Меню

Стабилизатор тока с ттл модуляцией что это

Стабилизатор тока светодиода

Стабилизатор тока светодиода

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока.

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов — 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше — 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение — это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока — нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток — стабилизаторы тока.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Стабилизатор тока светодиода

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства — стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями — импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Линейный стабилизатор тока

Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:

  • Линейный стабилизатор не создаёт электромагнитных помех
  • Прост по конструкции
  • Имеет низкую стоимость в большинстве применений

Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность — когда входное напряжение лишь немного превышает напряжение на светодиоде. Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока. То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.

В другом случае, можно приблизить напряжение светодиода к напряжению питания — соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.

Схемы линейных стабилизаторов тока

Самая простая схема стабилизатора тока — на одном транзисторе (схема «а»). Поскольку транзистор — это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h21 раз (коэффициент усиления). Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема «б»). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова. Гораздо лучше работает схема с обратной связью «в» и «г». Резистор R в схеме выполняет роль обратной связи — при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается. Схема «г», при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.

Линейный стабилизатор

Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема «д»). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации. Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства — готовые стабилизаторы с фиксированным током, собранные по такой схеме — CRD (Current Regulating Devices) или CCR (Constant Current Regulator) . Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.

Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент — при увеличении температуры, ток через светодиоды снижается.

NSIxxx линейный драйвер светодиодов

Импульсный стабилизатор тока

Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении — снижает. Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент — дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке. Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:

  • Импульсный конвертер производит электрические и электромагнитные помехи
  • Имеет как правило сложную конструкцию
  • Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
  • Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях — включенном и выключенном. В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале — равное нулю), соответственно на нём выделяется мощность, близкая к нулю. Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток. Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.

Импульсный преобразователь

С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора. Но если использовать вместо RC — LC фильтр (схема «б»), то, благодаря «специфическим» свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством — ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике. После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем. Ток в дросселе правильно работающего устройства присутствует постоянно — так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode — CCM). При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством. Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode — BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции — с разрывом или с использованием специальных магнитных материалов.

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.

Импульсный преобразователь

Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом — широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Импульсный преобразователь

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Читайте также:  Генераторы постоянного тока виды устройство
Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

Импульсный преобразователь

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Еще одна схема импульсного преобразователя работает аналогично — когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение.

Импульсный преобразователь

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Прямоходовой и обратноходовой преобразователи

Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более. Прямоходовой преобразователь (схема «а») передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически — это модифицированный понижающий преобразователь. Обратноходовой преобразователь (схема «б») передаёт энергию от источника в нагрузку во время выключенного состояния.

Импульсный преобразователь

В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически — это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции.

В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой — Flyback converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Импульсный стабилизатор тока

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Импульсный стабилизатор тока

Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор. Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования — контролем пикового тока дросселя. Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля — включается. Эффективность устройства достигает 94%.

Источник

Простые линейные стабилизаторы тока для светодиодов своими руками

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Но пульсации — это не страшно, гораздо хуже то, что малейшее повышение питающего напряжения может привести к настолько сильному увеличению тока через светодиоды, что они просто выгорят.

Чтобы этого не допустить, светодиоды (особенно мощные) обычно запитывают через специальные схемы — драйверы, которые по сути своей являются стабилизаторами тока. В этой статье будут рассмотрены схемы простых стабилизаторов тока для светодиодов (на транзисторах или распространенных микросхемах).

Стабилизаторы тока на транзисторах

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Стабилизатор для светодиодов

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания — 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Светодиодный светильник со стабилизацией тока

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

LED-светильник со стабилизатором тока

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать

23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Стабилизатор тока светодиодов

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Достоинства схемы — ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Стабилизатор тока для светодиодов на полевом транзисторе (схема)

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):

Ток через светодиоды задается подбором резистора R1. VT1 — любой маломощный. Светодиоды — Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см 2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят.

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А — тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см 2 .

Читайте также:  Упорядоченным движением каких частиц создается электрический ток в газах

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

наименование характеристики цена
IRF9510 P-channel, 100V, 4A 209 руб. / 10 шт.
IRF9Z34N P-channel, 55V, 19A 124 руб. / 10 шт.
NDP6020P P-channel, 20V, 24A 120 руб. / 10 шт.
Cree XM-L T6 10W, 3A 135 руб. / шт.

