Меню

Средства способы компенсации реактивной мощности

Средства и способы компенсации реактивной мощности

Элементы СЭС и электроприемники переменного тока, обладающие индуктивностью (электродвигатели, трансформаторы, преобразователи, токопроводы, линии электропередачи т.д.), потребляют наряду с активной и реактивную мощность, необходимую для создания электромагнитного поля. Ее передача по электрическим сетям снижает пропуск­ную способность линий и трансформаторов по активной мощности и вызывает дополнительные потери активной мощности и напряжения. Поэтому при проектировании СЭС стремятся снизить потребляемую предприятием реактивную мощность до оптимального значения. С этой целью осуществляется компенсация, под которой понимается ус­тановка местных источников реактивной мощности, благодаря чему повышается пропускная способность элементов СЭС, снижаются потери мощности и энергии, повышаются уровни напряжения.

Основными средствами компенсации реактивной мощности на промышленных предприятиях являются конденсаторные установки (КУ) и высоковольтные синхронные двигатели. Согласно [6], КУ – электроустановка, состоящая из одного или нескольких конденсаторов, одной или нескольких конденсаторных батарей, относящегося к ним вспомогательного электрооборудования и ошиновки. Конденсаторная батарея представляет собой группу единичных конденсаторов, электрически связанных между собой. На промышленных предприя­тиях применяются батареи напряжением до 1 кВ и 6,3—10,5 кВ.

Компенсация реактивной мощности с использованием конденсаторов может быть индивидуальной, групповой или централизованной. Выбор мест размещения КУ тесно связан с принятым способом компенсации. При этом необходимо учитывать два взаимно противо­речащих фактора: степень разгрузки элементов СЭС от реактивной мощности и степень использования КУ с учетом удельной стоимости.

На рисунке 3.6.1 показаны возможные места присоединения КУ в СЭС промышленного предприятия. Очевидно, что при размещении высоко­вольтных конденсаторов на шинах ГПП (СВ1) и ЦРП (СВ2) КУ используются весьма эффективно, и удельная стоимость их будет минимальной. Однако при этом от реактивной мощности разгружаются только вышестоящие звенья СЭС. Следовательно, непосредственно для предприятия такая компенсация дает незначительный эффект, так как потери во внутризаводской сети не снижаются, сечения проводников и мощности цеховых трансформаторов не могут быть уменьшены. Более эффективна централизованная компенсация на напряжении до 1 кВ (см. рис. 3.6.1; СВ5), при которой разгружаются цеховые трансформаторы, распределительные и питающие линии 10 кВ, трансформаторы ГПП.

Рисунок 3.6.1 – Места присоединения КУ в СЭС

Индивидуальная компенсация реактивной мощности электроприемников (см. рис. 3.6.1; СВЗ, СВ7, СВ9) обеспечивает более высокую степень разгрузки всех элементов СЭС и оптимальное регулирование генерируемой мощности, но при этом увеличиваются общие и удельные затраты на компенсацию, так как снижается степень использования КУ и увеличивается установленная мощность конденсаторов предприятия. Поэтому индивидуальная компенсация может применяться для крупных электроприемников с низким коэффициентом мощности и большим числом часов работы в год. Например, согласно [6],электротермические установки с единичной мощностью 400 кВт и более, имеющие cosφ

Наиболее эффективной является групповая компенсация, при которой КУ присоединяются в определенных точках к МШ и к цеховым РП (см. рис. 3.6.1; СВ4, СВ6, СВ8). В этом случае от реактивных токов не разгружается только распределительная сеть до электроприемников, но значительно увеличивается степень использования КУ.

Широкое применение для компенсации КУ объясняется их экономичностью. При проектировании СЭС следует учитывать и недостатки КУ: зависимость генерируемой реактивной мощности от квадрата напряжения, сложность регулирования величины мощности, недостаточная электрическая прочность при КЗ и перенапряжениях, пожароопасность, наличие остаточного заряда после отключения, что вызы­вает необходимость применения специальных разрядных устройств.

Для компенсации реактивной мощности на промышленных предприятиях, как правило, применяются комплектные КУ В табл. 3.6.1 приведены технические характеристики комплектных КУ типа УКМ58, имеющие Uном=0,4 кВ и предназначенные для компенсации реактивной мощности нагрузок потребителей в сетях общего назначения напряжением 0,38 кВ.

Конденсаторные установки УКМ58 имеют ступенчатое регулирование мощности и встроенные разрядные резисторы. Включение и отключение ступеней регулирования осуществляется магнитными пускателями. Установки оснащены регуляторами и могут работать в режиме автоматического и ручного управления. Предусмотрено авто­матическое отключение конденсаторов с помощью теплового реле при перегрузке их по току из-за повышения напряжения и высших гармоник. Защита от токов КЗ осуществляется плавкими предохранителями.

