Меню

Стабилизаторы с правильной синусоидой

Какой стабилизатор выбрать для котла: релейный или инверторный

Сегодня уже все понимают, что нестабильность напряжения в электрических сетях (особенно в загородной зоне) обусловливает необходимость приобретения оборудования, способного надежно защитить все имеющиеся электроприборы и устройства.

Перед потребителем становится вопрос о приобретении стабилизатора напряжения. Как не ошибиться при выборе той или иной модификации? Что предпочесть: давно знакомый релейный классический или сравнительно новый инверторный?

Рассматривая приоритетность при выборе того или иного защитного электрооборудования, надо оценить степень возможных эксплуатационных рисков имеющейся техники, а также необходимые и достаточные параметры устройств, призванных эту технику защищать.

Сопоставим параметры, которые представляются наиболее существенными:

  • обеспечение «чистого синуса» и точности удержания напряжения;
  • надежность и ремонтоспособность;
  • способность поддержания мощности в диапазоне напряжений;
  • перегрузочная способность;
  • собственная потребляемая мощность;
  • габариты, вес, цена и некоторые другие.

«Чистый синус» и точность удержания напряжения

Классический релейный стабилизатор обеспечивает точность 5-7 %,

Инверторный – 1- 2% и «чистый синус».

Что предпочесть в том или ином случае?

Попробуем разобраться на примере.

Мы знаем, что в настоящее время для отопления загородных домов обычно применяются газовые котлы, оснащенные насосами циркуляции теплоносителя. Циркуляционные насосы были изобретены в 1929-ом и начали массово применяться в бытовых котлах в 1950-х годах. И всё это время они прекрасно работали с «грязным синусом», и достаточной признавалась точность удержания напряжения 5 – 7%.

Релейные стабилизаторы транслируют сеть такой, какой она была 50 лет назад, есть и будет ещё, как минимум, столько же лет. И обеспечивают 5-7 процентов удержания. То есть обеспечивают необходимые и достаточные параметры стабилизации.

Что касается инверторных стабилизаторов, то до 1933 года, когда была доказана теорема Котельникова, электронные инверторы просто не существовали по причине отсутствия теоретических предпосылок, а потом до появления мощных и недорогих полевых транзисторов были очень дорогими.

Поэтому производители котлов не закладывали в регламент эксплуатации своих изделий требования к качеству сети (во всех странах это уже оговорено нормативами для энергопоставляющих компаний), оговаривая только рабочие и предельные напряжения, при которых котел будет работать долго.

Напрашивается вывод, что для обеспечения надежной эксплуатации современного котла достаточно наличия классического релейного стабилизатора соответствующей мощности. А наличие «чистого синуса» и точности 1 – 2 % в инверторных стабилизаторах не добавляет надежности работы оборудования. Эти параметры инверторов в данном случае напоминают рекламный ход, как, к примеру, на упаковке моющего средства пишут – «20% — бесплатно».

В случае же необходимости защиты точной измерительной или медицинской аппаратуры данные параметры инверторов могут быть актуальными.

Надежность и ремонтоспособность

Надежность оборудования определяется многими факторами. Самыми явными из них являются качество и количество комплектующих элементов, применяемых при производстве изделий.

Если исходить из того, что производители и тех и других стабилизаторов гарантируют высокое качество элементной базы, то следует оценить количественную составляющую.

Крепёжные изделия, краску и другие малосущественные компоненты в расчет не берем. Сравним количество электроэлементов.

Классический стабилизатор построен проще и включает в себя от 50 до 80 элементов и выделяет при работе минимум тепла.

В инверторном комплектующих в 3 — 5 раз больше и выделение тепла весьма существенно, что обусловливает необходимость наличия большого радиатора или вентилятора.

А теперь немного теории. Надежность изделия зависит от надежности каждого входящего элемента и количества этих элементов. Кроме того, повышение температуры на 10 градусов снижает надежность (в литературе приводятся различные цифры, вплоть до уменьшения срока службы в 2 раза).

