта получают питающее напряжения из сетей постоянного тока с неизменным напряжением. Но ведь многие из них нуждаются в изменении значения напряжения, подводимого к якорю электродвигателя. Классическими средствами получения необходимых значений являются резистивное регулирование и система генератор-двигатель, или система Леонардо. Но эти системы являются устаревшими, и встретить их можно довольно редко (особенно систему генератор-двигатель). Более современными и активно внедряемыми сейчас являются системы тиристорный преобразователь-двигатель, импульсный преобразователь двигатель. Рассмотрим каждую систему более подробно.

Резисторное регулирование

Для регулирования пускового тока и напряжения, подводимого к электродвигателю, в якорную цепь последовательно якорю (или якорю и обмотке возбуждения в случае двигателя последовательного возбуждения) подключают резисторы:

Таким образом, регулируется ток, подводимый к электрической машине. Контакторы К1, К2, К3 шунтируют резисторы при необходимости изменения какого-либо параметра или координаты электропривода. Этот способ довольно еще широко распространен, особенно в тяговых электроприводах, хотя ему сопутствуют большие потери в резисторах и, как следствие, довольно низкий КПД.

Читайте также:  Правила освобождения от действия электрического тока напряжением свыше 1000 в

Система генератор-двигатель

В такой системе необходимый уровень напряжения формируется путем изменения потока возбуждения генератора:

Наличие в такой системе трех электромашин, больших массогабаритных показателей и длительного времени ремонта при поломках, а также дорогостоящего обслуживания и большую инерционность такой установки сделали КПД такой машины очень низким. Сейчас систем генератор-двигатель практически не осталось, все они активно заменяются на системы тиристорный преобразователь – двигатель ТП-Д, который обладает рядом преимуществ.

Тиристорный преобразователь – двигатель

Получила свое массовое развитие в 60-х годах, когда начали появляться тиристоры. Именно на их базе были созданы первые статичные маломощные тиристорные преобразователи. Такие устройства подключались напрямую к сетям переменного тока:

Регулирование напряжения происходит путем изменения угла открывания тиристора. Регулирование через тиристорный преобразователь имеет ряд преимуществ перед установкой генератор-двигатель, такие как высокое быстродействие и КПД, плавное регулирование напряжения постоянного и много других.

Преобразователь с промежуточным звеном постоянного напряжения

Здесь все немного сложнее. Чтоб получить постоянное напряжение необходимой величины применяют еще вспомогательные устройства, а именно инвертор, трансформатор, выпрямитель:

Здесь постоянный ток преобразуют в переменный с помощью инвертора тока, потом с помощью трансформатора понижают или повышают (в зависимости от надобности), а потом снова выпрямляют. Значительно удорожает установку наличие трансформатора и инвертора, укрупняет систему, чем снижает КПД. Но есть и плюс – гальваническая развязка между сетью и нагрузкой из – за наличия трансформатора. На практике такие устройства встречаются крайне редко.

Импульсные преобразователи постоянного напряжения

Это пожалуй самые современные устройства регулирования в цепях постоянного тока. Его можно сравнить с трансформатором, поскольку поведение импульсного преобразователя подобно трансформатору с плавно меняющимся количеством витков:

Такие системы активно заменяют электроприводы с резистивным регулированием, путем подключения их к якорю машины последовательно, вместо резистивно-контакторной группы. Их довольно часто применяю в электрокарах, а также довольно большую популярность они обрели в подземном транспорте (метрополитен). Такие преобразователи выделяют минимум тепла, что не нагревает тоннелей и могут реализовывать режим рекуперативного торможения, что является большим плюсом для электроприводов с частым пуском и торможением.

Большим плюсом таких устройств есть то, что они могут осуществить рекуперацию энергии в сеть, плавно регулируют скорость нарастания тока, обладают высоким КПД и быстродействием.

Источник