Меню

Ток по фильтр устройству

Сглаживающие фильтры выпрямителей блоков питания.

Ёмкостные, индуктивно-ёмкостные, активные сглаживающие фильтры.
Схемы, свойства, онлайн калькулятор.

Потолковали мы основательно на предыдущей странице про разные виды диодных выпрямителей, перебросились парой фраз на тему простейших ёмкостных фильтров, а вопрос достижения параметра коэффициента пульсаций Кп в пределах 10 -5 . 10 -4 так и повис в воздухе — уж очень немалым получается номинал ёмкости сглаживающего конденсатора.

Коэффициент пульсаций выпрямленного напряжения Кп является важнейшим параметром выпрямителя. Его численное значение равно отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей.
Напомню выдержку из печатного издания, приведённую на предыдущей странице:

«Коэффициент пульсаций выбирают самостоятельно в зависимости от предполагаемой нагрузки, допускающей питание постоянным током вполне определённой «чистоты»:
10 -3 . 10 -2 (0,1-1%) — малогабаритные транзисторные радиоприёмники и магнитофоны,
10 -4 . 10 -3 (0,01-0,1%) — усилители радио и промежуточной частоты,
10 -5 . 10 -4 (0,001-0,01%) — предварительные каскады усилителей звуковой частоты и микрофонных усилителей.»

Помимо этого в характеристиках выпрямителей может использоваться и понятие коэффициента фильтрации (коэффициента сглаживания).
Коэффициент фильтрации, он же коэффициент сглаживания — величина, численно равная отношению коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра Кс = Кп-вхп-вых .
Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.

В слаботочных цепях вопрос снижения пульсаций решается легко и кардинально — применением интегральных стабилизаторов. Параметр подавления пульсаций (Ripple Rejection) у подобных массовых ИМС составляет не менее 50дБ (в 360раз по напряжению), что при высокой «чистоте» выходного напряжения позволяет уменьшить ёмкости электролитов в 5-10 раз.

Если же у разработчика нет возможности (либо желания) включать в состав устройства стабилизаторы напряжения, то реальным подспорьем окажутся индуктивно-ёмкостные или активные сглаживающие фильтры.

Начнём с фильтров, выполненных из индуктивных элементов – дросселей и из ёмкостных элементов – конденсаторов.

Рис.1

На Рис.1а приведена схема простейшего ёмкостного сглаживающего фильтра. Принцип действия заключается в накоплении электрической энергии конденсатором фильтра и последующей отдачи этой энергии в нагрузку.

Для того чтобы не ограничиваться 50-ти герцовыми блоками питания, но и иметь возможность расчёта фильтров импульсных ИБП, приведу универсальные формулы, учитывающие частоту входного сигнала F :
С1 = Iн/(3,14×Uн×F×Кп) для однополупериодных выпрямителей и
С1 = Iн/(6,28×Uн×F×Кп) — для двухполупериодных.
Кп — это коэффициент пульсаций, равный отношению амплитудного значения пульсирующего напряжения к его постоянной составляющей, а
F — частота переменного напряжения на входе диодного выпрямителя.

Переходим к индуктивно-ёмкостным LC фильтрам.
ВНИМАНИЕ.
Потребность в такого рода цепях возникает исключительно в случаях необходимости получить низкий уровень пульсаций в достаточно мощных сетевых блоках питания, либо в высокочастотных импульсных ИБП. Связано это с тем, что для эффективной работы LC-фильтра, индуктивное сопротивление катушки XL на частоте подавления стремятся сделать значительно больше Rн. А это, в свою очередь, приводит к тому, что в условиях низких частот и малых токов (высоких Rн) индуктивность дросселя получается необоснованно высокой.