Стабилизатор (генератор) тока на полевом транзисторе КП303Е

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:

Выходная характеристика полевого транзистора

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал «земли». Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Генератор (стабилизатор) тока на MOSFET

Пример самого простого драйвера тока для светодиода представлен ниже:

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Стабилизаторы тока на микросхемах

Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).

TL431

Схема включения TL431 в качестве стабилизатора тока

Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:

Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что I = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.

R1 рассчитывается таким образом, чтобы обеспечить минимальный рабочий ток микросхемы — 1 мА.

Схема светильника без пульсаций (LED-лампа на TL431)

А вот пример практического применения TL431 в светодиодной лампе:

На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.

Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.

В качестве нагрузки Rн здесь выступают 90 белых чип-светодиодов 2835. Максимальная мощность при токе 60 мА составляет 0.2 Вт (24Lm), падение напряжения — 3.2 В. Также можно применить любые другие подходящие светодиоды, например, SMD5050.

Для увеличение срока службы мощность диодов специально занижена на 20% (0.16 Вт, ток 45 мА), соответственно, суммарная мощность всех светодиодов составляет — 14 Вт.

Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.

Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:

наименование характеристики цена
SMD 2835 LED, 3.3V, 0.15A, 0.5W 67 руб. / 100 шт.
2SC4544 NPN, 300V, 0.1A 10 руб. / шт.
BD711 NPN, 100V, 12A 120 руб. / 10 шт.
1N4007 1000V, 1A 51 руб. / 100 шт.
TL431A 36V, 100mA 87 руб. / 100 шт.

Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.

С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.

Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.

Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED = 100 мА). Отлично подойдут упомянутые выше 1N4007.

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

название характеристики стоимость
SMD 5630 LED, 3.3V, 0.15A, 0.5W 240руб. / 1000шт.
LM317 1.25-37V, >1.5A 112руб. / 10шт.
MB6S 600V, 0.5A 67руб. / 20шт.
120μF, 400V 18х30mm 560руб. / 10шт.

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (. ) не мерцающих (. ) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.

Источник



Стабилизаторы тока. Виды и устройство. Работа и применение

Стабилизаторы тока предназначены для стабилизации тока на нагрузке. Напряжение на нагрузке зависит от его сопротивления. Стабилизаторы необходимы для функционирования различных электронных приборов, например газоразрядные лампы.

Для качественного заряда аккумуляторов также необходимы стабилизаторы тока. Они используются в микросхемах для настройки тока каскадов преобразования и усиления. В микросхемах они играют роль генератора тока. В электрических цепях всегда есть разного рода помехи. Они отрицательно влияют на действие приборов и электрических устройств. С такой проблемой легко справляются стабилизаторы тока.

Отличительной чертой стабилизаторов тока является их значительное выходное сопротивление. Это дает возможность исключить влияние напряжения на входе, и сопротивления нагрузки, на значение тока на выходе устройства. Стабилизаторы тока поддерживают выходной ток в определенных пределах, меняя при этом напряжение таким образом, что ток, протекающий по нагрузке, остается постоянным.

Устройство и принцип действия

На нестабильность нагрузочного тока влияет значение сопротивления и напряжения на входе. Пример: в котором сопротивление нагрузки постоянно, а напряжение на входе повышается. Ток нагрузки при этом также возрастает.

Ustroistvo i printsip deistviia

В результате этого повысится ток и напряжение на сопротивлениях R1 и R2. Напряжение стабилитрона станет равным сумме напряжений сопротивлений R1, R2 и на переходе VT1 база-эмиттер: Uvd1=UR1+UR2+UVT1(б/э)

Напряжение на VD1 не меняется при меняющемся входном напряжении. Вследствие этого ток на переходе база-эмиттер снизится, и повысится сопротивление между клеммами эмиттер-коллектор. Сила тока на переходе коллектор-эмиттере и нагрузочное сопротивление станет снижаться, то есть переходить к первоначальной величине. Так выполняется выравнивание тока и поддержание его на одном уровне.

Виды стабилизаторов тока

Существует множество разных видов стабилизаторов в зависимости от их назначения и принципа работы. Рассмотрим подробнее основные из таких устройств.

Стабилизаторы на резисторе

В элементарном случае генератором тока может быть схема, состоящая из блока питания и сопротивления. Подобная схема часто используется для подключения светодиода, выполняющего функцию индикатора.