Если принять надежность одного элемента равной 0,99, то суммарная надежность трех элементов составит: 0,99х0,99х0,99=0,97 (т.е. вероятность отказа 3%), а при наличии 10 элементов этот показатель будет равен 0,90 (т.е. вероятность отказа 10%).

Конечно, современные элементы имеют надежность выше 0,99, но тенденция снижения надежности при увеличении количества элементов весьма показательна.

Можно возразить, что при наличии большого количества элементов наши телевизоры, компьютеры, стиральные машины нормально работают годами. Но не стоит забывать, что бытовая техника работает далеко не полные сутки, а стабилизатор, не выключаясь, должен работать постоянно.

Практика эксплуатации классических стабилизаторов показывает, что они могут работать 10 лет и более. По инверторным моделям такой статистики пока просто нет.
Мы знаем, что любая, даже самая качественная, техника порой требует ремонта. И потребителю небезразлично, насколько легко или сложно будет этот ремонт осуществить.

В течение гарантийного периода и при наличии доступной сервисной службы ремонт будет сделан по крайней мере бесплатно, хотя сроки, скорее всего, будут зависеть от сложности ремонта. А в иных случаях могут возникнуть проблемы, связанные с ремонтопригодностью изделия.

Ремонтопригодность стабилизаторов определяется несколькими параметрами.

Это плотность монтажа, легкость или сложность доступа к элементам. Это необходимость наличия того или иного оборудования для демонтажа и монтажа ремонтируемого изделия, наличия приборов и стендов для его наладки и тестирования. Это доступность элементной базы в случае необходимости замены неисправных деталей. И, конечно же, требования к квалификации ремонтного персонала.

Классические релейные стабилизаторы имеют низкую плотность монтажа и их элементная база не предполагает редких и дефицитных микросхем. Используемые приборы просты, а в качестве стенда обычно можно просто использовать ЛАТР. Поэтому требования к квалификации ремонтного персонала не особенно высоки, можно сказать, что достаточна квалификация на уровне гаражного радиолюбителя. Понятно, что при таких условиях ремонт не будет большой проблемой для потребителя.

Читайте также:  Косточки стабилизатора додж караван

С инверторными стабилизаторами картина совершенно иная. Компоновка здесь плотная, и основная масса элементов – это SMD, специализированные микросхемы. Для монтажа и демонтажа SMD потребуется приобрести специальное оборудование, а замена таких микросхем невозможна без хорошей паяльной станции. Кроме того, сами эти элементы не всегда можно будет легко приобрести, а в небольших населенных пунктах их покупка будет практически нереальна. Из оборудования обязателен осцилограф с приличной полосой пропускания. Понятно, что квалификация персонала должна быть не ниже инженера. И скорее всего придется обращаться к производителю.

Очевидно, что ремонт релейного стабилизатора представляется более доступным, чем ремонт инверторного, как по срокам, так и по цене.

Способность поддержания мощности в диапазоне напряжений

Классический стабилизатор поддерживает полную мощность во всем заявленном диапазоне напряжений.

Инверторный поддерживает полную мощность лишь в части заявленного диапазона напряжений, при дальнейшем снижении входного напряжения отдаваемая мощность снижается. Поэтому при выборе инверторного стабилизатора следует учитывать нужную мощность с возможным снижением входного напряжения. И при необходимости придется выбирать стабилизатор с запасом.

Перегрузочная способность

На практике, как правило, необходимо считаться с периодически возникающими перегрузками в сети, связанными, например, с пусковыми токами.
Защитное оборудование, каковым является стабилизатор, должно обладать способностью выдерживать эти перегрузки в течение определенного времени. Либо обладать запасом по мощности.

Классический стабилизатор способен выдерживать перегрузки в три – четыре раза в течение десятков секунд, что вполне достаточно при запуске того или иного электрооборудования, будь то прибор освещения или двигатель. Это может быть стиральная машина, холодильник, пылесос или котел и т.д. При выборе классического стабилизатора некоторый запас можно предусмотреть, но для малых мощностей не обязательно.