Г-образный индуктивно-ёмкостной LC фильтр 2-го порядка (Рис.1б) обладает значительно лучшими фильтрующими свойствами по сравнению с обычным ёмкостным.
Произведение LC (Гн*мкФ) зависит от необходимого коэффициента сглаживания фильтра и определяется по приближенной формуле:
L1(Гн)×С1(МкФ) = 25000/(F 2 (Гц)×Кп) для однополупериодных выпрямителей и
L1×С1 = 12500/(F 2 ×Кп) — для двухполупериодных, где
С1(МкФ)/L1(мГн) = 1000/Rн 2 (Ом) .

Схема П-образного LC-фильтра приведена на Рис.1в. Сглаживающее действие П-образного LC-фильтра можно упрощённо представить как совместное действие двух фильтров, описанных выше, а коэффициент сглаживания — как произведение коэффициентов сглаживания звеньев: ёмкостного и Г-образного индуктивно-ёмкостного.
Наилучшими фильтрующими свойствами обладают LC-фильтры Чебышева. Напишем формулу, исходя из рекомендаций, изложенных на странице ссылка на страницу:
С1 = С2 ; С1(МкФ)/L1(мГн) = 1176/Rн 2 (Ом) .

Уменьшить напряжение пульсаций на выходе однозвенного П-образного LC-фильтра можно, включив параллельно дросселю L1 неполярный конденсатор С3 (Рис.1г), который вместе с индуктивностью катушки образует режекторный фильтр. Если ёмкость конденсатора С3 выбрать такой, чтобы резонансная частота контура L1-С3 равнялась частоте пульсаций (F при однополупериодном выпрямлении или 2F при двухполупериодном), то большая часть напряжения пульсаций задержится этим контуром и лишь незначительная перейдёт в нагрузку.
Итак: С3 = 1/(39,44×L1×F 2 ) для однополупериодных выпрямителей и
С3 = 1/(9,86×L1×F 2 ) — для двухполупериодных.
Все остальные номиналы элементов — такие же, как в предыдущей схеме.

Давайте сдобрим пройденный материал онлайн таблицей.

КАЛЬКУЛЯТОР РАСЧЁТА ЭЛЕМЕНТОВ СЛАЖИВАЮЩЕГО ФИЛЬТРА БЛОКА ПИТАНИЯ.

Транзисторные фильтры по сравнению с ёмкостными сглаживающими фильтрами имеют меньшие габариты, массу и более высокий коэффициент сглаживания пульсаций. Они позволяют уменьшить в десяток раз (при том же уровне пульсаций) номинал сглаживающего конденсатора, либо уменьшить в аналогичное количество раз амплитуду пульсаций при неизменном значении ёмкости.

Рис.2

На Рис.2а представлена схема наиболее распространённого транзисторного фильтра.

Напряжение с высокой амплитудой пульсаций, поступающее на коллектор транзистора, по сути, является напряжением питания эмиттерного повторителя, образованного Т1.
В это же самое время цепь базы питается через резисторы смещения и интегрирующую цепь R1C1, которая сглаживает пульсации напряжения на базе. Чем больше постоянная времени T=R1C1, тем меньше пульсации напряжения на базе, а так как устройство представляет собой эмиттерный повторитель, то на выходе фильтра пульсации будут столь же малыми, как и на базе.
Для того, чтобы снизить зависимость напряжения на выходе фильтра от уровня передаваемой мощности, ток через делитель R1R2 выбирают в 5…10 раз большим, чем ток, ответвляющийся в базу при минимальном сопротивлении нагрузки.
При расчёте номиналов элементов делителя, следует исходить из напряжения на базе транзистора:
Uб = Uвх — Uвх пульсаций — (2,5. 3В) .
В этом случае будет обеспечена работа регулирующего транзистора в активном режиме, а падение напряжения на нём составит величину:
Uкэ = Uвх пульсаций + (3,1. 3,6В) .
Коэффициент полезного действия транзисторного фильтра будет тем больше, чем меньше падание постоянного напряжения на силовом транзисторе. Из формулы видно, что для обеспечения высокого КПД активного сглаживающего фильтра, на вход устройства следует подавать уже отфильтрованное до определённого уровня напряжение.
На практике это делается включением на вход простейшего ёмкостного фильтра (Рис.1а), уровень пульсаций которого можно посчитать на приведённом выше калькуляторе.

