Меню

Техника высоких напряжений электрического тока

Предмет техники высоких напряжений (ТВН)

ТЕХНИКА ВЫСОКИХ НАПРЯЖЕНИЙ (ТВН)

Содержание:
15.1. Предмет техники высоких напряжений (ТВН)
15.2. Механизм нарушения электрической изоляции
15.3. Характеристики отдельных видов высоковольтной изоляции
15.3.1.Воздушная изоляция
15.3.2.Назначение и типы изоляторов
15.3.3.Внутренняя изоляция
15.4. Электрические воздействия на электрическую изоляцию
15.4.1.Грозовые перенапряжения и их ограничение
15.4.2.Коммутационные перенапряжения и их ограничение
15.5. Испытания изоляции электрооборудования
15.5.1.Испытания оборудования в процессе изготовления
15.5.2.Профилактические испытания изоляции в эксплуатации
15.5.3.Испытательное оборудование
15.6. Перспективные направления развития техники высоких напряжений
15.6.1.Особенности проектирования изоляции оборудования постоянного тока
15.6.2.Особенности проектирования изоляции оборудования ультравысокого напряжения
Контрольные вопросы
Литература для самостоятельного изучения

Необходимость обеспечения высоких технико-экономических показа­телей оборудования для производства и передачи электроэнергии, показа­телей линий электропередачи (ЛЭП) требует минимизации их габаритов, что при наличии высоких напряжений приводит к появлению сильных электрических полей в изоляционных конструкциях, разделяющих эле­менты оборудования и линий электропередачи, находящиеся под разными потенциалами (между собой и от заземленных элементов конструкции).

Сильные электрические поля могут вызывать процессы в изоляцион­ных конструкциях, приводящие к нарушению их электроизоляционных свойств, т.е. к возникновению аварийных режимов в энергосистемах. Эти

процессы часто развиваются при одновременном воздействии на изоляци­онные конструкции тепловых и механических нагрузок. Природа этих нагрузок — протекающие в оборудовании и линиях электропередачи сильные электрические токи, переменное электромагнитное поле и воз­действия окружающей среды.

При этом необходимо обеспечить надежную работу изоляции оборудо­вания при всех постоянно воздействующих на нее или кратковременно возникающих напряжениях.

Изоляция электрических установок разделяется на внешнюю и внут­реннюю. К внешней изоляции относятся воздушные промежутки (напри­мер, между проводами различных фаз электропередачи), внешние поверх­ности твердой изоляции (изоляторов), промежутки между контактами разъединителя и т.п. К внутренней изоляции относятся изоляции обмоток трансформаторов и электрических машин, изоляция кабелей, герметизи­рованная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии и т.д. Внутренняя изоляция представляет собой комбинацию твердого и жидкого диэлектриков (например, в трансформа­торах) или твердого и газообразного диэлектриков (например, в гермети­зированных распределительных устройствах с элегазовой изоляцией).

Основной особенностью внешней (воздушной) изоляции является зависимость ее электрической прочности от атмосферных условий: давле­ния, температуры и влажности воздуха. На электрическую прочность изо­ляторов наружной установки существенно влияют также загрязнения их поверхности и атмосферные осадки.

Электрическая прочность внутренней изоляции электрооборудования практически не подвержена влиянию атмосферных условий. Ее особен­ностью является старение, т.е. ухудшение электрических характеристик в процессе эксплуатации. Очень трудно избежать возникновения в изоля­ции так называемых частичных разрядов. Вследствие изменения темпе­ратурного режима, вызванного колебаниями тока нагрузки, механических воздействий в твёрдой или жидкой изоляции образуются полости микрон­ных размеров, заполненные газом. В этих полостях возникают частичные разряды. Кроме того, на острых кромках электродов, на крепежных дета­лях аппаратуры возникает коронный разряд. Под действием этих разрядов изоляция разрушается, загрязняется продуктами разложения.

Вследствие диэлектрических потерь изоляция нагревается. При затруд­ненном отводе тепла, что характерно для изоляции большой толщины, чрезмерный нагрев может привести к тепловому пробою изоляции.

Воздушная изоляция после пробоя полностью восстанавливает свои изоляционные свойства, если снимается напряжение или гаснет дуга в месте пробоя.

Пробой твердой и комбинированной изоляции — явление необрати­мое, приводящее к выходу электрооборудования из строя. Жидкая и внут­ренняя газовая изоляция, как правило, после пробоя полностью не восста­навливают свои свойства, пробои приводят к ухудшению их характеристик.

Вследствие этого состояние внутренней изоляции контролируется во время эксплуатации, чтобы выявить развивающиеся в ней дефекты и пре­дотвратить аварийный отказ электрооборудования.

Изоляция электрических установок постоянно находится под воздей­ствием рабочего напряжения. В процессе эксплуатации возможны повыше­ния напряжения сверх рабочего — перенапряжения. Если их источником являются внутренние характеристики энергосистемы — электродвижущие силы генераторов системы, а причиной — нормальные или аварийные ком­мутации, сопровождающиеся колебательными процессами или резонанс­ными явлениями в системе, то такие перенапряжения называются внутрен­ними. Помимо внутренних перенапряжений на изоляцию электроустановок могут воздействовать также грозовые перенапряжения, причиной возник­новения которых являются удары молнии в электроустановки.