Инверторные же стабилизаторы, если и могут держать перегрузку, то это время измеряется лишь несколькими секундами или даже долями секунды. Поэтому запас по мощности при выборе инверторного

стабилизатора просто необходим. Так для холодильника запас должен быть, как минимум, вдвое, а скорее всего втрое, для погружных насосов — в четыре – пять раз.
Это означает, что применение инверторных стабилизаторов при работе с подобными нагрузками существенно ограничено или просто дорого.

Собственная потребляемая мощность

Совершенно очевидно, что и тот и другой стабилизаторы будут сами потреблять энергию на обеспечение своей работы.

Классический стабилизатор потребляет энергию на 3 реле, индикацию и контроллер. Общий ток порядка 100мА при напряжении 12В (3 реле: 30мА х3 = 90мА). С учетом потерь на источник питания (умножим на 3) имеем в худшем случае 3,6Вт. Это справедливо для моделей до 1000ВА. Стабилизаторы от 4500ВА до 40000ВА имеют потребляемую мощность 15 – 20Вт.

Собственная мощность инверторных стабилизаторов зависит от полной мощности той или иной модели. Для моделей 350ВА это 25Вт, для 3500ВА – 40Вт, для 12000ВА – 75Вт, для 13500 это уже 150Вт и т.д.

Простой расчет показывает, что инверторный стабилизатор мощностью 350ВА за год «съест» энергии на сумму более 1000 рублей, 12000ВА более 3000 рублей, а 13500 ВА соответственно еще в 2 раза больше, т.е. более 6000 рублей.

По классическим даже мощным моделям эти затраты не превысят 1000 рублей в год.

Очень краткие выводы

Классический релейный стабилизатор

  • Точность удержания напряжения достаточна для работы котла.
  • Не искажает форму сети.
  • Поддерживает полную мощность во всем заявленном диапазоне напряжений.
  • Простая схемотехника, легко ремонтируется.
  • Надежен, выпускается очень давно.
  • Выдерживает большие перегрузки.
  • Не шумит.
  • Потребляет мало энергии на обеспечение собственной работы.
  • Большой вес.
  • Высокая цена силового трансформатора

Инверторный стабилизатор

  • Точность поддержания выходного напряжения и сформированный синус, что может быть актуально для высокоточной измерительной техники и медицинской аппаратуры.
  • Снижение выходной мощности при снижении входного напряжения.
  • Сложная схемотехника и, как следствие, снижение надежности и сложность ремонта.
  • Низкая перегрузочная способность.
  • На мощностях выше 500 – 700ВА необходим вентилятор, который будет источником шума.
  • Значительная потребляемая мощность на управление.

Источник

Стабилизатор напряжения с чистым синусом или его альтернатива

Многие владельцы домов, применяющие для отопления газовые котлы, имеют проблемы с их неисправностями. Котел может выйти из строя в морозный зимний день, а причина неисправности не совсем понятна.

Наиболее частой причиной неисправности газовых отопительных котлов становится внезапное отключение электричества в сети, либо недостаточное качество снабжения электроэнергией. Оно может проявляться низким или высоким напряжением сети, внезапными скачками напряжения, возникающими высокочастотными помехами, а также неправильной формой синусоиды напряжения сети.

Недостаточно чистая синусоида напряжения не дает возможности электрическим устройствам обеспечить функциональность в полном объеме, что может привести к неисправностям и снижению эксплуатационного периода. Это может относиться и к функционированию газовых отопительных котлов. Такие проблемы часто возникают на даче или в загородном доме.