Источник

Сетевые фильтры — как они работают, примеры схем

Что такое сетевой фильтр? — это относительно недорогое устройство, предохраняющее достаточно ценные электроаппараты отперегрузок по току, высокочастотных и импульсных помех, аномального напряжения (повышенного или пониженного относительно нормы).

Основная задача фильтра — пропустить через себя переменный ток частотой 50 Гц и напряжением 220 В, а всяким выбросам напрочь закрыть дорогу. Выбросов же в сети великое множество, и возникают они по разным причинам.

Например, включился холодильник, т.е. сработало пусковое реле его компрессора. В момент включения компрессор (электродвигатель) потребляет ток, в десятки раз (в 20. 40 раз) превышающий тот, что указан в паспорте. На этот миг в сети возникает “просадка’’ напряжения с последующим всплеском (рис.1) — вот и помеха!

Даже включение обычных лампочек в люстре приводит к возникновению, вроде бы, незаметных помех такого же характера. Они в момент включения потребляют ток, примерно в 10 раз больший номинального (пока спираль холодная).

Читайте также:  Расчет потерь напряжения в кабеле постоянный ток формула

Самое неприятное то, что амплитуда напряжения помехи может исчисляться сотнями, а то и тысячами вольт. Этого вполне хватит, чтобы “спалить” какое-либо чувствительное устройство.

Напряжения с последующим всплеском

Рис. 1. Напряжения с последующим всплеском.

Как же эту ситуацию предотвратить? Вот тут на арене и появляются сетевые фильтры питания! Они способны “проглотить” все вредные выбросы питающего напряжения.

Справедливости ради надо отметить, что медленные провалы напряжения ни один фильтр питания скомпенсировать не способен (для этой цели служат стабилизаторы напряжения).

Но наиболее опасными для аппаратуры являются все же импульсные помехи.

Принципиальная схема

На рис.2 приведена типовая схема сетевого фильтра питания. На ней показана трехпроводная (европейская) сеть питания: “фаза” — “ноль” (“нейтраль”) — “земля”. Сразу на входе фильтра стоит варис-тор VR1.

Его задача — подавить высоковольтные выбросы напряжения сети. При появлении такого выброса электрическое сопротивление варистора резко падает, и он замыкает через себя эту помеху, не позволяя ей пройти дальше. Следом включены дроссель Т1 и конденсаторы С1, С2, C3, образующие LC-фильтр.

Сопротивление дросселя возрастает с увеличением частоты тока, а конденсаторов падает, так что все высокочастотные помехи задерживаются или “стекают” в землю.

Помехи могут возникать не только между сетевыми проводами (“фазой” и “нейтралью”), их отфильтрует конденсатор С3, но и между “фазой” и “землей”, а также возможны помехи “нейтоаль» — “земля”. Для эффективного подавления таких помех служат конденсаторы С1 и С2.

Типовая схема сетевого фильтра питания

Рис. 2. Типовая схема сетевого фильтра питания.

При отсутствии земли общая точка конденсаторов С1 и С2 “висит” в воздухе, что приводит к созданию ими и дросселем Т1 паразитного колебательного контура, который начинает излучать высокочастотное электромагнитное поле, становясь источником потенциальной опасности для расположенной рядом радиоаппаратуры.

Схема сетевого фильтра без заземленных конденсаторов и связи с землей

Рис. 3. Схема сетевого фильтра без заземленных конденсаторов и связи с землей.

Поэтому в двухпроводной сети применяются фильтры без этих конденсаторов и связи с “землей” (рис.З). Типовая амплитудно-частотная характеристика (АЧХ) сетевого фильтра показана на рис.4. Из этого графикавидно, что чем выше частота помех, тем эффективнее они подавляются.

График зависимости

Рис. 4. График зависимости.