Воздушные электрические сети вследствие большой протяженности достаточно часто поражаются молнией. При этом на изоляции линий воз­никают весьма высокие напряжения, которые изоляция выдержать не может. Происходит пробой воздуха вдоль гирлянды изоляторов, переходя­щий в поддерживаемый источником рабочего напряжения дуговой разряд.

Помимо нарушения изоляции воздушных линий удары молнии приво­дят к появлению на проводах импульсов высокого напряжения, которые, распространяясь по проводам, достигают подстанций и воздействуют на установленное там электрооборудование.

Уровень грозовых перенапряжений зависит от интенсивности ударов молнии и характеристик пораженных объектов и поэтому является ста­тистической величиной. Внутренние перенапряжения зависят от вида коммутации, режима и характеристик электрической сети и коммутацион­ных аппаратов.

Ограничение перенапряжений в электрических установках до эконо­мически приемлемых значений производятся с помощью защитных аппа­ратов: трубчатых и вентильных разрядников, нелинейных ограничителей перенапряжений (ОПН).

Взаимное согласование значений воздействующих напряжений, характе­ристик защитной аппаратуры и электрических характеристик изоляции, обеспечивающее надежную работу и высокую экономичность электриче­ской установки, представляет собой главную технико-экономическую задачу проектирования электроустановки и называется координацией изоляции.

В соответствии с изложенным, «Техника высоких напряжений» (ТВН) — научная дисциплина, в которой рассматриваются электрические характе­ристики внешней и внутренней изоляции электроустановок, эксплуатация изоляции при рабочем напряжении, грозовые и внутренние перенапряже­ния и их ограничение, координация и методы испытания изоляции, а также изоляционные конструкции линий электропередачи и основных видов электрооборудования

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Шаговое напряжение

  1. Что такое шаговое напряжение
  2. Максимальный радиус шагового напряжения
  3. Правила перемещения в зоне шагового напряжения
  4. Выход из зоны шагового напряжения
  5. Расчет шагового напряжения
  6. Как освободить человека
  7. Методы снижения шагового напряжения на предприятиях

Что такое шаговое напряжение

Шаговое напряжение – это разность потенциалов (напряжения) на участке в токовой цепи. Показатель шагового напряжения зависит от силы тока и удельного сопротивления почвы. Он представляет собой расстояние (разность потенциалов) между двух ног человека. Величина шагового напряжения используется при создании зануления и заземления, измерении опасности в местах аварий. На значение влияет форма кривой напряжения.

Возле упавшего провода находящегося под напряжением, возникает область рассеивания электричества. На расстоянии от 20 метров до места падения провода, напряжение может не ощущаться, плотность тока становится минимальной.

Читайте также:  Pr 617 реле тока

Опасное для жизни шаговое напряжение наблюдается в местах падения электрического провода высокой мощности на голый грунт. К этому объекту запрещается приближаться на расстояния менее 8 метров. Угроза присутствует и на расстоянии одного метра от заземлителя (металлоконструкции труб, забор из арматуры). Человек рискует, стоя в месте растекания шагового напряжения прикоснуться к металлокострукциям (естественному заземлителю). Опасность кроется в поражении нервной системы – возникают судороги и падение человека на землю.

Действие шагового напряжения прекращается, но внутри тела возникает новый путь электричества. Ток протекает от рук к ногам, в результате возникает реальная угроза смерти. При попадании в такую ситуацию человек должен выходить с опасной зоны гусиным шагом. Минимальное расстояние между ногами – это залог безопасности и благополучного выхода.

Угроза исчезает через 20 метров от источника напряжения высокого потенциала. Категорически запрещается выпрыгивать из области действия высоких потенциалов. При падении на конечности уровень шагового напряжения возрастет, после чего человека ждет смерть.

Максимальный радиус шагового напряжения

8 метров – это максимальный радиус поражения (выше 1000 В). Расстояние с 5 метров характеризуется мощностью ниже 1000 В. При спасении пострадавшего стоит действовать рассудительно. Предварительно обмотайте руки сухой тканью, передвигайтесь небольшими шагами, медленно оттяните человека с опасной зоны.

Угроза попадания в область шагового напряжения существует и в бытовых условиях. В такую ситуацию вы можете попасть, прикоснувшись к оголенному проводу неисправного прибора. В таком случае образуется электрическая цепь, опасная для жизни. Для устранения угрозы в щитке устанавливается устройство защитного отключения. Альтернативный вариант – это разработка системы заземления и контроля потенциалов.

Правила перемещения в зоне шагового напряжения

В промышленных условиях для перемещения в зоне высокого риска шагового напряжения перемещаться следуют в галошах или диэлектрических ботах. При случайном попадании в опасное место нужно замедлить шаг. Максимально сократите расстояние между ногами во время ходьбы – приставляйте носок к пятке, имитируя гусиный шаг. Запрещается приближаться к оголенным проводам на расстояние менее 8 метров, выполнять такие действия допускается при наличии средств защиты.

При возникновении аварий на ЛЭП устранением последствий занимаются специально обученные электрики. Релейная защита отключает участок электрической линии в месте повреждения. Устранив неисправность, специалисты осматривают территорию на предмет обвисших кабелей. Высокая опасность возникает в местах соединения поврежденных кабелей (проводов) и деревьев. Ствол – это проводник электричества, создающий высокий уровень опасности для людей и животных.