Чувствительными к качеству питания элементами, обеспечивающими функционирование газового котла, являются:

  • Газовая горелка.
  • Насос циркуляции теплоносителя.
  • Автоматическое управление системой.
Читайте также:  Стабилизатор для заслонки рециркуляции опель астра

Например, в автоматическом управлении котлом может возникнуть неисправность вследствие резких скачков напряжения. А наиболее распространенной причиной неисправностей является неправильная форма синусоиды напряжения. Искажение этой синусоиды негативно влияет на функционирование насосов циркуляции, которые также обладают повышенной чувствительностью к низкому напряжению. Недостаточное качество напряжения не позволяет насосам функционировать на полную мощность. Это может привести к чрезмерному нагреванию и быстрому износу.

Методы обеспечения исправной работы

В результате, чтобы создать все необходимые условия непрерывной работы газового котла отопительной системы, и не заморозить батареи в зимние морозы, необходимо сразу решить несколько сложных задач:

  • Создать условия непрерывной подачи электрической энергии.
  • Обеспечить форму «чистого синуса» поставляемого напряжения.
  • Защитить оборудование от колебаний напряжения и высокочастотных помех.

Стабилизатор с «чистым синусом»

Обычный стабилизатор напряжения предотвратит только небольшую часть негативных факторов. Однако, он хорошо справляется с помехами и перепадами напряжения в сети, выравнивает его величину до номинального значения, удовлетворяющего норме 220 вольт. Но он не даст «чистого синуса» тока и непрерывную подачу электрической энергии.

Следует отметить, что имеются образцы таких стабилизаторов, имеющих возможность создать синусоиду напряжения хорошего качества, и могут использоваться для обеспечения защиты газовых отопительных котлов. Стоимость стабилизаторов с «чистым синусом» невысокая, и вполне приемлемая для рядового потребителя.

В качестве примера можно назвать стабилизатор Энергия АРС. Он сконструирован именно для обеспечения защиты котлов отопления. Его особенности устройства дают возможность в полной мере защитить чувствительную к качеству электрического питания автоматическую систему газовых котлов от различных негативных факторов.

Эти стабилизаторы выделяют в лидеры среди адаптированных образцов устройств для эксплуатации совместно с газовыми котлами следующие параметры:

  • Пятиступенчатая блокировка от аварийных случаев.
  • Реле блокировки, обладающие высокой скоростью.
  • Системы подавления помех высокой частоты.
  • Широкий интервал напряжений на входе стабилизатора.

Но существуют также и другие устройства, способные обеспечить качественную эксплуатацию котлов отопления. В качестве альтернативного варианта можно выделить такое устройство, как источник бесперебойного питания. Он способен в малые сроки создать передачу электрической энергии за счет внутренних или внешних аккумуляторов. Чем выше емкость аккумуляторов и их количество, тем больший период времени может работать котел отопления при отсутствии электричества.

Некоторые модели источников питания ИБП способны обеспечивать «чистый синус» для питания котлов. Например, модель источника «On-line». Но стоимость таких устройств довольно высока.

Альтернатива стабилизатору

Таким альтернативным вариантом для стабилизатора может стать инвертор, или как его называют, преобразователь напряжения. Он гарантирует выдачу чистой синусоиды напряжения, и исполняет задачу стабилизации и выравнивания напряжения, а также создает непрерывную подачу электрической энергии при ее отсутствии от батарей аккумуляторов, количество и емкость которых можно по желанию повысить.

Например, инверторы «Энергия» обладают следующими преимуществами:

  • Повышенный срок службы и высокая надежность.
  • Повышенное качество сборки и базы элементов.
  • Высокое быстродействие при переключении между режимами.
  • Блокировка от разрядки батарей аккумуляторов и чрезмерной зарядки.
  • Перегрузочная защита.
  • Широкий интервал выравнивания высокого и низкого напряжения.
  • Повышенное время действия при отсутствии электроэнергии.
  • Возможность работы в холодных помещениях на морозе.