Стоит остановиться на одной особенности фильтров питания. Речь пойдет все о той же “земле”. Существует целый класс сетевых фильтров, у которых заземляющий провод не имеет никакой связи с внутренней схемой, кроме соответствующих контактов самих евророзеток и заземляющего контакта евровилки.

Этим достигается важное преимущество: при работе от сети с заземлением все розетки фильтра заземлены, как и положено. Но в случае отсутствия “земли” в сетевой розетке (типичный случай отечественной сети питания) все розетки фильтра объединены между собой по заземляющему контакту (естественно, сам фильтр при этом не заземлен). Почему это важно?

Представим, например, схему подключения различной периферии к компьютеру, показанную на рис. 5а (типичный случай — подключены принтер, сканер, внешний звуковой усилитель И Т.П.).

Это — идеальная схема: все подключено к заземленной сети питания, потенциалы корпусов устройств одинаковы (равны нулю), поскольку соединены с “землей”. В случае возникновения пробоя или повреждения изоляции любого из устройств “лишнее” напряжение уйдет в землю.

Схемы подключения различной периферии к компьютеру

Рис. 5. Схемы подключения различной периферии к компьютеру.

Теперь возьмем схему соединений для случая сети без заземления (рис.5б). Как видно, провод заземления отсутствует, и единственной связью корпусов устройств является слаботочный интерфейсный кабель (точнее, его экранирующая оплетка).

При разности потенциалов корпуса компьютера и внешнего устройства (а такое наблюдается сплошь и рядом!) уравнительные токи, текущие от большего потенциала к меньшему, могут легко “выжечь” входные и выходные порты соединенных устройств.

Таких случаев встречается множество. Самый распространенный — выгорание входа или выхода звуковой карты в случае подключения ее к внешнему источнику сигнала или к усилителю звука.

Для решения проблемы нужно подключить эти устройства к “европейскому” удлинителю, даже не соединенному (за неимением) с внешней “землей” (рис,5в). Здесь электрические потенциалы всех устройств выровнены, сквозные токи выберут себе более легкий путь через заземляющие контакты евророзеток, и ничего страшного не произойдет.

Основные параметры сетевых фильтров

Сечение подводящих проводов. Чаще всего сетевой фильтр (рис.6) выпускается с сечением жил порядка 0,75 или 1 мм2. Такое сечение считается достаточным, поскольку максимальный ток нагрузки, на который рассчитывается фильтр, обычно не превышает 10 А.

На такой ток устанавливается и предохранитель. При необходимости можно найти сетевой фильтр повышенной мощности, сечение жил проводов которого достигает 1,5 мм2. Предохранитель у такого устройства — на номинальный ток 16 А.

Типичный сетевой фильтр-розетка

Рис. 6. Типичный сетевой фильтр-розетка.

Длина подводящего провода сети. Стандартизованная длина сетевого провода фильтра-180 см. У отдельных моделей она может равняться 190 см, 300, а то и 500 см. Количество розеток. Обычно их 4. 6 штук (рис.7).

Как правило, все розетки-с заземляющими “ушками” (типа “евро”). Встречаются фильтры с розетками разного типа (1 -универсальная и 4, 5 — “евро”, рис.8).

Набор розеток

Рис. 7. Набор розеток.

Число и типы предохранителей. Предохранители включаются в сетевой фильтр для защиты от перегорания варисторов при больших импульсных помехах и отключения потребителей при коротком замыкании или длительной перегрузке нагрузочных цепей.

Для большей надежности отдельные изготовители, помимо термопредохранителей, устанавливают еще и самовосстанавливающиеся быстродействующие предохранители (на базе полупроводниковой металлоорганики).

Фильтры

Предназначены для подавления помех. Встречаются чисто емкостные и индуктивно-емкостные на основе LC-цепочек. Катушки сетевого фильтра бывают без сердечников или с ферритовыми сердечниками (лучше всего на ферритовых кольцах).

