Меню

Стабилизатор напряжения с защитой интегральная

Как выбрать стабилизатор напряжения (2018)

Вместо привычного с детства числа 220 в маркировке современных электроприборов все чаще попадается 230. С недавних пор именно 230 В является стандартным напряжением в России и многих других странах. Впрочем, для большинства электроприборов разницы между 230 и 220 В нет никакой. Стандартом допускаются отклонения напряжения сети на ±10%, т.е. от 207 до 253 В. Производители бытовой техники ориентируются именно на эти показатели.

Однако в реальности напряжение в этих рамках удерживается не всегда. В новых микрорайонах, в деревнях и поселках часто к старой подстанции, рассчитанной на определенную нагрузку, подключается много новых потребителей. Это приводит к падению напряжения до 190 В и даже ниже, что бывает хорошо заметно по горящим в полнакала лампочкам. К сожалению, снижением яркости лампочек проблема не исчерпывается. Возрастают токи в обмотках электродвигателей насосов, холодильников, стиральных машин, посудомоек и пр. Это может привести к выходу двигателя из строя.

Бывает в сети и повышенное напряжение, также довольно частое в загородных домах – иногда подстанции намеренно подстраиваются на выдачу повышенного напряжения, чтобы на удаленных потребителях оно поднялось до нормального. При этом на потребителях, близких к подстанции, оно может быть около 250 В. Если при этом еще и нулевой провод окажется не заземлен, то из-за перекоса фаз напряжение может подняться еще выше – до 260 В и даже больше. Ну и не так уж редки случаи, когда электрики случайно подключают в щитке вместо нулевого провода – еще одну фазу, выдавая потребителям 400 В вместо 230. Повышенное напряжение вредно всем потребителям без исключения, поскольку ведет к увеличению выделения тепла, перегреву деталей, выходу их из строя и даже воспламенению.

Можно защитить все электроприборы в доме, установив во входном щитке реле напряжения, но это не решит проблему полностью – при выходе напряжения за установленные рамки оно просто обесточит потребителей. Чтобы защититься от длительных просадок или повышений напряжения, следует ставить стабилизатор.

Конечно, можно поставить мощный стабилизатор на входе в дом и защитить всю технику скопом, но это будет стоить весьма недешево. Тем более что особой надобности в этом и нет – различные электроприборы по-разному реагируют на повышенное или пониженное напряжение. Вполне возможно, что не всей вашей технике нужна защита стабилизатором.

Защита электроприборов

Холодильники, морозильники и кондиционеры требуют защиты в первую очередь – пониженное напряжение в сети может стать причиной поломки компрессора и дорогостоящего ремонта.

Но еще одна особенность этой техники в том, что многие модели могут выйти из строя при быстром выключении-включении. Дело в том, что при выключении компрессора давление в системе выравнивается в течение некоторого времени (1-3 минуты). Если запустить компрессор раньше, его двигатель будет работать с повышенной нагрузкой (или вообще не сможет запуститься), что может привести к поломке. Современные холодильники и кондиционеры большей частью имеют встроенное реле задержки, но если у вас есть сомнения, или в руководстве указано, что перед повторным пуском следует выждать некоторое время, то стабилизатор обязательно должен иметь функцию задержки запуска минимум на 1 минуту.

Насосы, как погружные, так и поверхностные также требуют защиты от пониженного/повышенного напряжения и им тоже нужна задержка запуска. При пуске двигатель насоса в течение 1-2 секунд потребляет ток, в несколько раз превышающий номинальный. При этом обмотка двигателя нагревается. При обычном пуске излишки тепла снимаются прокачиваемой водой, но если напряжение в сети пропадает и появляется, то пусковые токи длятся дольше, а двигатель не успевает раскрутиться и прокачать воду. Контактирующая с насосом вода перегревается вплоть до закипания, что приводит к поломке насоса и перегоранию обмоток двигателя. Поэтому стабилизатор, защищающий насосы, должен также иметь задержку запуска в 5-10 секунд.

СВЧ-печь не выйдет из строя при падении напряжения, но эффективность её при этом снизится многократно. Если отвезенная на дачу «микроволновка» перестала греть, не спешите везти её в ремонт – возможно, дело в низком напряжении сети. Стабилизатор легко устранит эту проблему.

