Меню

Ток опережает напряжение или наоборот

Напряжение и ток конденсатора

Когда к конденсатору приложено синусоидальное напряжение, он периодически заряжается и разряжается. Ввиду переменного характера напряжения периодически меняется и полярность заряда конденсатора. Ток в конденсаторе ic достигает своего амплитудного значения каждый раз, когда напряжение uC на нем проходит через нуль (рис. 1). Таким образом, синусоида тока iC опережает синусоиду напряжения uc на 90°.

Фазовый сдвиг:

Реактивное сопротивление конденсатора

Конденсатор в цепи синусоидального тока оказывает токоограничивающий эффект, который вызван встречным действием напряжения при изменении знака заряда. Этот токоограничивающий эффект принято выражать как

емкостное реактивное сопротивление (емкостной реактанс) Хc.

Величина емкостного реактанса Хc зависит от величины емкости конденсатора, измеряемой в Фарадах, и частоты приложенного напряжения переменного тока. В случае синусоидального напряжения имеем:

где Хс — реактивное емкостное сопротивление, Ом;

С — емкость конденсатора, Ф;

= 2πf- угловая частота синусоидального напряжения (тока).

Цепи синусоидального с катушками индуктивности

Напряжение и ток катушки индуктивности

Когда к катушке индуктивности подведено синусоидальное напряжение, ток в ней отстает от синусоиды напряжения на 90°. Соответственно, мгновенное значение тока достигает амплитудного значения на четверть периода позже, чем мгновенное значение напряжения (рис. 2). В этом рассуждении пренебрегается активным сопротивлением катушки.

Лабораторная работа 3

Последовательное соединение резистора

И конденсатора

Когда к цепи (рис. 3.1) с последовательным соединением резистора и катушки индуктивности подается переменное синусоидальное напряжение, один и тот же синусоидальный ток имеет место в обоих компонентах цепи.

Между напряжениями UR, UС и U существуют фазовые сдвиги, обусловленные емкостным реактивным сопротивлением XС. Они могут быть представлены с помощью векторной диаграммы напряжений (рис. 3. 2).

Фазовый сдвиг между током I и напряжением на резисторе Ur отсутствует, тогда как сдвиг между этим током и падением напряжения на конденсаторе Uc равен 90° (т.е. ток опережает напряжение на 90). При этом сдвиг между полным напряжением цепи U и током I определяется соотношением между сопротивлениями Хс и R.

Если каждую сторону треугольника напряжений разделить на ток, то получим треугольник сопротивлений (рис. 3.3). В треугольнике сопротивлений Z представляет собой так называемое полное сопротивление цепи.

Из-за фазового сдвига между током и напряжением в цепях, подобных данной, простое арифметическое сложение действующих или амплитудных значений напряжений на отдельных элементах цепи невозможно. Невозможно и сложение разнородных (активных и реактивных) сопротивлений. Однако в векторной форме

Действующее значение полного напряжения цепи, как следует из векторной диаграммы,

Полное сопротивление цепи:

Активное сопротивление цепи:

Емкостное реактивное сопротивление цепи:

Угол сдвига фаз

Экспериментальная часть

Задание

Для цепи с последовательным соединением резистора и конденсатора измерьте и вычислите действующие значения падений напряжения на резисторе Ur и конденсаторе UC, ток I, угол сдвига фаз φ, полное сопротивление цепи Z и емкостное реактивное сопротивление ХC и активное сопротивление R.

Порядок выполнения работы

· Соберите цепь согласно схеме (рис. 3.4), подсоедините регулируемый источник синусоидального напряжения и установите его параметры: U = 5 В, f = 1 кГц.

· Выполните мультиметрами измерения действующих значений тока и напряжений, указанных в таблице 1.

U, B UR, B UC, B I, мА φ, град. R, Ом ХΔ, Ом Z, Ом Примечание

Полное сопротивление цепи

Активное сопротивление цепи

Емкостное реактивное сопротивление цепи

·Выберите масштабы и постройте векторную диаграмму напряжений (рис. 5) и треугольник сопротивлений (рис. 6).