Добавочные устройства. Индикаторы включения и исправного состояния защиты на светодиодах или на неоновых лампочках светятся при включенном фильтре (или его отдельном канале) и гаснут, когда срабатывают предохранители. Разрядники (газовые) подстраховывают варисторы при больших амплитудах импульсных помех.

Любые электроприборы требуют правильной эксплуатации. В отношении сетевых фильтров тоже есть ряд правил безопасности. Фильтры противопоказано подключать друг к другу.

Пример фильтра с евро-розетками

Рис. 8. Пример фильтра с евро-розетками.

Это может неоправданно увеличить ток в “земляном” проводе. Кроме того, к сетевым фильтрам нельзя подключать устройства с большими пусковыми токами (пылесосы, кондиционеры, холодильники и пр.). Не рекомендуется подключать сетевые фильтры к источникам бесперебойного питания, поскольку это может привести к повреждению схем защиты.

Самодельные сетевые фильтры

Нередко имеющиеся в продаже дешевые фильтры на самом деле фильтрами не являются. Например, фильтр-удлинитель (рис.9). Там внутри находится лишь варистор, ограничивающий кратковременные высоковольтные импульсы, которые иногда возникают в сети, и токовый размыкатель, срабатывающий при протекании большого тока (рис 10).

Фильтр-удлинитель

Рис. 9. Фильтр-удлинитель.

Что внутри фильтра-удлиннителя

Рис. 10. Что внутри фильтра-удлиннителя.

На корпусе есть кнопка, которую нужно нажать, чтобы снова замкнуть размыкатель, если он сработал. Для превращения этого удлинителя в полноценный фильтр внутрь нужно встроить фильтрующие цепи.

На исходной схеме (рис.11а) S1 -токовый размыкатель, VR1 — варистор типа 471 (числом кодируется максимальное напряжение, а от диаметра зависит максимальная энергия подавляемого импульса).

Схема фильтрующих цепей для встраивания в удлиннитель-розетку

Рис. 11. Схема фильтрующих цепей для встраивания в удлиннитель-розетку.

В доработанном варианте (рис. 11 б) добавляется RLC-фильтр. Катушки L1 и 12 вместе с конденсаторами С1 и С2 образуют LC-фильтр.

Индуктивное сопротивление катушек растет на высоких частотах. Чтобы ослабить и низкочастотные помехи, последовательно с катушками включены резисторы R1 и R2. Резистор R3 разряжает конденсаторы при отключении фильтра от сети. При сборке фильтра (рис. 12) варистор оставляется штатный (типа 471, диаметром 6. 10 мм).

Читайте также:  Осциллограмма тока в контуре

Чем больше сопротивление резисторов R1 и R2, тем лучше фильтрация, но больше их нагрев и потери напряжения в фильтре. Поэтому сопротивление резисторов выбирается в зависимости от суммарной мощности, потребляемой всеми теми устройствами, которые будут подключаться к фильтру (при указанных номиналах РНагр.макс=250 Вт).

Дроссели L1 и L2 — промышленные высокочастотные, типа ДМ-1 индуктивностью 50. 100 мкГн. Конденсаторы — пленочные, типа К73-17 или аналогичные (импортные меньше по габаритам) емкостью не менее 0,22 мкФ (больше 1 мкФ тоже не нужно). Сопротивление резистора РЗ — не критично (от 510 кОм до 1,5 МОм).

Дополнительно на сетевой провод возле самого удлинителя желательно одеть ферритовую шайбу (удобнее всего разрезную на защелках — рис.13).

Сборка фильтра

Рис. 12Сборка фильтра.

Ферритовая шайба

Рис. 13. Ферритовая шайба.

Другой вариант схемы помехоподавляющего сетевого фильтра приведен на рис. 14. Для большей эффективности он состоит из двух соединенных последовательно звеньев.

Первое (конденсаторы С1, С4, С5, С8, С9 и двухобмоточный дроссель 12) отвечает за подавление помех частотой выше 200 кГц.