Электроника (компьютеры, современные телевизоры, аудиотехника), оснащенная импульсными блоками питания, пониженного напряжения не боится. Обычно это указывается в руководстве или прямо на блоке питания: «INPUT: 100-240 V». Так что, если ваша проблема состоит в пониженном напряжении, стабилизатор такой технике не нужен. Другое дело, если оно повышенное – при длительном воздействии напряжения от 240 В и выше, нагрузка (как тепловая, так и электрическая) на электронику БП сильно возрастает, что довольно быстро приводит к выходу его из строя.

Читайте также:  Выпрямительные схемы с умножением напряжения

Энергосберегающие лампы (как люминесцентные, так и светодиодные) к пониженному напряжению довольно лояльны, а вот повышенного не любят. Если всплески напряжения в вашей сети не редкость, то их лучше защитить стабилизатором. Тем более что потребляют они немного, и одного недорогого стабилизатора мощностью в 300-500 ВА хватит на освещение частного дома.

Нагревательным приборам, лампам накаливания, электрочайникам, утюгам и прочей подобной технике падения напряжения вообще не опасны – у них просто снизится эффективность. Повышенное напряжение может ускорить их износ, но в целом, напряжение, на 10-20% превышающее номинал, для большинства подобных приборов неопасно. Эти приборы можно включать в «проблемную» сеть без стабилизатора. Правда, это не относится ко многим современным моделям, оснащенным сложными электронными устройствами управления.

Определившись с тем, какие приборы следует защитить, следует определиться с характеристиками стабилизатора.

Характеристики стабилизаторов

Тип стабилизатора напряжения

Релейные стабилизаторы напряжения представляют собой трансформатор с несколькими отводами входной или выходной обмотки, коммутируемыми силовыми реле.

При нормальном входном напряжении трансформатор работает как разделительный – не повышая и не понижая напряжение. При выходе входного напряжения за установленные границы, электроника включает соответствующее реле, превращая трансформатор в понижающий или повышающий.

Преимущества релейных стабилизаторов:

– Высокая перегрузочная способность – даже самые простые модели выдерживают 200% перегрузки в течение нескольких секунд. Модели же с мощными силовыми реле, рассчитанные на высокие пусковые токи, выдерживают непродолжительные десятикратные перегрузки.

– Малое время переключения – напряжение полностью стабилизируется через 20-100 мс после выхода его за нормальные границы.

– Ступенчатость регулирования. Трансформатор имеет ограниченное число отводов на обмотке, поэтому изменять напряжение может только ступенчато – по 5, 10, а на недорогих моделях – по 20 вольт на одну ступень регулирования. В целом это для техники неопасно, но на граничных напряжениях частые переключения реле, сопровождающиеся мерцанием ламп накаливания, могут раздражать.

– Шумность. Реле при переключении щелкает довольно громко.

– Износ контактов реле. Основной недостаток этого вида стабилизаторов – опасность прогара или пригара контактов реле. Если в первом случае напряжение на выходе стабилизатора просто пропадет, то второй вариант намного неприятнее. Если пригар случится во время пониженного входного напряжения, то при возврате напряжения в норму, реле останется включенным. Трансформатор продолжит работать, как повышающий и напряжение на выходе станет повышенным! Спокойный за свою электротехнику владелец стабилизатора даже не будет подозревать, что именно в этот момент он сжигает её высоким напряжением. Поэтому не стоит выбирать релейный стабилизатор, если в сети случаются частые перепады напряжения – чем чаще реле срабатывает, тем быстрее снижается его ресурс.

Электромеханические (сервоприводные) стабилизаторы напряжения представляют собой тороидальный трансформатор с передвигающимся над внешней обмоткой токосъемником, контактирующим с обмоткой с помощью угольной щетки. При падении или превышении входного напряжения сервопривод перемещает токосъемник, нормализуя выходное.

Преимущества электромеханических стабилизаторов:

– Высокая перегрузочная способность – 200% перегрузки в течение 4-х секунд.

– Высокая точность регулирования.

– Низкий уровень шума при регулировании.