Таблица 3.6.1 Основные технические характеристики КУ типа АУКРМ58

Тип исполнения установки Мощность, кВАр Кол-во ступеней Мощность ступеней, кВАр Номинальный ток фазы, А
АУКРМ-0,4-15-5-УХЛ4
АУКРМ-0.4-30-5-УХЛ4
АУКРМ-0,4-40-10-УХЛ4
АУКРМ-0,4-50-10-УХЛ4
АУКРМ-0,4-60-15-УХЛ4
АУКРМ-0,4-75-25-УХЛ4
АУКРМ-0.4-80-20-УХЛ4
АУКРМ-0,4-90-15-УХЛ4
АУКРМ-0,4-100-25-УХЛ4
АУКРМ-0.4-125-25-УХЛ4
АУКРМ-0,4-150-25-УХЛ4
АУКРМ-0,4-175-25-УХЛ4
АУКРМ-0.4-200-25-УХЛ4
АУКРМ-0.4-225-25-УХЛ4
АУКРМ-0.4-250-25-УХЛ4
АУКРМ-0.4-300-25-УХЛ4
АУКРМ-0.4-400-50-УХЛ4
АУКРМ-0.4-500-50-УХЛ4
АУКРМ-0.4-600-50-УХЛ4

Общие положения по расчету компенсации реактивной мощности

Выбор средств компенсации реактивной мощности в электричес­ких сетях промышленных предприятий с присоединенной мощностью 750 кВ А и более осуществляется в соответствии с РТМ 36.18.32.6 – 92 «Указания по проектированию установок компенсации реактивной мощности в электрических сетях общего назначения промышленных предприятий» [9]. В качестве источников реактивной мощности на промышленных предприятиях используются в первую очередь батареи статических конденсаторов напряжением до 1 кВ и синхронные электродвигатели напряжением 6-10 кВ. Учитывается также реактивная мощность, которую целесообразно получать из энергосистемы. Конденсаторные установки на напряжении выше 1 кВ при соответствующем обосновании могут применяться лишь на предприятиях с непрерывным режимом работы. Ограничение применения батарей высоковольтных конденсаторов (БВК) объясняется трудностями осуществления частой коммутации емкостных нагрузок.

Читайте также:  Распределение реактивной мощности вдоль линии

Расчет компенсации реактивной мощности выполняется в два этапа.

1.Первоначально предприятие, состоящее из совокупности отдельных зданий, может быть разбито на несколько технологически концентрированных групп цеховых трансформаторов одинаковой единичной мощности. В пределах каждой группы все трансформаторы должны иметь одинаковый коэффициент загрузки и один вид компенсирующих устройств, которые предполагается использовать. Предварительно необходимо определить расчетные нагрузки трансформаторов, учитывая предельные возможности передачи мощности по линиям до 1 кВ.

Для каждой группы трансформаторов принимается единичная номинальная мощность и коэффициент загрузки, после чего определяется минимальное число трансформаторов. Затем выполняется расчет установленной мощности батарей низковольтных конденсаторов (БНК) в сетях до 1 кВ каждого цехового трансформатора, а также для предприятия в целом. После этого уточняются активная и реактивная нагрузки предприятия с учетом потерь мощности в трансформаторах и вычисляется экономическое значение реактивной мощности, по­требляемой из энергосистемы.

Определяется реактивная мощность, которую целесообразно получить от синхронных двигателей 6-10 кВ.

2. Анализ баланса реактивной мощности на границе раздела предприятия и энергосистемы определяет дальнейший порядок расчетов. Если реактивной мощности, поступающей из энергосистемы, а также от БНК и синхронных двигателей 6 – 10 кВ, не хватает для покрытия реактивных нагрузок потребителя, то выявляется целесообразность более полного использования реактивной мощности синхронных дви­гателей, имеющих Рд.н