Класс напряжения и удельное сопротивление грунта определяют шаговое напряжение. Радиус действия увеличивается при повышении влажности из-за увеличения территории растекания тока.

Выход из зоны шагового напряжения

При выходе из зоны шагового напряжения стоит придерживаться осторожности. Нельзя допускать падения на поверхность земли – такая ситуация может привести к летальному исходу. На грунте влияние электричества повышается, у человека возникают судороги. При отсутствии своевременной помощи, поражение нервной системы приводит к параличу. В этот момент человек испытывает сильную боль и не может шевелить конечностями.

Выбор способа выхода из опасной зоны зависит от конкретной ситуации. После идентификации проблемы необходимо быстро сомкнуть обе ноги вместе, что снизит разницу электрических потенциалов. При передвижении нужно стараться не отрывать нижние конечности от земли.

Помощь могут оказать сухие доски, оказавшиеся по пути выхода с опасной территории. Сухая древесина – это отличный диэлектрик, поэтому смело ступайте на нее во время движения. По пути избегайте кирпичных и железобетонных конструкций.

В некоторых ситуациях целесообразно перемещаться на одной ноге. Выбирать этот способ надо только при полной уверенности в адекватности своего состояния. Напуганный человек может потерять ориентацию и упасть на поверхность земли, что приведет к летальному исходу. Самый надежный способ – это перемещение «гусиным шагом». Не делайте резких движений, не ускоряйте шаг и не бегите. Действуйте спокойно и принимайте взвешенные решения.

При выходе стоит исключить вариант с шагом по спирали и в направлении другого кабеля. При соблюдении правил, у человека есть большие шансы покинуть опасную зону без последствий для здоровья, такие ситуации встречаются в 80% случаев.

Расчет шагового напряжения

Для расчета шагового напряжения необходимо знать особенности распределения тока в месте аварии. Электричество растекается в толще земли и кругами на ее поверхности. Для нахождения значения учитывается величина сопротивления грунта. Напряжение зависит от ряда факторов:

  • расстояние между точками контактов;
  • напряжение воздушной линии;
  • мощность;
  • состояние и удельное сопротивление грунта;
  • состав почвы в опасной зоне.

При расчете шагового напряжения применяются средние величины. Сначала определяется короткое замыкание по формуле:

ICS=UPHASE/(R0+RKONT)

где UPHASE – это напряжение фазы;

RKONT и R0- величина сопротивления для электрического контура (заземления и растекания тока вместе аварии);

ICS – это ток короткого замыкания в сети.

Длину шага принято считать за 0,8 метра. Для нахождения шагового напряжения применяют соотношение:

Где, р – сопротивление поверхности земли удельное;

х- расстояния от оголенного контура;

а – это длина шага.

В промышленных условиях расчетом показателей занимаются отдельные специалисты. Они периодически проводят замеры и находят средние значения для подведения итогов об уровне безопасности.

Как освободить человека?

Для спасения человека необходимо разорвать электрическую сеть – выключить автомат питания (линию) или рубильник. При отсутствии такой возможности обмотать руки сухой тканью, попытаться освободить человека от воздействия электрического тока с помощью деревянной палки.

Далее следуйте алгоритму действий:

  • оттянуть тело в безопасную область;
  • проверить пульс;
  • проконтролировать реакцию зрачков на свет.

Убедитесь, что электрическая линия отключена от источника питания и выходите с опасной зоны.

Начните делать непрямой массаж сердца, легочную реанимацию и вызовите бригаду неотложной помощи. Если человек находится в сознании, поверните его на бок, так вы устраните риск попадания рвотных масс в дыхательные пути.

Методы снижения шагового напряжения на предприятиях

В промышленных условиях создаются правила безопасности и способы предупреждения аварийных ситуаций. Для разработки методов снижения шагового напряжения на предприятии необходимо выделить виды воздействия тока на человека:

  • электрическое;
  • термическое;
  • биологическое.
Читайте также:  Виды повреждения организма электрическим током

Для предупреждения воздействия высоких температур специалисты работают в костюме с высоким уровнем защиты от тепла. Такая униформа имеет многослойную структуру и производится из особых синтетических материалов. Они не воспламеняются, защищают кровь и лимфу от перегрева.

Защищает костюм и от электрического воздействия, после превышения которого происходит разложение клеток крови. Для правильного подбора защитных средств стоит знать основные варианты прохождения тока через тело.

Угроза жизни возрастает, если на пути тока встречаются жизненно необходимые органы (сердце и мозг). Из схем можно сделать вывод, что чаще всего электричество начинает путь с руки, головы и ноги. Эти части тела больше всего нуждаются в защите при работе человека в экстремальных условиях. По технике безопасности работник не получает доступ к объекту без специальных средств и прохождения ряда инструктажей.

Причиной аварийной ситуации может стать несоблюдение правил безопасности и контроля за электрическим оборудованием на предприятии. Для предотвращения опасных ситуаций в промышленной сфере проводятся проверки и тестирования. Систематически контролируется изоляция проводов и кабелей, специалисты следят за сроками эксплуатации отдельных элементов системы.