Источник



Чистая синусоида VS её ступенчатая аппроксимация. Часть I

Временами приходится пользоваться устройствами для автономного или резервного питания. Это могут быть автономные инверторные бензогенераторы, автомобильные инверторы, источники бесперебойного питания в режиме работы от батарей. В общем, все те устройства, в составе которых присутствует инвертор. И все бы ничего, но не все подобные устройства выдают на выходе синусоидальное переменное напряжение, на которое, собственно, и рассчитано все электрооборудование. То есть переменное-то оно у всех, а вот форма этого напряжения может быть далеко не синусоидальная.

В таких случаях в характеристиках устройства, в строке «Форма выходного напряжения» пишут «Ступенчатая аппроксимация синусоиды» или «Модифицированная синусоида» или «Квазисинусоида» или как-то еще.

Это означает, что там совсем не синусоида, а разнополярные прямоугольные импульсы, которые следуют с определенной паузой. Ниже на осциллограммах показаны синусоидальная форма напряжения в бытовой электросети (слева) и осциллограммы так называемой «квазисинусоиды», снятые с разных устройств.

Форма напряжения: а) в бытовой электросети; б) на выходе ИБП Back-UPS CS 500; в) на выходе инвертора 12/220 Mean Well

Нетрудно заметить, что амплитуды импульсов на осциллограммах с квазисинусоидой отличаются и составляют в первом случае 350–360 В, во втором — 290–300 В. Но их ширина подобрана таким образом, что среднеквадратичное значение получаемого переменного напряжения соответствует 225–230 В.

Казалось бы, нет проблем. Частота напряжения 50 Гц, среднеквадратичное значение соответствует 230 В. Но это только на первый взгляд. В сигнале, который отличается от синусоиды, присутствуют гармоники, т. е. получаемые разнополярные импульсы состоят не только из сигнала частотой 50 Гц, но и из сигналов более высоких частот, кратных основной частоте 50 Гц (150, 250, 350 и т. д.). Не будем углубляться в теорию, а просто скажем, что при запитывании оборудования подобной «квазисинусоидой» на него подается напряжение не только частотой 50 Гц, но и частотой 150 Гц, 250 и далее по нарастающей. При этом амплитуды этих напряжений хоть и уменьшаются с ростом частоты, но все же могут иметь достаточно высокий уровень. Уровень этих гармоник зависит от ширины импульса, его амплитуды и скорости нарастания.

Читайте также:  Как определить что сгорели стабилизаторы

Спектрограммы гармоник напряжения с выхода ИБП Back-UPS CS 500 (слева) и инвертора 12/220 Mean Well (справа) при нагрузке 25 Вт

Далее мы подробно рассмотрим различное электрооборудование и попробуем определить, насколько для него критична форма питающего напряжения.

Нагревательное электрооборудование

Оборудование, которое представляет собой активную нагрузку и не имеет в составе каких-либо регулирующих электронных устройств (диммеров), конденсаторов, индуктивностей, абсолютно не восприимчиво к форме питающего напряжения. Например, лампы накаливания, утюги, паяльники и другие нагревательные приборы. Но, к сожалению, такое оборудование всегда в меньшинстве.

Люминесцентные, светодиодные лампы и светильники

В конструкции таких ламп всегда присутствует устройство (драйвер), преобразующее напряжение 220–230 В в необходимое для питания светоизлучающих компонентов. Естественно, рядовой пользователь не знает принцип работы драйвера конкретной лампы или светильника и не может предположить, как они поведут себя при питании не синусоидальным напряжением, ведь они не рассчитаны на такие условия.

Проведем эксперимент, для статистики возьмем несколько ламп и светильников различных моделей и сравним их потребляемую мощность и другие параметры при подключении к обычной розетке и к устройству с «прямоугольной аппроксимацией синусоиды». Таким устройством будет источник бесперебойного питания фирмы APC с полной мощностью 500 В*А.