Stabilizator na rezistore

Из недостатков такой схемы можно отметить необходимость использования высоковольтного источника. Только при таком условии можно использовать резистор, имеющий высокое сопротивление, и получить хорошую стабильность тока. На сопротивлении рассеивается мощность P = I 2 х R.

Стабилизаторы на транзисторах

Значительно лучше функционируют стабилизаторы тока, собранные на транзисторах.

Stabilizator toka na tranzistore

Можно выполнить настройку падения напряжения таким образом, что оно будет очень маленьким. Это дает возможность снижения потерь при хорошей стабильности тока на выходе. На выходе транзистора сопротивление очень большое. Такая схема применяется для подключения светодиодов или зарядки аккумуляторных батарей малой мощности.

Напряжение на транзисторе определяется стабилитроном VD1. R2 играет роль датчика тока и обуславливает ток на выходе стабилизатора. При увеличении тока падение напряжения на этом резисторе становится больше. Напряжение поступает на эмиттер транзистора. В итоге напряжение на переходе база-эмиттер, которое равно разности напряжения базы и эмиттерного напряжения, снижается, и ток возвращается к заданной величине.

Схема токового зеркала

Аналогично функционируют генераторы тока. Популярной схемой таких генераторов является «токовое зеркало», в которой вместо стабилитрона применяется биполярный транзистор, а точнее, эмиттерный переход. Вместо сопротивления R2 применяется сопротивление эмиттера.

Stabilizator toka zerkalo

Стабилизаторы тока на полевике

Схема с применением полевых транзисторов более простая.

Stabilizator toka na polevike

Нагрузочный ток проходит через R1. Ток в цепи: «+» источника напряжения, сток-затвор VТ1, нагрузочное сопротивление, отрицательный полюс источника – очень незначительный, так как сток-затвор имеет смещение в обратную сторону.

Напряжение на R1 положительное: слева «-», справа напряжение равно напряжению правого плеча сопротивления. Поэтому напряжение затвора относительно истока минусовое. При снижении нагрузочного сопротивления, ток повышается. Поэтому напряжение затвора по сравнению с истоком имеет еще большую разницу. Вследствие этого транзистор закрывается сильнее.

При большем закрытии транзистора нагрузочный ток снизится, и возвратится к начальной величине.

Устройства на микросхеме

В прошлых схемах имеются элементы сравнения и регулировки. Аналогичная структура схемы применяется при проектировании устройств, выравнивающих напряжение. Отличие устройств, стабилизирующих ток и напряжение, заключается в том, что в цепь обратной связи сигнал приходит от датчика тока, который подключен к цепи нагрузочного тока. Поэтому для создания стабилизаторов тока используют популярные микросхемы 142 ЕН 5 или LМ 317.

Читайте также:  Нахождение силы тока из закона фарадея

Stabilizatory toka LМ 317

Здесь роль датчика тока играет сопротивление R1, на котором стабилизатор поддерживает постоянное напряжение и нагрузочный ток. Величина сопротивления датчика значительно ниже, чем нагрузочное сопротивление. Снижение напряжения на датчике влияет на напряжение выхода стабилизатора. Подобная схема хорошо сочетается с зарядными устройствами, светодиодами.

Импульсный стабилизатор

Высокий КПД имеют импульсные стабилизаторы, выполненные на основе ключей. Они способны при незначительном напряжении входа создавать высокое напряжение на потребителе. Такая схема собрана на микросхеме МАХ 771.

Impulsnyi stabilizator

Сопротивления R1 и R2 играют роль делителей напряжения на выходе микросхемы. Если напряжение на выходе микросхемы становится выше опорного значения, то микросхема снижает выходное напряжение, и наоборот.

Если схему изменить таким образом, чтобы микросхема реагировала и регулировала ток на выходе, то получится стабилизированный источник тока.

Impulsnyi stabilizator 2

При падении напряжения на R3 ниже 1,5 В, схема работает в качестве стабилизатора напряжения. Как только нагрузочный ток повышается до определенного уровня, то на резисторе R3 падение напряжения становится больше, и схема действует как стабилизатор тока.

Сопротивление R8 подключается по схеме тогда, когда напряжение становится выше 16,5 В. Сопротивление R3 задает ток. Отрицательным моментом этой схемы можно отметить значительное падение напряжения на токоизмерительном сопротивлении R3. Эту проблему можно решить путем подключения операционного усилителя для усиления сигнала с сопротивления R3.