Источник

Средства способы компенсации реактивной мощности

  • Работа в компании
  • Закупки
  • Библиотека
  • Рус / Eng
  • О заводе
  • Каталог
    • Установки компенсации реактивной мощности
      • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
      • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
      • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
      • Комплектующие для конденсаторных установок
    • Конденсаторы для повышения коэффициента мощности
      • Серия PSPE1 (однофазные конденсаторы)
      • Серия PSPE3 (трехфазные конденсаторы)
    • Конденсаторы для силовой электроники
      • Конденсаторы серии AFC3
      • Конденсаторы серии FA2
      • Конденсаторы серии FA3
      • Конденсаторы серии FB3
      • Конденсаторы серии FO1
      • Конденсаторы серии PO1
      • Конденсаторы серии SPC
    • Компенсирующие конденсаторы для светотехники
      • Серия K78-99 (пластиковый корпус)
      • Серия К78-99 A (алюминиевый корпус)
      • Серия К78-99 AP2 (взрывозащищенный)
    • Конденсаторы для асинхронных двигателей
      • Серия К78-98 (пластиковый корпус)
      • Серия К78-98 A (алюминиевый корпус)
      • Серия К78-98 АР2 (взрывозащищенный)
    • Сырьё и комплектующие
  • Пресс-центр
  • Покупателю
  • Новости
  • Партнеры
  • Библиотека
  • Контакты
  • Контакты
  • Покупателю
  • Пресс-центр
  • О заводе
  • Установки компенсации реактивной мощности
    • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
    • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
    • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
    • Комплектующие для конденсаторных установок
  • Конденсаторы для повышения коэффициента мощности
    • Серия PSPE1 (однофазные конденсаторы)
    • Серия PSPE3 (трехфазные конденсаторы)
  • Конденсаторы для силовой электроники
    • Конденсаторы серии AFC3
    • Конденсаторы серии FA2
    • Конденсаторы серии FA3
    • Конденсаторы серии FB3
    • Конденсаторы серии FO1
    • Конденсаторы серии PO1
    • Конденсаторы серии SPC
  • Компенсирующие конденсаторы для светотехники
    • Серия K78-99 (пластиковый корпус)
    • Серия К78-99 A (алюминиевый корпус)
    • Серия К78-99 AP2 (взрывозащищенный)
  • Конденсаторы для асинхронных двигателей
    • Серия К78-98 (пластиковый корпус)
    • Серия К78-98 A (алюминиевый корпус)
    • Серия К78-98 АР2 (взрывозащищенный)
  • Сырьё и комплектующие

Конденсаторы для силовой электроники

Конденсаторы для повышения коэффициента мощности

Установки компенсации реактивной мощности 0.4кВ

Моторные и светотехнические конденсаторы

Реактивная мощность — часть полной мощности, затрачиваемая на электромагнитные процессы в нагрузке имеющей емкостную и индуктивную составляющие. Не выполняет полезной работы, вызывает дополнительный нагрев проводников и требует применения источника энергии повышенной мощности.

Статьи по теме компенсации реактивной мощности

Реактивная мощность относится к техническим потерям в электросетях согласно Приказу Минпромэнерго РФ № 267 от 04.10.2005.

При нормальных рабочих условиях все потребители электрической энергии, чей режим сопровождается постоянным возникновением электромагнитных полей (электродвигатели, оборудование сварки, люминесцентные лампы и многое др.) нагружают сеть как активной, так и реактивной составляющими полной потребляемой мощности. Эта реактивная составляющая мощности (далее реактивная мощность) необходима для работы оборудования содержащего значительные индуктивности и в то же время может быть рассмотрена как нежелательная дополнительная нагрузка на сеть.

Для наглядности и лучшего понимания происходящих процессов, рекомендуем ознакомиться с роликом о реактивной мощности:

При значительном потреблении реактивной мощности напряжение в сети понижается. В дефицитных по активной мощности энергосистемах уровень напряжения, как правило, ниже номинального. Недостаточная для выполнения баланса активная мощность передается в такие системы из соседних энергосистем, в которых имеется избыток генерируемой мощности. Обычно энергосистемы дефицитные по активной мощности, дефицитны и по реактивной мощности. Однако недостающую реактивную мощность эффективнее не передавать из соседних энергосистем, а генерировать в компенсирующих устройствах, установленных в данной энергосистеме. В отличие от активной мощности реактивная мощность может генерироваться не только генераторами, но и компенсирующими устройствами – конденсаторами, синхронными компенсаторами или статическими источниками реактивной мощности, которые можно установить на подстанциях электрической сети.

Читайте также:  Автокорреляционная функция спектральная плотность мощности

Компенсация реактивной мощности, в настоящее время, является немаловажным фактором позволяющим решить вопрос энергосбережения и снижения нагрузок на электросеть. По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает значительную величину в себестоимости продукции. Это достаточно веский аргумент, чтобы со всей серьезностью подойти к анализу и аудиту энергопотребления предприятия, выработке методики и поиску средств для компенсации реактивной мощности.

Средства компенсации реактивной мощности

Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.