Контрольные вопросы:

  1. Что называется периодом?
  2. Что называется частотой?
  3. Для переменного напряжения и тока записать выражения мгновенных напряжений и токов, дать определение амплитуды и начальной фазы.
  4. Дать определение действующего напряжения (тока), указать его связь с амплитудой напряжения (тока).
  5. Дать определения мгновенной и активной мощности.
  6. Объяснить назначение приборов в измерительной цепи.
  7. Какие элементы обладают активным сопротивлением.
  8. Какой вид имеет временная диаграмма напряжений и тока при последовательном соединении R и C-цепей?
  9. Изобразите треугольники напряжений, сопротивлений и мощностей для цепи с активно-ёмкостной нагрузкой. Чем они отличаются от треугольников для активно-индуктивной нагрузки?
Читайте также:  Определить среднюю скорость упорядоченного движения электронов в медном проводнике при силе тока 10

Источник

Разъясняем закон Ома буквально на пальцах и картинках (5 фото)

Вспоминаем формулировку закона Ома: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна сопротивлению.
Теперь разберем эту, не самую, на первый взгляд простую, формулировку.

Первое понятие: сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку.
Это понять довольно несложно: прямая зависимость: чем выше прикладываем напряжение, тем большую получаем величину тока! Выше напряжение — сильнее ток!

Второе понятие: и обратно пропорциональна сопротивлению.
Тут тоже довольно понятно: чем выше сопротивление, тем ниже сила тока.

Формула закона Ома

Легко и быстро находить нужные вам значения по этой формуле помогают такие вот подсказки, основанные на «магическом треугольнике».

А теперь — веселые картинки

А теперь - веселые картинки

Чтобы еще легче было понять, давайте рассмотрим его на знакомом примере из жизни — с водопроводной водой.
«Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку».
Вода — это ток. Течение — сила тока, давление воды — это напряжение, а труба — это проводник. Ясно, что чем выше мы поднимем бачок, тем выше станет давление воды (напряжение) и тем сильнее станет течение воды (сила тока). Опусти мы бачок — уменьшится давление (напряжение) и соответственно, ниже станет течение (сила тока).
Прямая зависимость. Чем выше напряжение, тем сильнее сила тока, очень наглядно.

Разъясняем закон Ома буквально на пальцах и картинках

Теперь проверим на жизненных реалиях вторую часть формулировки закона Ома, добавим в нашу водопроводную схему понятие сопротивления. То есть нарисуем в трубе с водой заслонку.
«Сила тока на участке цепи обратно пропорциональна сопротивлению.»
Если опускать в трубе заслонку (повышая сопротивление), она будет мешать току воды, соответственно, сила течения (сила тока) снижается. И наоборот, при поднятии заслонки (снижая сопротивление) мы видим увеличение силы тока.
Чем выше сопротивление — тем меньше сила тока, чем ниже сопротивление, тем выше сила тока. Логично.

Источник



Опережающий и запаздывающий ток — Leading and lagging current

Опережающий и запаздывающий ток — это явления, возникающие в результате переменного тока . В схеме с переменным током значения напряжения и тока изменяются синусоидально. В схемах этого типа термины опережение, запаздывание и синфазность используются для описания тока по отношению к напряжению. Ток находится в фазе с напряжением, когда между синусоидами отсутствует фазовый сдвиг, описывающий их поведение во времени. Обычно это происходит, когда нагрузка, потребляющая ток, является резистивной.

В потоке электроэнергии важно знать, какой ток опережает или отстает, потому что он создает реактивную мощность в системе, а не активную (реальную) мощность. Он также может играть важную роль в работе трехфазных электроэнергетических систем.