Угроза жизни становится реальной при недостаточной компетентности работников. Незнание элементарных правил безопасности и пренебрежение средствами защиты, часто становится причиной трагедий. Для предупреждения аварийных ситуаций, на предприятиях проводятся целевые и повторные инструктажи, позволяющие сотрудникам повысить уровень квалификации. Вводные инструктажи предназначены для ознакомления специалистов с новым видом оборудования.

Специальные средства защиты на предприятии имеют срок годности. Руководство компании обязано следить за качеством и пригодностью таких вещей. Для повышения контроля за соблюдением правил и стандартов на предприятии создается комиссия по охране труда. Ее сотрудники проводят работы по ознакомлению работников с важной информацией, контролируют выполнение обязанностей и занимаются отчетами в сфере безопасности.

Современные технологии позволяют значительно снизить риск возникновения шагового напряжения. Некоторое оборудование имеет функцию автоматической блокировки при возникновении повреждений в электрической сети. Такие возможности позволяют значительно повысить уровень безопасности и снизить количество несчастных случаев на предприятии.

В комплексе методы снижения шагового напряжения дают отличные результаты. Автоматизированные предприятия, работающие с инновационным оборудованием, практически никогда не встречаются с аварийными ситуациями.

Сегодня средства защиты от электрического тока отличаются высокой эффективностью. При условии правильного использования спецодежды и следования правилам безопасности риск возникновения трагической ситуации значительно снижается. Контроль за всеми процессами в сфере электрики минимизирует шансы поражения током.

Источник



Техника высоких напряжений в электроэнергетике, виды изоляции установок и координация изоляции

Техника высоких напряжений

Техника высоких напряжений является одной из базовых дисциплин ряда электротехнических, электроэнергетических и электрофизических специальностей.

Она находит широкое применение во многих отраслях народного хозяйства. Применительно к электроэнергетическим системам высокого напряжения эта дисциплина рассматривает электрическую изоляцию и процессы, происходящие в изоляции при воздействии номинальных (рабочих) напряжений и перенапряжений.

К установкам высокого напряжения, исходя из особенностей процессов в электрической изоляции, относят установки на номинальное напряжение свыше 1000 В.

Воздушная линия электропередачи сверхвысокого напряжения

Курс техники высоких напряжений обычно разделен на две части. В первой части изучаются проблемы, относящиеся к конструированию, технологии, испытаниям и эксплуатации изоляции электрических установок. Во второй части изучаются возникновение перенапряжений в электрических сетях и методы их ограничения.

Обе части техники высоких напряжений тесно увязаны между собой и полное решение проблем той или другой части должно проводиться во взаимной связи.

В комплекс вопросов рассматриваемых техникой высоких напряжений входят:

электрическое поле при высоких напряжениях ;

электрический разряд и прибой в диэлектриках ;

электрическая изоляция и изоляционные конструкции ;

перенапряжения и методы защиты от перенапряжений ;

вопросы, связанные с оборудованием высоковольтных лабораторий, высоковольтными измерениями, методами профилактических испытаний изоляции и изоляционных конструкции, токами в земле и устройствами заземлений.

Каждый из этих вопросов имеет свои особенности и самостоятельное значение. Однако все они направлены на решение основной задачи техники высоких напряжений — создание и обеспечение надежно работающей электрической изоляции установок высокого напряжения (создание изоляционных конструкций, обладающих рациональными в технико-экономическом отношении уровнями изоляции).

Так, например, разряды в газах имеют большое самостоятельное значение, но в технике высоких напряжений они рассматриваются с точки зрения изоляционных свойств, так как газы, особенно воздух, имеются во всех изоляционных конструкциях.

Эта научная дисциплина возникла одновременно с появлением первых установок высокого напряжения, когда электрическая изоляция стала определять надежность их работы.

По мере роста номинальных напряжений установок возрастали требования к изоляции. Эти требования в значительной степени определяются теми переходными процессами, которые возникают в различных частях электрических установок при переключениях в электрической цепи, замыканиях на землю и др. (внутренние перенапряжения) и при грозовых разрядах (атмосферные перенапряжения).

В связи с решением задач техники высоких напряжений потребовались специальные высоковольтные лаборатории, позволяющие получать высокие напряжения различных видов и форм, а также измерительные приборы высокого напряжения.

Поэтому техника высоких напряжений рассматривает основное оборудование современных испытательных лабораторий высокого напряжения и измерения на высоком напряжении.

Кроме того, рассматривается протекание токов в земле (промышленной частоты и импульсных) с точки зрения устройства рабочих и защитных заземлений, необходимых для обеспечения режимов работы установок высокого напряжения и безопасности их обслуживания.

Испытательная высоковольтная лаборатория техники высоких напряжений

«Техника высоких напряжений» — это единственная дисциплина учебных планов, в которой комплексно рассматривается работа изоляционных конструкций в электрических системах, поэтому она является одной из базовых дисциплин для всех электроэнергетических и электротехнических специальностей.

Виды изоляции электроустановок высокого напряжения

Современные электроэнергетические системы, состоящие из ряда электростанций (АЭС, ГЭС, ГРЭС, ТЭЦ), подстанций, воздушных и кабельных линий электропередач, содержат три основных вида изоляции высокого напряжения: станционную, подстанционную и линейную изоляции.