Преимущества использования конденсаторных установок, как средства для компенсации реактивной мощности

  • малые удельные потери активной мощности (собственные потери современных низковольтных косинусных конденсаторов не превышают 0,5 Вт на 1000 ВАр);
  • отсутствие вращающихся частей;
  • простой монтаж и эксплуатация (не нужно фундамента);
  • относительно невысокие капиталовложения;
  • возможность подбора любой необходимой мощности компенсации;
  • возможность установки и подключения в любой точке электросети;
  • отсутствие шума во время работы;
  • небольшие эксплуатационные затраты.

В зависимости от подключения конденсаторной установки возможны следующие виды компенсации:

  1. Индивидуальная или постоянная компенсация, при которой индуктивная реактивная мощность компенсируется непосредственно в месте её возникновения, что ведет к разгрузке подводящих проводов (для отдельных, работающих в продолжительном режиме потребителей с постоянной или относительно большой мощностью — асинхронные двигатели, трансформаторы, сварочные аппараты, разрядные лампы и т.д.).
  2. Групповая компенсация, в которой аналогично индивидуальной компенсации для нескольких одновременно работающих индуктивных потребителей подключается общий постоянный конденсатор (для находящихся вблизи друг от друга электродвигателей, групп разрядных ламп). Здесь также разгружается подводящая линия, но только до распределения на отдельных потребителей.
  3. Централизованная компенсация, при которой определенное число конденсаторов подключается к главному или групповому распределительному шкафу. Такую компенсацию применяют, обычно, в больших электрических системах с переменной нагрузкой. Управление такой конденсаторной установкой выполняет электронный регулятор — контроллер, который постоянно анализирует потребление реактивной мощности от сети. Такие регуляторы включают или отключают конденсаторы, с помощью которых компенсируется мгновенная реактивная мощность общей нагрузки и, таким образом, уменьшается суммарная мощность, потребляемая от сети.

Установка компенсации реактивной мощности состоит из определенного числа конденсаторных ветвей, которые в своём построении и ступенях подбираются исходя из особенностей каждой конкретной электросети и её потребителей реактивной мощности.

Больше других распространены ветви в 5 кВАр, 7,5 кВАр, 10 кВАр 12,5 кВАр, 20 кВАр, 25 кВАр, 30 кВАр, 50 кВАр. Более крупные ступени включения, например, в 100 кВАр или ещё больше, достигаются соединением нескольких малых ветвей. Таким образом, снижается нагрузка на сеть, создаваемая токами включения и следовательно, уменьшаются образующиеся от этого помехи (например, импульсы тока). Если в напряжении электросети содержится большая доля высших гармоник, то конденсаторы, обычно, защищают дросселями (реакторами фильтрующего контура).

Применение автоматических установок компенсации реактивной мощности позволяет решить ряд проблем:

  1. снизить загрузку силовых трансформаторов (при снижении потребления реактивной мощности снижается потребление полной мощности);
  2. обеспечить питание нагрузки по кабелю с меньшим сечением (не допуская перегрева изоляции);
  3. за счет частичной токовой разгрузки силовых трансформаторов и питающих кабелей подключить дополнительную нагрузку;
  4. позволяет избежать глубокой просадки напряжения на линиях электроснабжения удаленных потребителей (водозаборные скважины, карьерные экскаваторы с электроприводом, стройплощадки и т. д.);
  5. максимально использовать мощность автономных дизель — генераторов (судовые электроустановки, электроснабжение геологических партий, стройплощадок, установок разведочного бурения и т. д.);
  6. облегчить пуск и работу двигателя (при индивидуальной компенсации);
  7. автоматически отслеживается изменение реактивной мощности нагрузки в компенсируемой сети и, в соответствии с заданным, корректируется значение коэффициента мощности — cosφ;
  8. исключается генерация реактивной мощности в сеть;
  9. исключается появление в сети перенапряжения, т. к. нет перекомпенсации, возможной при использовании нерегулируемых конденсаторных установок;
  10. визуально отслеживаются все основные параметры компенсируемой сети;
Читайте также:  Увеличение мощности без прошивки

Установки компенсации изготавливаются из отдельных, расположенных в металлических шкафах, силовых компенсационных модулей, конструкция которых обеспечивает взаимозаменяемость идентичных элементов установки. Сборка и комплектация установок компенсации реактивной мощности производится на предприятии-изготовителе, а на месте их размещения — только монтаж и подключение к компенсируемой сети электроснабжения.

Установки компенсации реактивной мощности до100 кВАр, обычно, выпускаются в настенном исполнении.

Размещать установки компенсации лучше всего вблизи распределительного щита, т.к. в этом случае упрощается их присоединение к электросети. При соблюдении требований ПУЭ комплектные установки компенсации реактивной мощности можно устанавливать непосредственно в производственных помещениях.