Стабилизаторы тока для светодиодов

Изготовить такое устройство самостоятельно можно с применением микросхемы LМ 317. Для этого останется только подобрать резистор. Питание для стабилизатора целесообразно применять следующее:

  • Блок от принтера на 32 В.
  • Блок от ноутбука на 19 В.
  • Любой блок питания на 12 В.

Stabilizatory toka dlia svetodiodov

Достоинством такого устройства является низкая стоимость, простота конструкции, повышенная надежность. Сложную схему нет смысла собирать самостоятельно, проще ее приобрести.

Источник

Электроника лазерного гравера. Arduino UNO, CNC shield v3, ttl laser driver.

Лазерный гравер собран и работает, и об этом рассказывал в прошлой статье: «Самодельный Лазерный гравёр с ЧПУ, в домашних условиях». Как он гравирует, и все этапы сборки, можно посмотреть в видео, в предыдущей статье. А сегодня подробнее разберем электронику лазерного гравировального станка: Arduino UNO, CNC shield v3, драйвер шагового двигателя A4988, ttl laser driver . Почти вся электроника, которую использую для сборки самодельного лазерного гравера, расписана в отдельных статьях, которые вы можете найти в разделе сайта: «Обзор электроники для ЧПУ станков и 3D принтеров».

Тестирование электроники лазерного гравировального станка с ЧПУ.

Перед установкой всей электроники на место, рекомендую поэтапно все проверить, чтобы не искать возникшую проблему уже на станке. Можно допустить ошибку в настройке электроники или в механике, что при проверке установленной электроники приведет к ряду трудностей в определении причины сбоев в работе ЧПУ станка.

Для начала, устанавливаем CNC shield v3 на Arduino UNO. Перед установкой драйверов необходимо установить перемычки деления шага.

Для начала, устанавливаем CNC shield v3 на Arduino UNO. Перед установкой драйверов необходимо установить перемычки деления шага. Что это такое, и для чего нужно деление шага, читайте в статье про драйвер A4988: «Драйвер шагового двигателя A4988». Я устанавливаю деление шага ½, потому что при увеличении деления шага падает мощность двигателя, а также у меня получается 400 шагов на мм, — этого вполне достаточно для лазерного гравера.

Расчет деления шага.

Как же рассчитать деление шага, и сколько шагов получится для совершения перемещения на 1 мм? Количество шагов сделанных шаговым двигателем, для совершения перемещения станка на 1 мм, зависит от характеристик шагового двигателя, от передачи (винтовая или ременная), какое деление шага настроено (для разных драйверов деление шага настраивается по разному, и количество отличается). В моем случае, получаются следующие параметры:

  • Шаговый двигатель 17HS4401 совершает 200 шагов на 1 оборот вала. (Из характеристик двигателя).
  • Шпилька с метрической резьбой М6 перемещается на 1 мм. за оборот (табличное значение).
  • Делениешага установил ½.

Количество шагов на 1 мм рассчитываем по формуле:

H = Sh*M/D где,

  • Н – количество шагов для перемещения на 1 мм.
  • Sh – количество шагов шагового двигателя для совершения 1 оборота,
  • М – перемещение при вращении ходового винта на 1 оборот.
  • D – установленное деление шага.

Н = 200*1/0,5 = 400 шагов для перемещения на 1 мм.

Данные параметры нам пригодятся при настройке GRBL, которые будем настраивать в следующей статье.

Установка драйверов A4988 и настройка ограничивающего тока.

После установки деления шага, устанавливаем драйвер A4988 в разъёмы с надписью X и Y.

После установки деления шага, устанавливаем драйвер A4988 в разъёмы с надписью X и Y.

Дальше, нам нужно рассчитать ограничение тока драйвера A4988, для этого нужно знать параметры двигателя и номинал резисторов, установленных на драйвер A4988.Это два черных прямоугольника на плате драйвера, обычно подписаны R050 или R100.

В моем случае, номинал резисторов R100, что означает 100 Ом. Ток двигателя 17HS4401 — 1,7А.

Расчет ограничивающего тока драйвера шагового двигателя A4988.