Содержание

  • 1 Обозначение угла
  • 2 запаздывающий ток
  • 3 Ведущий ток
  • 4 Визуализация опережающего и запаздывающего тока
  • 5 Исторические документы по ведущим и запаздывающим токам
  • 6 См. Также
  • 7 Примечания
  • 8 ссылки

Обозначение угла

Обозначение угла может легко описать опережающий и запаздывающий ток:

В этом уравнении значение тета является важным фактором для опережающего и запаздывающего тока. Как упоминалось во введении выше, опережающий или запаздывающий ток представляет собой временной сдвиг между синусоидальными кривыми тока и напряжения, который представлен углом, на который кривая опережает или отстает от того места, где она была бы изначально. Например, если θ равно нулю, кривая будет иметь нулевую амплитуду в нулевой момент времени. Использование комплексных чисел — это способ упростить анализ определенных компонентов в цепях RLC . Например, их очень легко преобразовать между полярными и прямоугольными координатами. Начиная с полярной записи, может представлять либо векторную, либо прямоугольную запись, оба из которых имеют величину 1. ∠ θ <\ Displaystyle \ angle \ theta><\ Displaystyle \ angle \ theta data-lazy-src=

Отстающий ток

А ∠ θ знак равно А ∠ δ — ( β ) <\ Displaystyle А \ угол \ тета = А \ угол \ дельта - (\ бета)><\ Displaystyle А \ угол \ тета = А \ угол \ дельта - (\ бета) data-lazy-src=

В цепях с преимущественно индуктивной нагрузкой ток отстает от напряжения. Это происходит потому, что в индуктивной нагрузке именно индуцированная электродвижущая сила вызывает протекание тока. Обратите внимание, что в приведенном выше определении ток создается напряжением. Индуцированная электродвижущая сила вызвана изменением магнитного потока, связывающего катушки индуктора.

Ведущий ток

А ∠ θ знак равно А ∠ δ + ( β ) <\ Displaystyle А \ угол \ тета = А \ угол \ дельта + (\ бета)><\ Displaystyle А \ угол \ тета = А \ угол \ дельта + (\ бета) data-lazy-src=

В цепях с преимущественно емкостной нагрузкой ток опережает напряжение. Это верно, потому что ток сначала должен течь к двум пластинам конденсатора, где хранится заряд. Только после накопления заряда на пластинах конденсатора устанавливается разница напряжений. Таким образом, поведение напряжения зависит от поведения тока и от того, сколько заряда накапливается. Вот почему формальное определение гласит, что ток производит напряжение.

Визуализация опережающего и запаздывающего тока

Простая векторная диаграмма с двумерной декартовой системой координат и векторами может использоваться для визуализации опережающего и запаздывающего тока в фиксированный момент времени. В действительной комплексной системе координат один период синусоидальной волны соответствует полному кругу в комплексной плоскости. Поскольку напряжение и ток имеют одинаковую частоту, в любой момент времени эти величины могут быть легко представлены в виде стационарных точек на окружности, а стрелки, идущие от центра окружности к этим точкам, называются векторами. Поскольку относительная разница во времени между функциями постоянна, у них также есть постоянная разница углов между ними, представленная углом между точками на окружности.

Исторические документы о ведущих и запаздывающих токах

Ранний источник данных является статьей от 1911 Американской академии искусств и наук по Артур Э. Кеннелла . Кеннелли использует обычные методы для решения векторных диаграмм для колебательных цепей, которые также могут включать в себя цепи переменного тока.

Источник

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Читайте также:  Все про лечение токами

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Ток опережает напряжение или наоборот

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

Читайте также:  Рыба током бьющая название

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Ток опережает напряжение или наоборот

Проделаем следующий опыт. Возьмем описанный в § 153 осциллограф с двумя петлями и включим его в цепь так (рис. 305,а), чтобы петля 1 была включена в цепь последовательно с конденсатором, а петля 2 параллельно этому конденсатору. Очевидно, что кривая, получаемая от петли 1, изображает форму тока, проходящего через конденсатор, а от петли 2 дает форму напряжения между обкладками конденсатора (точками и ), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на ). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305,б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на ). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305,в).

Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева – схема опыта, справа – результаты

В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от до и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи.

В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением?

Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305,в.