Источник



Способы и средства компенсации реактивной мощности в системах электроснабжения

Анонс: Технически корректная концепция средств и способов компенсации реактивной мощности. Активные и пассивные средства компенсации реактивной мощности. Способы компенсации реактивной мощности в системах электроснабжения.

Средства компенсации реактивной мощности – любые устройства и мероприятия, посредством которых можно целенаправленно воздействовать на баланс реактивной мощности в системах электроснабжения, причем и путем уменьшения потребляемой, и увеличения генерации реактивной мощности. Способы компенсации реактивной мощности – системное применение средств по определенным схемам, оптимальным реактивной нагрузке систем электроснабжения.

Средства компенсации реактивной мощности в системах электроснабжения.

Все средства компенсации реактивной мощности в системах электроснабжения условно делят на пассивные и активные, причем реализация пассивных средств приводит к уменьшению объемов потребляемой реактивной мощности, а активные средства генерируют реактивную мощность и интегрируются в электрические сети в соответствии с оптимальным способом компенсации.

Пассивные средства компенсации реактивной мощности.

Типовыми средствами компенсации реактивной мощности, используемыми для разгрузки сети по реактивным токам, сегодня являются:

  • организационно-технические мероприятия по оптимизации административных, производственных и технологических процессов, позволяющие обеспечить улучшение энергетического режима работы энергоприемников – оборудования, устройств, систем.
    Это замена устаревшего не энергоэффективного оборудования, модернизация систем освещения, контроля и управления процессами, не одновременное, а распределенное (несмимметричное) пол времени включение реактивных нагрузок, оптимизация режима работы подразделений и т.д. и т.п;
  • использование переключения с треугольника на звезду статорных обмоток асинхронных двигателей с загрузкой в часы работы менее, чем на 40%;
  • снижение объемов потребляемой реактивной мощности за счет отключения асинхронных двигателей, работающих на холостом ходу, а также вывода из эксплуатации (или отключения) трансформаторов с загрузкой менее, чем на треть;
  • применение в проектах и замена в действующих приводах асинхронных двигателей синхронными, где это допустимо в техническом и технологическом аспектах;
  • модернизация приводов с применением тиристорного управления регулированием напряжения, преобразователей с заменой на модели с большим числом фаз выпрямления;
  • интеграция в электрические сети систем с искусственной коммутацией вентилей или ограничениями по генерации токов высших гармоник;
  • применение в новых сегментах электрической сети и поэтапная замена действующих реактивных нагрузок на оборудование, устройства, сертифицированные по энергосбережению.

Активные средства компенсации реактивной мощности.

К активным средствам компенсации реактивной мощности, генерирующим реактивную энергию в электрические сети, относят:

  • единичные косинусные конденсаторы и конденсаторные батареи, применяемые в способах индивидуальной и групповой компенсации реактивной мощности;
  • конденсаторные батареи с коммутационной аппаратурой, средствами защиты и управления – комплектные установки повышения коэффициента мощности – нерегулируемые и автоматические с релейными контакторами;
  • синхронные двигатели и их разновидность – синхронные компенсаторы, работающие без нагрузки на валу и используемые для стабилизации напряжения в точке подключения в пределах интервала ±5% от номинального значения;
  • многоступенчатые установки коррекции коэффициента мощности на конденсаторных батареях и с тиристорными ключами. Установка устройств с тиристорными ключами дает возможность снизить броски тока при включении ступеней — конденсаторных батарей и риски перенапряжения при отключении ступеней;
  • статические тиристорные компенсаторы реактивной мощности — мостовые генераторы реактивной мощности с индуктивным накопителем, реакторы насыщения с нелинейной или линейной вольтамперной характеристикой, а также последовательным подключением встречно-параллельных управляемых вентилей – работающие принципу прямой и косвенной компенсации.
  • тиристорные компенсаторы реактивной мощности для сетей с резкопеременной нагрузкой напряжением 6-10 кВ, тиристорно-реакторные группы для ЛЭП и т.д.

Способы компенсации реактивной мощности в системах электроснабжения.

Среди популярных способов выделяют централизованную (по стороне высшего и низшего напряжения), групповую, индивидуальную и комбинированную компенсацию реактивной мощности, а в качестве комбинированной обычно используется централизованная в сочетании с групповой и/или индивидуальной.

Выбор средства и способа компенсации реактивной мощности, установка устройств и обслуживание осуществляется профильной компанией по результатам энергетического аудита объекта, что позволяет исключить риски перекомпенсации и минимизировать объемы недокомпенсированной мощности для конкретной электрической сети с реактивными нагрузками.

Источник