– Большое время переключения – токосъемник движется по обмоткам довольно медленно. Чем больше перепад напряжения, тем медленнее стабилизатор его отрабатывает. Это может привести к появлению импульсных помех на выходе стабилизатора, вызывающих сбои в работе электротехники.

– Износ токосъемника. Токосъемник желательно периодически смазывать графитовой смазкой. Но даже своевременная смазка не предотвращает полностью износа трущихся деталей.

Инверторный стабилизатор сделан на основе инвертора – ток сначала выпрямляется, потом, с помощью инвертора, вновь преобразуется в переменный.

Это позволяет достичь высокой точности регулирования и позволяет добиться полного отсутствия возмущений на выходе. Благодаря отсутствию движущихся контактов, у них низкий уровень шума, ресурс выше и опасности пригара контактов они лишены.

Недостатки инверторных стабилизаторов:

– Недорогие инверторы дают на выходе не чистую синусоиду, а ступенчатую. Некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать с такой синусоидой.

– Низкая перегрузочная способность. Допускается перегрузка 25-50% от номинала, в течение 1-4 секунд. Для защиты приборов, имеющих высокий пусковой ток, стабилизатор такого типа потребуется брать с большим запасом по мощности.

– Высокая чувствительность к мощным импульсным помехам. Впрочем, в бытовых сетях такие помехи — явление маловероятное.

Ступенчатые электронные стабилизаторы конструктивно схожи с релейными, однако коммутирование обмоток в них производится не с помощью реле, а с помощью мощных полупроводниковых приборов.

Читайте также:  Техника снятия напряжения с собеседника

Это позволяет добиться высочайшей скорости регулирования (5-40 мс на переключение) при достаточно низкой цене. Эти стабилизаторы тоже не имеют движущихся контактов, бесшумны и обладают высоким ресурсом.

Но свои недостатки есть и у этого вида стабилизаторов:

– Низкая перегрузочная способность. Допускается перегрузка 20-40% от номинала, и то весьма непродолжительное время.

– Высокая чувствительность к мощным импульсным помехам. Если в сети нередки сильные кратковременные всплески напряжения, прослужит такой стабилизатор недолго.

Необходимая полная выходная мощность стабилизатора рассчитывается исходя из мощностей всех подключенных к нему электроприборов. При подсчете полной мощности следует иметь в виду, что та мощность (в Ваттах), которая приводится в паспорте на электроприбор – это его активная мощность, т.е., выделяющаяся в виде тепла или света.

Нагревательные приборы и лампы накаливания имеют полную мощность, равную активной. Но некоторые потребители, содержащие в себе электродвигатели или трансформаторы, создают вдобавок к активной еще и реактивную нагрузку. Для определения их полной мощности следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте на электроприбор. Если найти это значение не удается, можно воспользоваться таблицей:

Полные мощности всех потребителей следует сложить и добавить к получившейся сумме 30% — дело в том, что мощность стабилизатора приводится для напряжения 220В. При выходе напряжения за пределы нормального, мощность стабилизатора падает на 20-30%. Именно это падение и следует компенсировать.

Но это еще не все – теперь полную мощность каждого потребителя следует помножить на пусковой коэффициент, также взяв его из паспорта или из таблицы. Сумма получившихся чисел (не забываем про 30%) – это пусковая мощность, и перегрузочная способность стабилизатора должна её обеспечивать.

Например, нам следует защитить холодильник мощностью 150 Вт, погружной насос мощностью 500 Вт и линию освещения со светодиодными лампочками суммарной мощностью 500 Вт. Необходимая полная мощность в ВА будет равна:

  • 150/0,8=187,5
  • 500/0,7=714,3
  • 500/0,95=526,3

Суммируем полученные данные и прибавляем 30%. Итого 1857 ВА.

Пусковая мощность будет равна:

  • 187,5*3=562,5
  • 714,3*7=5000
  • 526,3*1,5=790

Также суммируем, прибавляем 30%, получается 8258 ВА. Таким образом, нам нужен стабилизатор на 3000 ВА, способный выдержать перегрузку в три раза больше (релейный с усиленными реле), либо стабилизатор на 4500 ВА, способный выдержать в два раза больше перегрузки (релейный или электромеханический), либо электронный (ступенчатый или инверторный) на 9000 ВА.