Если цепь имеет заметную индуктивность , то при прохождении по ней переменного тока в цепи возникает э. д. с. самоиндукции. Эта э. д. с. по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе от тока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения.

Если активным сопротивлением цепи можно пренебречь по сравнению с ее индуктивным сопротивлением , то отставание тока от напряжения по времени равно (сдвиг фаз равен ), т. е. максимум совпадает с , как это показано на рис. 305,б. Действительно, в этом случае напряжение на активном сопротивлении , ибо , и, следовательно, все внешнее напряжение уравновешивается э. д. с. индукции, которая противоположна ему по направлению: . Таким образом, максимум совпадает с максимумом , т. е. наступает в тот момент, когда изменяется быстрее всего, а это бывает, когда . Наоборот, в момент, когда проходит через максимальное значение, изменение тока наименьшее , т. е. в этот момент .

Если активное сопротивление цепи не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения падает на сопротивлении , а остальная часть уравновешивается э. д. с. самоиндукции: . В этом случае максимум отстоит от максимума по времени меньше, чем на (сдвиг фаз меньше ), как это изображено на рис. 306. Расчет показывает, что в этом случае отставание по фазе может быть вычислено по формуле

Читайте также:  1607022528 двигатель пост тока bosch аналоги

При имеем и , как это объяснено выше.

Рис. 306. Сдвиг фаз между током и напряжением в цепи, содержащей активное и индуктивное сопротивления

Если цепь состоит из конденсатора емкости , а активным сопротивлением можно пренебречь, то обкладки конденсатора, присоединенные к источнику тока с напряжением , заряжаются и между ними возникает напряжение . Напряжение на конденсаторе следует за напряжением источника тока практически мгновенно, т. е. достигает максимума одновременно с и обращается в нуль, когда .

Зависимость между током и напряжением в этом случае показана на рис. 307,а. На рис. 307,б условно изображен процесс перезарядки конденсатора, связанный с появлением переменного тока в цепи.

Рис. 307. а) Сдвиг фаз между напряжением и током в цепи с емкостным сопротивлением в отсутствие активного сопротивления. б) Процесс перезарядки конденсатора в цепи переменного тока

Когда конденсатор заряжен до максимума (т. е. , а следовательно, и имеют максимальное значение), ток и вся энергия цепи есть электрическая энергия заряженного конденсатора (точка на рис. 307,а). При уменьшении напряжения конденсатор начинает разряжаться и в цепи появляется ток; он направлен от обкладки 1 к обкладке 2, т. е. навстречу напряжению . Поэтому на рис. 307,а он изображен как отрицательный (точки лежат ниже оси времени). К моменту времени конденсатор полностью разряжен ( и ), а ток достигает максимального значения (точка ); электрическая энергия равна нулю, и вся энергия сводится к энергии магнитного поля, создаваемого током. Далее, напряжение меняет знак, и ток начинает ослабевать, сохраняя прежнее направление. Когда (и ) достигнет максимума, вся энергия вновь станет электрической, и ток (точка ). В дальнейшем (и ) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь направление от обкладки 2 к обкладке 1, т. е. положительное; ток доходит до максимума в момент, когда (точка ) и т. д. Из рис. 307,а видно, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, т. е. ток опережает напряжение по фазе.

Если активным сопротивлением цепи нельзя пренебречь по сравнению с емкостным , то ток опережает напряжение по времени меньше, чем на (сдвиг фаз меньше , рис. 308). Для этого случая, как показывает расчет, сдвиг фаз может быть вычислен по формуле

При имеем и , как это объяснено выше.

Рис. 308. Сдвиг фаз между током и напряжением в цепи, содержащей активное и емкостное сопротивления

Источник



Опережающий и запаздывающий ток — Leading and lagging current

Опережающий и запаздывающий ток — это явления, возникающие в результате переменного тока . В схеме с переменным током значения напряжения и тока изменяются синусоидально. В схемах этого типа термины опережение, запаздывание и синфазность используются для описания тока по отношению к напряжению. Ток находится в фазе с напряжением, когда между синусоидами отсутствует фазовый сдвиг, описывающий их поведение во времени. Обычно это происходит, когда нагрузка, потребляющая ток, является резистивной.