К станционной изоляции относят изоляцию электрооборудования, предназначенного для внутренней установки, т. е. изоляцию вращающихся машин (генераторов, двигателей и компенсаторов), электрических аппаратов (выключателей, разрядников, реакторов и др.). силовых трансформаторов и автотрансформаторов, а также электроизоляционные конструкции внутренней установки (проходные и опорные изоляторы и др.).

К подстанционной изоляции относят изоляцию электрооборудования, предназначенного для наружной установки (на открытой части подстанции), т. е. изоляцию силовых трансформаторов и автотрансформаторов, электрических аппаратов наружной установки, а также электроизоляционные конструкции наружной установки.

Читайте также:  Утечка тока через генератор причины калина

К линейной изоляции относят изоляцию воздушных линий и изоляцию кабельных линий.

Высоковольтная трансформаторная подстанция

Электрическую изоляцию установок высокого напряжения делят на внешнюю и внутреннюю. К внешней изоляции относят электроизоляционные устройства и конструкции, находящиеся в воздухе, а к внутренней изоляции — устройства и конструкции, находящиеся в жидкой или полужидкой среде.

Изоляция высокого напряжения определяет надежность работы электроэнергетических систем, и поэтому к ней предъявляются требования электрической прочности при воздействии высоких напряжений и перенапряжений, механической прочности, устойчивости к воздействиям окружающей среды и т. п.

Изоляция должна длительно выдерживать рабочее напряжение, а также воздействия различных видов перенапряжений.

Внешняя изоляция, предназначенная для установки на открытом воздухе, должна надежно работать при дожде, снеге, гололеде, различных загрязнениях и др. Внутренняя изоляция по сравнению с изоляцией на открытом воздухе, как правило, имеет лучшие условия работы. В горных районах внешняя изоляция должна надежно работать при пониженных давлениях воздуха.

Многие виды электроизоляционных конструкций должны обладать повышенной механической прочностью. Так, например, опорные и проходные изоляторы, вводы и пр. должны неоднократно выдерживать воздействие больших электродинамических сил при коротких замыканиях, линейные изоляторы (гирлянды) и высокие опорные электроизоляционные конструкции — ветровую нагрузку, так как ветер может создавать большие давления.

Ограничение опасных для изоляции перенапряжений при различных режимах работы осуществляется с помощью специальных защитных устройств.

Основными защитными устройствами являются разрядники, ограничители перенапряжения, защитные емкости, дугогасящие и реактивные катушки, молниеотводы (тросовые и стержневые), быстродействующие выключатели с устройствами автоматического повторного включения (АПВ).

Разумные эксплуатационные мероприятия помогают обеспечить надежную работу изоляции при применении разрядников и других защитных устройств. К ним можно отнести координацию изоляции, организацию периодических профилактических испытаний изоляции (с целью выявления и удаления ослабленной изоляции), заземление нейтралей трансформаторов и др.

Изоляция высоковольтных линий электропередач

Координация изоляции

Одним из основных вопросов, возникающих при проектировании изоляции в технике высоких напряжений, является определение так называемого «уровня изоляции», т. е. напряжения, которое она может выдержать, не повреждаясь.

Изоляцию электроустановок нужно выполнять с таким запасом электрической прочности, при которой не будет перекрытия (пробоя) при любых возможных перенапряжениях. Однако такая изоляция оказывается чрезмерно громоздкой и дорогой.

В силу этого при выборе изоляции целесообразно идти не по линии создания запаса электрической прочности ее, а по линии применения таких защитных мероприятий, которые, с одной стороны, предотвращают появление опасных для изоляции волн перенапряжений, а с другой стороны, защищают изоляцию от появившихся волн перенапряжений.

Поэтому изоляцию выбирают определенного уровня, т. е. определенной величины по испытательным разрядным и пробивным напряжениям с учетом защитных мероприятий.

Уровень изоляции и защитные мероприятия должны быть выбраны таким образом, чтобы изоляция не разрушалась от воздействий различных форм перенапряжений, возникающих в данной установке, и при этом имела бы минимальные габариты и стоимость.

Согласование принятого уровня изоляции и защитных мероприятий с воздействующими на изоляцию перенапряжениями называется координацией изоляции.

Уровни изоляции установок напряжением 220 кВ включительно определяются в основном величинами атмосферных перенапряжений, т. е. они лежат значительно выше величин внутренних перенапряжений, и координация изоляции в них основывается на импульсных характеристиках.

Уровни изоляции установок 330 кВ и выше определяются в основном внутренними перенапряжениями, и координация изоляции в них основывается па учете возможных величин этих перенапряжений.

Координация изоляции в большой степени зависит от режима работы нейтрали установки. Установки с изолированной нейтралью требуют более высокого уровня изоляции, чем установки с глухозаземленной нейтралью.

Источник

Сайт для электриков

Важов В. Ф., Лавринович В. А., Лопаткин С. А. Техника высоких напряжений / Курс лекций для бакалавров направления 140200 «Электроэнергетика» — Томск: Изд-во ТПУ, 2006. — 119с.

Курс лекций предназначен для студентов электроэнергетического направления, может быть полезен инженерно-техническим работникам заводов, энергосистем и проектных институтов.