Vref = Imax * 8 * (RS)

  • Imax — ток двигателя;
  • RS — сопротивление резистора. В моем случае, RS = 0,100.

Для 17HS4401 Vref = 1,7 * 8 * 0,100 = 1,36 В.

В связи с тем, что рабочий ток двигателя равен 70% от тока удержания, то полученное значение нам нужно умножить на 0,7. В противном случае, двигатели, в режиме удержания, будут сильно греться.

Для 17HS4401 Vref ист. = 1,36*0,7 = 0,952 В.

Настраиваем ток шагового двигателя.

Для этого возьмём мультиметр, и один контакт подключим к контакту GND, а второй на переменный резистор драйвера.

Для этого возьмём мультиметр, и один контакт подключим к контакту GND, а второй на переменный резистор драйвера. Поворачивая потенциометр на драйвере, подбираем нужное напряжение. На мультиметре у меня показания в мВ, поэтому такое большое значение.

Аналогично настраиваем ограничивающий ток для второго драйвера.

Внимание! Не забудьте установить радиатор охлаждения на драйвер шагового двигателя, в противном случае, драйвер будет перегреваться.

Подключение шагового двигателя и светодиода, вместо лазера.

Как писал выше, лучше лишний раз проверить все на столе, чтобы убедиться в работоспособности электроники в холостом режиме. А в связи с тем, что световое излучение от лазерного модуля опасно для зрения , работоспособность TTL сигнала лучше проверить на обычном светодиоде.

Подключение шагового двигателя и светодиода, вместо лазера.

Для начала подключаем светодиод. Так как у меня лазер 450 nm, он синего свечения, и светодиод на макетную плату установил синего цвета.

Не забудьте про то, что в Arduino UNO нужно загрузить прошивку GRBL 1.1. Скачать прошивку можно внизу статьи. Подробно, как загрузить прошивку в Arduino, рассмотрим в следующей статье.

Схема подключения светодиода к CNC shield v3.

Схема подключения светодиода к CNC shield v3.

Сейчас, отправляя команду в монитор порта M3 S1 , мы можем включить светодиод минимальной мощности. Данную команду я использую для определения положения лазера при установке заготовки.

Сейчас, отправляя команду в монитор порта M3 S1, мы можем включить светодиод минимальной мощности.

Затем, можно отправить команду M3 S255 ,и вы увидите, что светодиод светит ярче. Это означает, что все работает отлично. Если у вас что-то не получается, не переживайте, в следующей статье разберем, почему светодиод может не работать.

Затем, можно отправить команду M3 S255,и вы увидите, что светодиод светит ярче.

С работой лазера определились. Сейчас нужно проверить работу шаговых двигателей. Подключаем шаговые двигатели к CNC shield v3, как показано на схеме ниже.

Схема подключения шаговых двигателей к CNC shield v3.

Схема подключения шаговых двигателей к CNC shield v3.

На схеме у меня подключено 3 драйвера шагового двигателя A4988. По сути, должно стоять всего 2. В изображении CNC shield v3, которое я использую при рисовании схемы, сделано с 3 драйверами, и изменить изображение нельзя, поэтому на драйвер, установленный на ось Z, не обращайте внимания.

На схеме у меня подключено 3 драйвера шагового двигателя A4988.

Сейчас можно проверить работоспособность шаговых двигателей. Для этого будем использовать программу LaserGRBL, скачать которую вы можете внизу статьи, в разделе материалы для скачивания.

Дальше, подключаем Arduino к компьютеру. Выбираем порт, к которому подключена Arduino UNO. Затем, в программе нажимаем на панель управления, в левом нижнем углу, на стрелки влево или вправо. У вас должен вращаться шаговый двигатель, подключённый к оси X. При нажатии стрелок вверх и вниз, должен вращаться двигатель, подключенный к оси Y.

Сейчас можно проверить работоспособность шаговых двигателей. Для этого будем использовать программу LaserGRBL

Если у вас не получилось воспользоваться программой LaserGRBL, вы можете отправить, по очереди, следующие команды в монитор порта:

  • G1 X50 F4000
  • G1 Y50 F4000
  • G1 X0 F4000
  • G1 Y0 F4000

При удержании вала, двигатель не должен останавливаться сразу. Для остановки вала нужно приложить усилие. Если ваш шаговый двигатель сразу останавливается, то нужно проверить настройку ограничивающего тока, правильность установки драйверов. При необходимости, поменять драйвера местами. Бывают случаи глюков драйверов, и при простой их смене местами, всё начинает работать нормально.