В потоке электроэнергии важно знать, какой ток опережает или отстает, потому что он создает реактивную мощность в системе, а не активную (реальную) мощность. Он также может играть важную роль в работе трехфазных электроэнергетических систем.

Содержание

  • 1 Обозначение угла
  • 2 запаздывающий ток
  • 3 Ведущий ток
  • 4 Визуализация опережающего и запаздывающего тока
  • 5 Исторические документы по ведущим и запаздывающим токам
  • 6 См. Также
  • 7 Примечания
  • 8 ссылки

Обозначение угла

Обозначение угла может легко описать опережающий и запаздывающий ток:

В этом уравнении значение тета является важным фактором для опережающего и запаздывающего тока. Как упоминалось во введении выше, опережающий или запаздывающий ток представляет собой временной сдвиг между синусоидальными кривыми тока и напряжения, который представлен углом, на который кривая опережает или отстает от того места, где она была бы изначально. Например, если θ равно нулю, кривая будет иметь нулевую амплитуду в нулевой момент времени. Использование комплексных чисел — это способ упростить анализ определенных компонентов в цепях RLC . Например, их очень легко преобразовать между полярными и прямоугольными координатами. Начиная с полярной записи, может представлять либо векторную, либо прямоугольную запись, оба из которых имеют величину 1. ∠ θ <\ Displaystyle \ angle \ theta><\ Displaystyle \ angle \ theta data-lazy-src=

Читайте также:  В чем выражается действие индуктивности включенной в цепь переменного тока кратко

Отстающий ток

А ∠ θ знак равно А ∠ δ — ( β ) <\ Displaystyle А \ угол \ тета = А \ угол \ дельта - (\ бета)><\ Displaystyle А \ угол \ тета = А \ угол \ дельта - (\ бета) data-lazy-src=

В цепях с преимущественно индуктивной нагрузкой ток отстает от напряжения. Это происходит потому, что в индуктивной нагрузке именно индуцированная электродвижущая сила вызывает протекание тока. Обратите внимание, что в приведенном выше определении ток создается напряжением. Индуцированная электродвижущая сила вызвана изменением магнитного потока, связывающего катушки индуктора.

Ведущий ток

А ∠ θ знак равно А ∠ δ + ( β ) <\ Displaystyle А \ угол \ тета = А \ угол \ дельта + (\ бета)><\ Displaystyle А \ угол \ тета = А \ угол \ дельта + (\ бета) data-lazy-src=

В цепях с преимущественно емкостной нагрузкой ток опережает напряжение. Это верно, потому что ток сначала должен течь к двум пластинам конденсатора, где хранится заряд. Только после накопления заряда на пластинах конденсатора устанавливается разница напряжений. Таким образом, поведение напряжения зависит от поведения тока и от того, сколько заряда накапливается. Вот почему формальное определение гласит, что ток производит напряжение.

Визуализация опережающего и запаздывающего тока

Простая векторная диаграмма с двумерной декартовой системой координат и векторами может использоваться для визуализации опережающего и запаздывающего тока в фиксированный момент времени. В действительной комплексной системе координат один период синусоидальной волны соответствует полному кругу в комплексной плоскости. Поскольку напряжение и ток имеют одинаковую частоту, в любой момент времени эти величины могут быть легко представлены в виде стационарных точек на окружности, а стрелки, идущие от центра окружности к этим точкам, называются векторами. Поскольку относительная разница во времени между функциями постоянна, у них также есть постоянная разница углов между ними, представленная углом между точками на окружности.

Исторические документы о ведущих и запаздывающих токах

Ранний источник данных является статьей от 1911 Американской академии искусств и наук по Артур Э. Кеннелла . Кеннелли использует обычные методы для решения векторных диаграмм для колебательных цепей, которые также могут включать в себя цепи переменного тока.

Источник