По результатам тестов заметно, что электрические характеристики ламп изменяются при питании квазисинусом. В большинстве случаев изменяются они в худшую сторону — увеличивается ток потребления и уменьшается коэффициент мощности. Критический случай, если в светодиодной лампе в качестве токоограничивающего элемента установлен конденсатор. При питании такой лампы квазисинусом со значительным уровнем гармоник потребляемая мощность может увеличиваться в разы, значит, и ток через светодиоды возрастает. Это можно наблюдать и визуально по изменению яркости свечения. Конечно, лампа в таком режиме прослужит недолго. Что интересно, при подключении такой лампы к автомобильному инвертору (12/230 В) подобного увеличения мощности не наблюдалось. Это связано с тем, что используемый для тестов инвертор выдавал разнополярные импульсы с меньшим уровнем гармоник, чем источник бесперебойного питания (рис. 2).

Напрашивается вывод: подключение светодиодных и люминесцентных ламп к источнику с прямоугольной апроксимацией синусоиды — это своего рода лотерея. Нет гарантии продолжительной работы ламп, и срок их службы будет зависеть от применяемого драйвера и конкретных параметров квазисинуса.

Устройства с трансформаторными источниками питания

Следующая группа электрооборудования — устройства, имеющие в своем составе трансформаторы. Для проведения тестов были выбраны два устройства — отечественный трансформатор ТС-40-2 и сетевой трансформаторный адаптер с выходным стабилизированным напряжением. Результаты тестов в таблице.

Схема классического трансформаторного источника питания

В тестировании трансформаторных источников питания помимо источника бесперебойного питания использовался инверторный преобразователь, который тоже имеет на выходе квазисинусоиду, но их параметры немного отличаются, о чем было сказано выше.

По результатам экспериментов можно наблюдать, что трансформаторные источники питания при питании их квазисинусом ведут себя вполне приемлемо и даже хорошо. Первое, что можно отметить это уменьшение тока холостого хода. И, как оказалось, чем больше уровни гармоник в питающем напряжении, тем этот ток меньше. Это связано с тем, что трансформатор в большей степени представляет собой индуктивную нагрузку, а реактивное сопротивление индуктивности с ростом частоты возрастает.

Из отрицательных моментов можно выделить следующее. Даже если у источника со ступенчатой аппроксимацией синусоиды среднеквадратичное напряжение будет составлять 230 В, но амплитуда импульсов будет завышена, то и на выходе выпрямителя мы получим завышенное напряжение. Это связано с тем, что фильтрующий конденсатор С (рис. 3) стремится зарядиться до амплитудного значения выпрямленного напряжения. Так, в указанной выше схеме при смене питающего синусоидального напряжения на квазисинусоиду напряжение на выходе повышалось с 16 до 19 В, что, естественно, повышало общую потребляемую мощность. Данный эффект наблюдался при питании этой схемы от источника бесперебойного питания, у которого при среднеквадратическом значении напряжения в 230 В амплитуда импульсов достигает 350 В.

Однако при питании данной схемы от автомобильного инвертора с амплитудой импульсов около 300 В наблюдалось даже некоторое уменьшение выходного напряжения. При этом среднеквадратичное значение напряжения инвертора также составляло 230 В.

Резюмируя, можно сказать, что, кроме возможного повышения напряжения во вторичных цепях трансформаторных источников питания, других негативных последствий для трансформаторов от квазисинусоиды не выявлено. Превышение же напряжения может в некоторой степени увеличить нагрев источника питания в целом, а будет это превышение или нет зависит от модели используемого ИБП или отдельного инвертора.

Необходимо отметить, что при питании трансформатора ступенчатой аппроксимацией синусоиды прослушивается характерный «звонкий» гул от трансформатора. «Звонкость» звука как раз и говорит о том, что в питающем напряжении есть составляющие с более высокими частотами, чем 50 Гц. Кроме возможных неприятных слуховых ощущений для человека этот звук не несет никаких негативных последствий для трансформатора.

В следующей части статьи будет рассмотрено поведение другого электрооборудования при питании его напряжением с формой, отличной от синусоидальной.

Источник