Второе звено (двухобмоточный дроссель И с остальными конденсаторами) подавляет помехи, спектр которых простирается ниже указанной частоты (вплоть до единиц килогерц).

Схема помехоподавляющего сетевого фильтра

Рис. 14. Схема помехоподавляющего сетевого фильтра.

Благодаря магнитной связи между обмотками дросселей происходит подавление синфазных помех (тех, что наводятся одновременно на оба сетевых провода или излучаются ими).

Поэтому обмотки каждого дросселя должны быть одинаковыми и симметрично намотанными на магнитопроводы. Важно обеспечить правильную фазировку обмоток.

Их начала обозначены на схеме точками. Дроссель L1 намотан на ферритовом магнитопроводе Ш12×14 с самодельным каркасом из злектрокартона сложенным вдвое проводом ПЭЛШО 00,63 мм. Обмотка содержит 87 витков. Марка феррита, к сожалению, неизвестна. Измеренная прибором 1.Р235 индуктивность каждой обмотки — около 20 мГн.

Для дросселя 1.2 использован броневой магнито-провод Б22 из феррита 2000НМ1. Его обмотки содержат по 25 витков и намотаны тем же проводом и таким же образом, что и обмотки дросселя L1. Индуктивность каждой обмотки дросселя L2 — 120 мкГн.

Конденсаторы первого звена фильтра — слюдяные. Поскольку малогабаритных конденсаторов такого типа требующейся для фильтра емкости на нужное напряжение не существует, пришлось соединить попарно-параллельно конденсаторы КСО-5 меньшей емкости.

Аналогичное решение, но с попарно-последовательным соединением конденсаторов С2, С3 и С6, С7 (пленочных зарубежного производства), принято и во втором звене фильтра для обеспечения нужного рабочего напряжения.

Подключенные параллельно конденсаторам резисторы R1. R4 выравнивают приложенные к ним напряжения и обеспечивают быструю разрядку всех конденсаторов после отключения фильтра от сети. Конденсатор С9 — типа К78-2. Плата фильтра помещена в заземленную металлическую коробку.

Материал подготовил В. Новиков. РМ-07-12, 08-12.

Источник



Применение активных фильтров — эффективный метод улучшения качества электроэнергии

Повсеместное использование нелинейных нагрузок, включающих в себя силовое электронное оборудование: вентильные преобразователи и устройства частотного регулирования электропривода, насыщенные трансформаторы и электродвигатели, мощные электрические печи и сварочное оборудование — привело к необходимости разработки и внедрения систем коррекции формы кривых тока и напряжения. Один из перспективных методов решения указанной задачи — применение активных фильтров.

Существуют последовательная, параллельная и смешанная топологии подключения активных фильтров, принципиально же различают два типа:

  • последовательный активный фильтр;
  • параллельный активный фильтр.

Последовательный активный фильтр

Последовательный фильтр по сути является управляемым генератором напряжения и служит эффективным решением для компенсации провалов, фликера несимметрии и гармонических составляющих в напряжении сети.

Однако он имеет некоторые недостатки. Расчитанный на полный ток нагрузки, он имеет высокую мощность и, соответственно, стоимость. Кроме того, не может прямо исправлять токи нагрузки, подключенной за ним, влияя на них только посредством изменения напряжения. Существенным преимуществом является исправление искаженной формы напряжения независимо от природы возникновения искажений.

Принцип действия и блок-схема последовательного фильтра показана на рисунке 1.

Параллельный активный фильтр

Параметры параллельных фильтров должны быть подобраны только для величин гармонических токов от нелинейной нагрузки. Еще одно преимущество — принцип регулирования с коррекцией тока (фильтр как регулируемый источник тока) и связанное с этим улучшение напряжения питания остальных потребителей. В таких сетях источники возмущений — потребляемые нагрузкой токи (THD(I) %>>THD(U)%). Суммарные гармонические искажения по току % всегда выше, чем по напряжению. Логично и более быстродействующе исправлять первопричину. Для последовательного же фильтра в этом случае подходит задача уменьшения воздействия от внешних возмущений из сети, прежде всего по напряжению. Это утверждение можно оспаривать, но стоимостной фактор подскажет именно такую логику действий! Таким образом, место применения параллельного фильтра — ближе к нелинейной нагрузке.