Установка электроники на лазерный гравировальный станок, и подключение.

Установка электроники на лазерный гравировальный станок, и подключение.

После проведения всех тестов, можно установить электронику на ЧПУ станок и провести первый пуск.

Схема подключения Arduino UNO + CNC shield v3 + A 4988 + ttl laser driver.

Схема подключения Arduino UNO + CNC shield v3 + A4988 + ttl laser driver.

Подключаем все вот по такой схеме. Я постарался все разместить и подписать так, как у меня на TTL драйвере. У вас может быть другой порядок подключения, но значительных отличий быть не должно.

Несколько фото подключения ttl laser driver к CNC shield v3.

Несколько фото подключения ttl laser driver к CNC shield v3.

Вот так выглядит установленная электроника. Как станок работает, смотрите в предыдущей статье. А в следующей статье рассмотрим: как загрузить GRBL 1.1 в Arduino UNO, настроить GRBL и запустить гравировку первого изделия.

Понравился проект Самодельный Лазерный гравёр с ЧПУ, в домашних условиях? Не забудь поделиться с друзьями в соц. сетях.

А также подписаться на наш канал на YouTube, вступить в группу Вконтакте, в группу на Facebook.

Спасибо за внимание!

Технологии начинаются с простого!

Фотографии к статье

драйвер A4988 и настройка ограничивающего тока

CNC shield v3 + A4988

подключениt светодиода к CNC shield v3

подключение шаговых двигателей к CNC shield v3

Arduino UNO + CNC shield v3 + ttl laser driver

Arduino UNO + CNC shield v3 + A4988 + ttl laser driver

Файлы для скачивания

Admin (21 марта, 2021 в 09:00)

Если вы считает что есть ошибка в статье пишите более конкретно где, что и почему.
Считаете что настраиваем не ограничивающий ток. То вы неправы! Да мы настраиваем резистором напряжение для установки ограничивающего тока.

Алексей

Гость: Алексей (13 марта, 2021 в 23:36)

НЕ «ограничивающий ток» а «Ограничивающее напряжение»

Источник

Стабилизатор тока с ттл модуляцией что это

TTL-лазер для Anet A2 (A8) с поддержкой команд M3 — M5

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Приветствую всех, интересующихся данной темой. Хочу поделиться своей реализацией возможности использования принтера Anet A2 для гравировки лазером с TTL-управлением. При этом сохраняется весь функционал принтера и гравера одновременно с небольшой потерей рабочего пространства. Все это будет работать на прошивке Marlin 1.1.9 и да, гравировка может выполняться в автономном режиме (без подключения к компьютеру) с SD карты.

Начнем с теории и ограничений штатной платы принтера. Как известно TTL-управление это управление всего двумя состояниями выхода — включено (1) и выключено (0). Конечное устройство (лазер), подключенное к данному выходу будет работать соответственно:

— на выходе 1 — устройство работает на полную мощность

— на выходе 0 — устройство выключено

Так выделяемая мощность в период времени будет зависеть от того какую часть этого периода устройство включено, и какую выключено. Ну а это есть не что иное как PWM-модуляция.

Следовательно чтобы нам управлять мощностью лазера нам нужно его подключить к выводам микроконтроллера с PWM-модуляцией, а их не так уж и много и самое обидное они все заняты. Всего у МК ATmega1284 4 таймера с 8 выводами.

Для внешних устройств возможно задействовать 3 таймера (6 выводов). Четвертый используется чисто для внутренних задач.

Из схемы материнской платы принтера видим,

что выводы первого таймера используются в аналоговом режиме (задействованы таймеры для формирования PWM) и управляют нагревом хотэнда и стола. Выводы второго таймера задействованы в цифровом режиме и управляют моторами по осям X и Y. Ну и у оставшегося таймера один из выводов используется в аналоговом режиме — управляет скоростью вращения вентилятора обдува изготавливаемой модели, а второй в цифровом режиме для управления мотором оси Z.