Если такой подбор выглядит слишком сложным, то можно просто сложить активные мощности электроприборов (в Ваттах) и подобрать стабилизатор также по активной выходной мощности. Но такой подбор будет грубее: во-первых, этот метод не учитывает индивидуальных особенностей электроприборов, во-вторых, все производители по-разному рассчитывают зависимость полной и активной мощностей. И здесь также следует быть уверенным, что перегрузочная способность стабилизатора поможет ему выдержать пусковую мощность потребителей.

Разъем для подключения нагрузки может быть в виде клемм, либо в виде розеток. Если стабилизатор планируется использовать для защиты какой-либо линии электропитания (например, осветительной) предпочтительнее разъем в виде клемм.

Если же защищать планируется отдельных потребителей, то удобнее подключать их напрямую в евророзетки (СЕЕ 7), обратите внимание, чтобы количество розеток соответствовало количеству потребителей.

Некоторые стабилизаторы оснащены компьютерными розетками IEC 320 C13 – как правило, эти стабилизаторы предназначены для защиты персональных компьютеров и учитывают низкий коэффициент мощности этого вида техники.

Задержка запуска, как указывалось выше, может потребоваться для защиты некоторых видов техники, не приемлющих частых включений-выключений: холодильников, кондиционеров, насосов и пр.

Варианты выбора стабилизаторов

Для защиты отдельного маломощного потребителя – газового котла или циркуляционного насоса – будет достаточно стабилизатора полной мощностью до 1000 ВА.

Для защиты электроприборов, наиболее сильно подверженных влиянию пониженного или повышенного напряжения, будет достаточно стабилизатора в 3000-6000 ВА.

С защитой всех домашних электроприборов справится мощный стабилизатор.

Для защиты компьютера и периферии удобно использовать специализированный стабилизатор с компьютерными розетками.

Релейные и электромеханические стабилизаторы обладают высокой перегрузочной способностью и хорошо подходят для защиты электроприборов с высокими пусковыми токами.

Источник



Интегральный стабилизатор напряжения

В настоящее время в электронике широко применяются стабилизационные устройства, выполненные на микросхемах. Интегральный стабилизатор напряжения — устройство, в котором все входящие в конструкцию элементы скомпонованы на кремниевом кристалле таким путём, что последовательность этих соединений и компонентов представляет из себя схему стабилизатора.

Такие стабилизаторы можно встретить в разных видах электронной аппаратуры: в усилителях, в питающих блоках телевизоров, телефонов, аудиосистем.

Читайте также:  Схемы электронных стабилизаторов сетевого напряжения

Виды стабилизаторов

Широко примененяются в электронике два типа интегральных стабилизаторов:

  • полупроводниковый (твердотельный);
  • гибридно-плёночный (с элементами изготовленными из плёнок).

Интегральный стабилизатор напряжения

Полупроводниковые стабилизаторы, в свою очередь, подразделяются ещё на несколько групп:

  1. имеющие регулируемое напряжение на выходе – требуют подключения дополнительных элементов;
  2. обладающие фиксированным напряжением, подаваемым на выход – являются готовым к эксплуатации изделием, не требующим необходимости дополнительных включений в схему;
  3. двуполярные – используются для приборов, требующих двуполярного напряжения на выходе.

Характеристики

Типовая схема интегрального стабилизатора состоит из следующих элементов:

  • источника опорного напряжения;
  • усилителя ошибки;
  • включённых между источником и нагрузкой элементов регулировки;
  • схему выключения устройства при подачи сигнала извне;
  • транзистора для защиты от короткого замыкания или перегрузки.

Интегральные микросхемы стабилизаторов представляют собой функционально завершённые устройства и имеют всего три внешних вывода: входной, выходной и заземление. Данные микросхемы производятся для фиксированных значений напряжения от 5 до 24 В и нагрузки до 1 А.

Интегральный стабилизатор напряжения

Стабилизационные устройства на ИМС обеспечиваются встроенными схемами, ограничивающими выходной ток, а также схемой защиты от перегрузок по температуре.