Общим в построении фильтров является принцип регулирования по отклонению от заданной величины, они оба включают в себя датчики измеренных сигналов и блоки формирования опорных сигналов по напряжению или току — по типу фильтра, соответственно. Следовательно, должны обладать значительным быстродействием (0,02-0,5 мс) и временем отклика 0,2-2 мс для сетей 50-60 Гц. Поэтому в качестве регулирующего элемента применяют IGBT-транзисторы. Используется также принцип ШИМ-регулирования (регулирование с использованием широтноимпульсной модуляции сигнала).

В современных условиях наследия единой энергетической системы РФ, учитывая статистику нечастых сбоев на центральных генерирующих мощностях, в передающих сетях, представляется более интересной задача влияния нелинейных потребителей на собственную распределительную сеть.

Этому посвящено дальнейшее описание.

Итак, если в сети присутствуют гармоники тока из-за наличия нелинейных нагрузок, наилучшим и универсальным способом повышения качества электропитания является установка параллельных активных фильтров. Рассмотрим данный фильтр на примере современной серии APF производства испанской фирмы CIRCUTOR, выпуск 2007-2008 гг.

Фильтры APF обеспечивают компенсацию гармоник, асимметрии и фазового сдвига тока сети. APF должен быть подключен параллельно питающей линии, как показано на рисунке 2. Тогда фильтр скомпенсирует пульсацию, асимметрию и отставание по фазе, вызванные работой нелинейной нагрузки, подключенной ниже по направлению протекания тока. Принцип компенсации гармоник основан на инжектировании пульсирующего тока в противофазе, что уничтожает гармоники, генерируемые нагрузкой.

Типы параллельных фильтров AF-APF

В зависимости от конфигурации разделяют несколько типов параллельных активных фильтров:

Однофазные (AF 2) — для устранения гармоник, генерированных однофазной нагрузкой (2-проводные линии), в том числе и компьютерные линии.

Трехфазные 3-проводные (AF3-W) — фильтры такого типа предназначены для устранения гармоник трехфазной симметричной системы без нейтрального проводника — в том числе помех от ИБП(UPS) источников бесперебойного питания.

Трехфазные 4-проводные многофункциональные параллельные активные: фильтры APF-4W производства Circutor принадлежат именно к универсальному типу.

Фильтры могут решить одновременно четыре задачи:

  • симметрирование напряжений (опосредованно через симметрирование токов) сети (Network balansing);
  • связанное с этим снижение практически до 0 тока нейтрали;
  • подавление токовых (и следовательно улучшения THD(I) и THD(U)) гармоник;
  • PF-коррекция или компенсация реактивной мощности (повышение cosφ).

Приоритет этих функций программируется. Конструкция содержит инвертор с 4 выводами, действующий по принципу генерации встречного противофазного тока «зеркальной» формы по отношению к искажениям в токе нагрузки. Важной особенностью конструкции APF является блочный принцип организации мощностей, что позволяет легко наращивать требуемую установленную мощность. Основным преимуществом 4-проводных фильтров является возможность компенсации всех типов гармоник, включая токи нулевой последовательности, и, в случае несимметричных нагрузок, они также способны балансировать токи между разными фазами для минимизации тока нейтрали.

Поведение APF-фильтра в условиях ограничения тока

APF-фильтры работают в качестве источников тока и их эффективность ограничена собственным номинальным током. Такой ограничивающий ток обозначается как Ilimit и используется для устранения гармоник, асимметрии и запаздывания фаз.