Оглавление
Введение
1. Разряды в газах
1.1. Конфигурация электрических полей
1.2. Ионизационные процессы в газе
1.3. Виды ионизации
1.4. Лавина электронов
1.5. Условие самостоятельности разряда
1.6. Образование стримера
1.7. Закон Пашена
1.8. Разряд в неоднородных полях
1.9. Эффект полярности
1.10. Барьерный эффект
1.11. Влияние времени приложения напряжения на электрическую прочность газовой изоляции (вольт-секундная характеристика— ВСХ)
1.12. Коронный разряд
1.13. Потери энергии при коронированнии
1.14. Разряд в воздухе по поверхности изоляторов
1.15. Пробой жидких диэлектриков
1.16. Пробой твердой изоляции
2. Высоковольтная изоляция
2.1. Высоковольтные изоляторы
2.2. Изоляция высоковольтных конденсаторов
2.3. Изоляция трансформаторов
2.4. Изоляция кабелей
2.5. Изоляция электрических машин
2.6. Профилактика изоляции
3. Высоковольтное испытательное оборудование и измерения
3.1. Установки для получения высоких переменных напряжений
3.2. Установки для получения высоких постоянных напряжений
3.2.1. Каскадный генератор постоянного тока
3.3. Импульсные испытательные установки
3.3.1. Генератор импульсных токов (ГИТ)
3.4. Измерение высоких напряжений
3.4.1. Шаровые разрядники
3.4.2. Электростатические вольтметры
3.4.3. Делители напряжения (ДН)
3.4.3.1. Омический делитель (R1>>R2)
3.4.3.2. Емкостный делитель (C1>>C2)
3.4.3.3. Смешанный делитель напряжения
4. Перенапряжения и защита от них
4.1. Классификация перенапряжений
4.2. Внутренние перенапряжения
4.3. Грозозащита воздушных линий электропередач и подстанций
4.3.1. Защита от прямых ударов молнии
4.3.2. Зона защиты стержневого молниеотвода
4.3.3. Зона защиты тросового молниеотвода
4.3.3. Грозоупорность объектов (ВЛ)
4.4. Средства защиты от перенапряжений
4.5. Волновые процессы в линиях
4.5.1. Преломление и отражение волн в узловых точках
4.5.2. Перенапряжения при несимметричном отключении фаз
4.6. Волновые процессы в обмотках трансформаторов
4.6.1. Начальное распределение напряжения вдоль обмотки трансформаторов
4.6.2. Установившийся режим (или принужденный режим)
4.6.3. Переходный процесс
4.6.4. Определение напряжения вдоль обмоток 3-х фазного трансформатора
4.6.4.1. Звезда с заземленной нейтралью
4.6.4.2. Звезда с изолированной нейтралью
4.6.4.3. Соединение обмоток треугольником
4.6.5. Передача волн перенапряжения из одной обмотки в другую
4.7. Перенапряжения при отключении ненагруженных ЛЭП и батарей конденсаторов
4.7.1. Отключение ненагруженных ВЛ
4.7.2. Отключение батарей конденсаторов
4.7.3. Дугогасящие аппараты
Заключение
Литература
Дополнительная

Источник

Техника высоких напряжений электрического тока

Сайт для электриков

Важов В. Ф., Лавринович В. А., Лопаткин С. А. Техника высоких напряжений / Курс лекций для бакалавров направления 140200 «Электроэнергетика» — Томск: Изд-во ТПУ, 2006. — 119с.

Курс лекций предназначен для студентов электроэнергетического направления, может быть полезен инженерно-техническим работникам заводов, энергосистем и проектных институтов.

Оглавление
Введение
1. Разряды в газах
1.1. Конфигурация электрических полей
1.2. Ионизационные процессы в газе
1.3. Виды ионизации
1.4. Лавина электронов
1.5. Условие самостоятельности разряда
1.6. Образование стримера
1.7. Закон Пашена
1.8. Разряд в неоднородных полях
1.9. Эффект полярности
1.10. Барьерный эффект
1.11. Влияние времени приложения напряжения на электрическую прочность газовой изоляции (вольт-секундная характеристика— ВСХ)
1.12. Коронный разряд
1.13. Потери энергии при коронированнии
1.14. Разряд в воздухе по поверхности изоляторов
1.15. Пробой жидких диэлектриков
1.16. Пробой твердой изоляции
2. Высоковольтная изоляция
2.1. Высоковольтные изоляторы
2.2. Изоляция высоковольтных конденсаторов
2.3. Изоляция трансформаторов
2.4. Изоляция кабелей
2.5. Изоляция электрических машин
2.6. Профилактика изоляции
3. Высоковольтное испытательное оборудование и измерения
3.1. Установки для получения высоких переменных напряжений
3.2. Установки для получения высоких постоянных напряжений
3.2.1. Каскадный генератор постоянного тока
3.3. Импульсные испытательные установки
3.3.1. Генератор импульсных токов (ГИТ)
3.4. Измерение высоких напряжений
3.4.1. Шаровые разрядники
3.4.2. Электростатические вольтметры
3.4.3. Делители напряжения (ДН)
3.4.3.1. Омический делитель (R1>>R2)
3.4.3.2. Емкостный делитель (C1>>C2)
3.4.3.3. Смешанный делитель напряжения
4. Перенапряжения и защита от них
4.1. Классификация перенапряжений
4.2. Внутренние перенапряжения
4.3. Грозозащита воздушных линий электропередач и подстанций
4.3.1. Защита от прямых ударов молнии
4.3.2. Зона защиты стержневого молниеотвода
4.3.3. Зона защиты тросового молниеотвода
4.3.3. Грозоупорность объектов (ВЛ)
4.4. Средства защиты от перенапряжений
4.5. Волновые процессы в линиях
4.5.1. Преломление и отражение волн в узловых точках
4.5.2. Перенапряжения при несимметричном отключении фаз
4.6. Волновые процессы в обмотках трансформаторов
4.6.1. Начальное распределение напряжения вдоль обмотки трансформаторов
4.6.2. Установившийся режим (или принужденный режим)
4.6.3. Переходный процесс
4.6.4. Определение напряжения вдоль обмоток 3-х фазного трансформатора
4.6.4.1. Звезда с заземленной нейтралью
4.6.4.2. Звезда с изолированной нейтралью
4.6.4.3. Соединение обмоток треугольником
4.6.5. Передача волн перенапряжения из одной обмотки в другую
4.7. Перенапряжения при отключении ненагруженных ЛЭП и батарей конденсаторов
4.7.1. Отключение ненагруженных ВЛ
4.7.2. Отключение батарей конденсаторов
4.7.3. Дугогасящие аппараты
Заключение
Литература
Дополнительная