Так как основной задачей было сохранить весь функционал принтера было решено для управления лазером задействовать вывод управления вентилятором. Взять сигнал планировалось до выходного транзистора (вывод 44 точка Т35). В связи с тем, что формировать код управляющей программы для гравировки планировалось в сторонних программах и не было никакого желания править его в ручную, необходимо было включить поддержку команд M3 и M5 в Marlin. Но в такой конфигурации у меня не получалось скомпилировать прошивку. Постоянно выдавало ошибку что вывод занят для других функций. Вполне возможно, что можно как-то объединить разные функции, но моих знаний недостаточно для решения данной задачи. Поэтому я пошел другим путем.

Читайте также:  Генераторы постоянного тока виды устройство

Вообще для поддержки в Marlin команд M3 S***, М4 S***, M5 необходимо указать дополнительно 3 выхода

1 — включения (ENABLE)

2 — уровень мощности (PWM)

3- направление вращения (DIR)

Углубившись опять в схему материнской платы, в поисках чем все же можно пожертвовать обнаружил вывод (33 T51) на котором висит светодиод и больше ничего, хотя дорожка уходит на разъем дисплея. На основании этого было решено освободить вывод таймера (43 Т1), задействованный для управления осью Z, перекинув его функции на вывод 33. Для этого на обратной стороне материнской платы были перерезаны 2 дорожки. Места разреза показаны зеленым цветом. И брошена перемычка тонким мягким проводом (отмечена желтым цветом). Освободившийся вывод прижал резистором 10К к земле (синий).

На сколько это целесообразно утверждать не буду. Просто решил не оставлять данный вывод весящим в воздухе при физическом отключении лазерного модуля.

Теперь по прошивке. Marlin 1.1.9 скачал с оф.сайта. Пробовал и второй, но с ним быстро не получилось, а долго не было желания возиться. Так что все остальное будет относиться к версии 1.1.9. Для компиляции прошивки использовал Arduino IDE 1.8.5 с добавленной библиотекой Sanguino 1.0.3.

Marlin распаковываем в отдельную папку. Далее в ней проходим по пути \Marlin\example_configurations\Anet\A8 и копируем файлы конфигурации Configuration.h и Configuration_adv.h. Перемещаемся вверх в папку Marlin и вставляем скопированные файлы с заменой оригиналов. Запускаем файл Marlin.ino из этой же папки.

В Arduino IDE переходим во вкладку Configuration.h к строкам 856, 857 и меняем true на false и false на true. должно получиться так:

#define INVERT_Y_DIR true

#define INVERT_Z_DIR false

Это касается только принтеров Anet A2. Для A8 пропустить эту операцию.

Далее переходим во вкладку Configuration_adv.h. Нас интересуют строки с 1416 позиции.

В частности в этой строке включается поддержка команд М3 — М5. Нужно раскомментировать данную строку (убрать // в начале строки)

В строках 1419 — 1426 можно выполнить некоторые настройки управления лазером (шпинделем). Пояснения там присутствуют. Для лазера рекомендую в пунктах:

значение параметров указать пониже. Этот параметр нужен для шпинделя. Время на его раскрутку и остановку в миллисекундах. Если этого не сделать, то при выполнении гравировки лазер будет включаться и стоять на месте указанное время и только после этого начинать двигаться. Из-за этого будет пережог в начале каждой траектории. У меня этот параметр выставлен на 1 миллисекунду.

Читайте также:  Женщина умерла от тока

#define SPINDLE_LASER_POWERUP_DELAY 1

#define SPINDLE_LASER_POWERDOWN_DELAY 1

Далее в строках 1437 — 1445 указывается диапазон значений мощности передаваемый в G-коде. Мне удобнее использовать в градации 0 — 255 (0-выключено, 255 полная мощность).

Поэтому эти строки я привел к следующему виду:

#define SPEED_POWER_SLOPE 1

#define SPEED_POWER_INTERCEPT 0

#define SPEED_POWER_MIN 1

#define SPEED_POWER_MAX 255

Ну что, теперь осталось только указать какие выводы для чего используются. Для этого в Arduino IDE переходим во вкладку pins_ANET_10.h и вносим следующие изменения.

Для #define Z_STEP_PIN указываем число 27 (цифровой вывод)

#define Z_STEP_PIN 27

Теперь мотор оси Z будет тактироваться 33 выводом микроконтроллера.