Значение ИОН в схеме стабилизатора

Источник опорного напряжения является одним из ключевых элементов, поскольку выполняет задачу поддержания стабильного напряжения номинального значения на выходе при меняющихся значениях напряжения на входе. Простейшим вариантом этого источника является параметрический стабилизатор на стабилитроне. С их помощью можно получить напряжение от 2,5 В.

При необходимости получить меньшие значения опорного напряжения используются последовательные включения кремниевых диодов.

Также интегральные стабилизаторы могут использовать в качестве источника напряжение
эмиттерного перехода биполярных транзисторов.

Плюсы и минусы

К достоинствам интегральных линейных стабилизаторов напряжения можно отнести:

  1. высокий стабилизирующий коэффициэнт;
  2. высокий коэффициэнт сглаживания значения напряжения на нагрузке;
  3. низкое значение выходного сопротивление;
  4. не производят собственных помех.

Однако коэффициэнт полезного действия таких стабилизаторов невысок и снижается при малых значениях выходных напряжений. Увеличение КПД возможно за счёт прибавки размеров и габаритов устройства, что не всегда является удобным и выгодным вариантом.

Стабилизатор напряжения 12 Вольт

В ситуациях, когда использование полноценного блока питания на 12 Вольт бессмысленно, гораздо проще понизить основное напряжение схемы локально в какой-то её части, используется интегральный стабилизатор напряжения 12 Вольт. Такие стабилизаторы производятся на основе отечественной серии КР142ЕН или популярных микросхемах линейки 78ХХ.

Такие стабилизаторы обеспечены защитами по току и перегреву, что делает блоки питания с их использованием практически неуязвимыми. Данные свойства делают стабилизатор полезным для целого ряда электронных устройств:

  • бытовые электроприборы;
  • измерительная, лабораторная техника;
  • радиоэлектроника и пр.

Стабилизатор обладает такими характеристиками, как наличие внутренней системы терморегуляции, схемы защиты выходного транзистора, самозащита от импульсов коротких замыканий. Ток прибора на выходе равняется 1 А – 1,5 А, наибольшее значение напряжения 30 – 35 В.

Интегральный стабилизатор напряжения

Стабилизатор 12 В 5 А

Интегральный стабилизатор напряжения 12 Вольт 5 Ампер может основываться на микросхеме LM 338 и обладать следующими характеристиками:

  1. входное напряжение – от 3 до 35 Вольт;
  2. напряжение на выходе – от 1,2 до 32 Вольт;
  3. выходной ток – 5 Ампер;
  4. допустимый температурный режим – от 0 до 125 градусов Цельсия;
  5. погрешность напряжения на выходе не более 0,1 %.

Такой интегральный стабилизатор импортного производства является универсальной микросхемой, на основе которой можно получить цепи питания высокого качества путём её подключения различными способами.

Зарубежные интегральные стабилизаторы

Известная линейка 78ХХ компенсационных стабилизационных устройств положительного напряжения была успешно создана специалистами фирмы Texas Instruments. Данные стабилизаторы обеспечены защитой по токам КЗ, от превышения рабочего температурного режима кристалла, а также от перехода рабочей точки за границы допустимого для безопасности работы режима.

Помимо стабилизаторов фиксированного напряжения, за рубежом также производятся регулируемые модификации интегральных стабилизационных устройств. Яркими представителями таких устройств считается линейка микросхем «317». Подаваемое на выход напряжение у этих микросхем определяет делитель на двух резисторах.

Интегральный стабилизатор напряжения

Важные моменты

Используя интегральные стабилизаторы напряжения импортные, стоит учитывать некоторые особенности:

  • на вход и выход устройства следует подключать конденсатор с ёмкостью 47 – 220 нФ для предупреждения самовозбуждения;
  • при большой ёмкости подключенного на выход конденсатора и малом токе нагрузки между входом и выходом должен быть включен диод. Это обеспечит быстрое уменьшение выходного напряжения до значения входного;
  • для стабильной работы устройства значение входного напряжения должно быть выбрано выше выходного как минимум на 3В;
  • устройства линейки «law-drop», характеризующиеся небольшим перепадом напряжений от входа до выхода, для устойчивой стабилизации должны быть обеспечены входным напряжением, которое превышает выходное на 0,1 – 0,5 В.

Источник