Читайте также:  Утечка тока через генератор причины калина

Источник



Изоляторы высокого напряжения

Изоляторы высокого напряжения

Изоляторы высокого напряжения. Назначение и типы изоляторов высокого напряжения

Изоляторами называют электротехнические изделия, предназначенные для изолирования разнопотенциальных частей электроустановки, то есть для предотвращения протекания электрического тока между этими частями электроустановки, и для механического крепления токоведущих частей.

Расчет расстояния между молниеотводом и объектом

Расчет расстояния между молниеотводом и объектом

Подстанция защищена от прямых ударов молнии отдельно стоящим молниеотводом. Молниеотвод присоединяется к обособленному заземлителю, электрически не связанному с заземлителем подстанции.

Рассчитать минимально допустимое расстояние между отдельно стоящим молниеотводом и объектом высотой hx = 5 м, если сопротивление заземлителя молниеотвода равно rи = 25 Ом.

Молниеотводы

Молниеотводы

Молниеотводы. Принципы защиты объектов прямых ударов молнии

Молниеотводы. Принципы защиты объектов прямых ударов молнии. Рассчитать число ударов в год в молниеотводы высотой 25 м подстанции площадью 2000 м 2 в районе с числом грозовых часов в году 100

Назначение молниеотводов – воспринять подавляющее число ударов молнии в пределах защищаемой территории и отвести ток молнии в землю.

Каждый молниеотвод, состоит из молниеприемника, возвышающегося над защищаемым объектом, заземлителя и токоотвода, соединяющего молниеприемник с заземлителем. По типу молниеприемников различают стержневые молниеотводы и тросовые молниеотводы. Стержневые молниеотводы выполняются в виде вертикально установленных стержней (мачт), соединенных с заземлителем, а тросовые – в виде горизонтально подвешенных тросов. Металлический стержневой молниеотвод или опора одновременно выполняют функции токоотвода. Если же молниеприемник молниеотвода (стержень, трос) расположен на изолирующих опорах (дымовые трубы, деревянные опоры), то по ним прокладываются тросы, соединяющие молниеприемник с заземлителем.

Защитное действие молниеотводов основано на явлении избирательной поражаемости молнией высоких объектов.

Испытание изоляции импульсными напряжениями

Испытание изоляции импульсными напряжениями

Испытание изоляции импульсными напряжениями

Схема испытания изоляции импульсными напряжениями. Характеристика стандартного полного и срезанного импульсов.

Основная идея проверки качества изоляции повышенным напряжением весьма проста. К изоляции прикладывается испытательное напряжение, превышающее рабочее. Если изоляция нормального качества, она выдерживает испытания, если дефектная – пробивается. Общий недостаток таких испытаний состоит в том, что дефектная изоляция необратимо разрушается и ее уже, как правило, нельзя отремонтировать.

При заводском контроле и при исследованиях приложением повышенных напряжений проверяется способность изоляции выдерживать грозовые и внутренние перенапряжения, т. е. кратковременная электрическая прочность. В связи с этим форма и величины испытательных напряжений устанавливаются такими, чтобы они были эквивалентны по воздействию соответствующим перенапряжениям.

Грозозащита линий электропередачи

Грозозащита линий электропередачи

Способы грозозащиты линий электропередачи напряжением 6-10-35 кВ; 110-220 кВ, 330 кВ, и выше

Грозозащита линий электропередачи

Линии напряжением 220 кВ и выше защищаются тросами по всей длине.

Читайте также:  Два положительных источника тока

Линии 110 и 150 кВ также рекомендуется защищать тросом по всей длине.

Линии 110 кВ на деревянных опорах никакой дополнительной грозозащиты не требуют, за исключением подвески тросов на подходах к подстанциям и установки трубчатых разрядников в начале подхода.

Линии 35 кВ на металлических опорах обычно не защищаются тросами, поскольку эти линии работают в системе с изолированной нейтралью.