Далее необходимо прописать выводы для управления лазером. Для этого нужно добавить следующие строки:

#define SPINDLE_LASER_ENABLE_PIN 26 // digital pin

#define SPINDLE_LASER_PWM_PIN 3 // digital pin — MUST BE HARDWARE PWM

#define SPINDLE_DIR_PIN 26 // digital pin

Я эти строки внес после определения выводов термодатчиков. Выводы включения и направления вращения я указал цифровой вывод 26 (вывод 32 микроконтроллера). Это вывод включения оси Z. Можно использовать цифровой вывод 14 (вывод 15 микроконтроллера), но он управляет включением моторов оси X и Y (E тоже), что может создавать помехи перемещению рабочего инструмента во время включение и отключения лазера (шпинделя). Так как для лазерной гравировки ось Z практически не используется было решено использовать 26 цифровой вывод. Возможно с шпинделем могут возникнуть проблемы так как там необходимо интенсивно использовать ось Z. В таком случае материнскую плату Anet, без кардинальных изменений использовать не получится.

На данный момент лазером нельзя управлять с панели управления принтером и нет отображения состояния лазера, а хотелось бы

В общем всё. Теперь к 43 выводу микроконтроллера подключаем TTL-вход лазера и в путь. Я использую вот этот софт для формирования управляющей программы для лазера. Для отправки G-кода по кабелю понравилась программа Snapmakerjs. В ней можно выставить начальную точку и за тем обнулить рабочие координаты, что очень удобно

Если есть советы по более правильной конфигурации было бы интересно «услышать» в комментариях.

Так же задавайте вопросы. Чем смогу, тем помогу.

Источник



Ещё две схемы для питания лазера из DVD-RW привода.

В прошлой статье о создании лазера из DVD-RW привода говорилось только об одной схеме на резисторе. Минус такой схемы заключается в отсутствии стабилизации. По мере разряда аккумулятора будет падать ток лазерного диода и яркость лазера. Этот недостаток можно устранить, если воспользоваться регулируемым стабилизатором КР142ЕН12А или его аналогом LM317T.

Читайте также:  Что называется генератором электрического тока

Стабилизатор компенсационный, поэтому на входе требуется напряжение с запасом. Для питания схемы с красным ЛД (3 В) током 250 мА нужно от 5,7 В до 37 В. При падении напряжения ниже 5,7 В, яркость лазера начнёт падать, как в схеме с резистором. С инфракрасным (2,2 В, 110 мА) от 5 В до 37 В.

Формула токозадающего резистора: R=1,25/I

Если будем питать красный лазерный диод током 0,25 А , то резистор нужен такой: 1,25/0,25= 5 Ом .

Для инфракрасного ЛД 780 нм с током 110 мА : 1,25/0,11= 11,36 Ом .

Нельзя подключать лазерный диод к работающей схеме! Необходимо спаять схему полностью, и только потом подключать источник питания.

Схема может применяться при ремонте лампы для поиска перегоревшего светодиода.

Вторая схема на основе тех же микросхем, включённых как стабилизаторы напряжения.

Использовать такую схему для ЛД и светодиодов не очень грамотно, потому что это токовые приборы и питать их нужно током, а не напряжением. Но она имеет одно преимущество , из-за которого её можно осторожно применять. Минимальное напряжение питания должно быть всего на 1,4 В — 1,6 В больше, чем падение напряжения на ЛД. Т.е. стабильная яркость красного лазера (3 В) будет обеспечена при напряжении питания схемы от 4,4 В до 37 В. Для инфракрасного ЛД 780 нм (2,2 В) от 3,8 В до 37 В. Преимущество пониженного минимального напряжения заметно при питании лазера от аккумуляторов.

Схема стабилизатора напряжения.

R1 рекомендуется сопротивлением 240 Ом .

R2 высчитывается по формуле: R1*(Uвых.-Uопор.)/Uопор.

Для красного ЛД: R2 =240 Ом*(3В-1,25В)/1,25В= 336 Ом

Для ИК ЛД 780 нм : 240*(2,2-1,25)/1,25= 182,4 Ом

Рекомендуется первоначально R2 ставить меньшего сопротивления, чем получилось по формуле, одновременно измеряя силу тока ЛД. Это нужно для защиты нестандартных ЛД, которые при 3 В (2,2 В) создают чрезмерный ток. И далее увеличивать сопротивление R2, следя за током.

Ну и в тему замедленное видео зажигания спички 100 мВт фиолетовым лазером 405 нм через дополнительную линзу, для получения более тонкого луча.

Источник