Линии 35 кВ на деревянных опорах не требуют дополнительных мер грозозащиты.

Линии 3–10 кВ не требуют особых мероприятий по грозозащите, за исключением установки трубчатых разрядников в местах с ослабленной изоляцией и на подходах к подстанциям.

Индуктированное перенапряжение линии

Индуктированное перенапряжение линии

Рассчитать индуктированное перенапряжение на проводах линии со средней высотой подвеса провода 10 м. Разряд молнии с током 100 кА произошел на расстоянии 50 м от линии

При ударах молнии в землю у поверхности земли создается значительная напряженность электрического поля, под действием которой на линии образуется индуктированное напряжение. Механизм образования волны индуктированного перенапряжения в линии представим на рисунке.

Контроль изоляции по сопротивлению изоляции и коэффициенту абсорбции

Контроль изоляции по сопротивлению изоляции и коэффициенту абсорбции

Контроль изоляции по сопротивлению изоляции и коэффициенту абсорбции

Контроль изоляции по сопротивлению утечки. Измерение зависимости от времени сопротивления изоляции. Коэффициентом абсорбции. Недостаток контроля изоляции по сопротивлению утечки

Измерения сопротивления утечки выполняются с помощью простых переносных приборов – мегомметров.

По сопротивлению (или току) утечки можно судить о наличии в изоляции не только распределенных, но и сосредоточенных дефектов. Например, механические повреждения в виде неполных проколов или поперечных трещин, а также следы от незавершенных разрядов часто приводят к сильному снижению сопротивления изоляции.

Недостатком контроля изоляции по сопротивлению утечки является то, что в ряде случаев на результаты измерения сильное влияние могут оказывать утечки по поверхности твердых диэлектриков, которые не всегда правильно отражают состояние изоляции.

Зона защиты тросового молниеотвода

Зона защиты тросового молниеотвода

Зона защиты тросового молниеотвода. Построение зоны защиты тросового молниеотвода. Вероятность прорыва молнии на проводах. Углы защиты применяются для надежного экранирования проводов

Зона защиты тросового молниеотвода. Вертикальное сечение зоны защиты тросового молниеотвода строится так же, как для стержневого, но с другими числовыми коэффициентами.

При рассмотрении условий защиты внешних проводов (или любого провода при одном тросе) обычно пользуются понятием не зоны защиты, а угла защиты α. Для защитной зоны на высоте более 0,7h α = 31°.

Читайте также:  Токи двигателя в звезда треугольника

Наличие защитных тросов не гарантирует 100%-ной надежности защиты; всегда существует некоторая вероятность поражения провода – «прорыва молнии мимо тросовой защиты». В отличие от подстанций, территории которых поражаются молнией 1 раз в несколько лет, линии подвергаются прямым ударам десятки раз за грозовой сезон. Поэтому даже весьма малая вероятность прорыва молнии имеет существенное значение.

Для снижения вероятности прорыва молнии уменьшают защитные углы на высоких опорах путем раздвигания тросостоек к концам траверсы; условия защиты среднего провода при этом обычно сохраняются.

Защитные разрядники и ограничители перенапряжений

Защитные разрядники и ограничители перенапряжений

Защитные разрядники и ограничители перенапряжений

Защита линий и оборудования подстанций от перенапряжений. Защитные разрядники, ограничители перенапряжений (ОПН)

Для защиты линий и оборудования подстанций от перенапряжений используют следующие устройства:

  • искровые промежутки, разрядники и ОПН для защиты отдельных точек на линии;
  • тросы и заземления опор на линиях;
  • роговые разрядники;
  • молниеотводы;
  • разрядники и ОПН на подстанциях;
  • в отдельных случаях – конденсаторы для снижения грозовых перенапряжений.

Защитное действие тросов и молниеотводов основано на отводе тока молнии от защищаемого оборудования. Остальные защитные устройства выполняют две функции:

  • присоединение защищаемой цепи к заземлителю при воздействии перенапряжения (непосредственная защитная функция);
  • отключение защищаемой цепи от заземления при окончании действия перенапряжения, что часто связано с отключением возникшего короткого замыкания в защищаемой цепи.

Защита от прямых ударов молнии

Защита от прямых ударов молнии

Защита от прямых ударов молнии

Защита от прямых ударов молнии. Зоны защиты стержневых и тросовых молниеотводов

Назначение молниеотводов – воспринять подавляющее число ударов молнии в пределах защищаемой территории и отвести ток молнии в землю.

Каждый молниеотвод, состоит из молниеприемника, возвышающегося над защищаемым объектом, заземлителя и токоотвода, соединяющего молниеприемник с заземлителем. По типу молниеприемников различают стержневые и тросовые молниеотводы. Стержневые молниеотводы выполняются в виде вертикально установленных стержней (мачт), соединенных с заземлителем, а тросовые – в виде горизонтально подвешенных тросов. Металлический стержневой молниеотвод или опора одновременно выполняют функции токоотвода. Если же молниеприемник молниеотвода (стержень, трос) расположен на изолирующих опорах (дымовые трубы, деревянные опоры), то по ним прокладываются тросы, соединяющие молниеприемник с заземлителем.

Защитное действие молниеотводов основано на явлении избирательной поражаемости молнией высоких объектов.

Источник