Читайте также:  Класс точности 1 5 для приборов переменного тока

При нормальных условиях работы, если необходимый ток не достигает Ilimit, APF скомпенсирует все реактивные составляющие: гармоники, асимметрию и запаздывание фаз. Если нагрузке требуется компенсация с номиналом тока выше Ilimit, тогда компенсирование запаздывания фаз (в зависимости от уставки) может быть автоматически отключено, а весь номинальный ток будет пущен на компенсирование гармоник и запаздывания фаз. Если все-таки нагрузке требуется компенсирующий ток выше Ilimit, тогда компенсирование асимметрии или гармоник (в зависимости от уставок) будет также автоматически отключено и вся мощность фильтра будет предоставлена на выполнение функции с наивысшим приоритетом.

В случае если активирована только функция компенсирования гармоник, а нагрузке требуется ток выше Ilimit, компенсирование гармоник будет только частичным. Функция set-up при пуске позволяет выполнить программирование приоритетов между функциями компенсирования (гармоник, асимметрии или запаздывания фаз), кроме того, возможен выбор приоритета для компенсирования отдельной гармонической составляющей. При правильной настройке фильтр не может перегрузиться, он может только недовыполнить в % компенсацию возмущений, в случае если даже его мощность была подобрана, например, неверно.

Особенности применения параллельных активных фильтров APF

Фильтры APF разработаны специально для устранения гармоник, асимметрии и запаздывания фаз в низковольтных распределительных системах — до 1000 В с несколькими однофазными нагрузками (или междуфазными), которые генерируют такие реактивные составляющие.

Ток нейтрали фильтра APF в 1,5 раза больше фазного тока. Это означает, что в сбалансированной системе APF может скомпенсировать до 40% третьей гармоники по фазе без достижения Ilimit (max-возможного) тока на нейтрали. Для высших гармоник остаточный ток остается на нейтрали.

APF может быть установлен параллельно с другими настроенными фильтрами или с конденсаторными установками, но только при условии наличия режекционных фильтров. Компенсация cosφ должна обеспечиваться расстроенными фильтрами с настройкой на p=7%, p=14% или p=5,6%.

Со встроенным в шкаф анализатором качества и количества электроэнергии CVMk2 фильтр APF представляет собой систему мониторинга и регулирования качества электрической энергии.

C. В. ЖИГАРЕВ,
нач. технического отдела ООО «Вымпел»,
г. Москва.

Источник

Как устроен сетевой фильтр и что у него внутри?

Как устроен сетевой фильтр и что у него внутри?

Аватар пользователя

Содержание

Содержание

Наверняка в каждом доме найдется сетевой фильтр, а может даже не один. При этом мало кто серьезно задумывается, зачем он нужен и какие функции выполняет. В данном материале рассмотрим устройство «безмолвного» защитника и назначение его компонентов.

Зачем нужен сетевой фильтр

Прежде чем начать препарировать сетевой фильтр, нужно определиться с проблематикой. Так ли он нужен и может можно без него обойтись?

Современная квартира полна разной электронной техники, которая подключается к обычной электрической розетке. В розетке как раз и кроется основная угроза для «здоровья» техники. Дело в том, что форма питающего напряжения далека от идеала, известного из учебников физики. Помимо основной, «правильной» синусоиды, в ней присутствует огромное количество различных помех, наводок и возмущений, оказывающих негативное влияние на работу электронных компонентов устройств. Природа этих помех многогранна, но, если коротко, то основные причины кроются в следующем:

  • работа импульсных преобразователей и блоков питания, дающих часть «шума» в общую сеть;
  • неравномерность нагрузки общей системы электроснабжения, в которой то и дело включают мощных потребителей (электродвигатели; сварочные трансформаторы, микроволновки и т. д.);
  • природные явления, в частности грозы, вызывающие в проводниках электросети импульсы высокого напряжения;
  • нелинейность нагрузки, что приводит к некоторой разбалансировке питающих сетей, в результате чего между фазным и нейтральным проводом возникают токи высоких гармоник, существенно искажающих эталонную синусоиду как по форме, так и по величине.

Если подойти к решению вопроса по созданию комфортных условий для работы техники кардинально, то наилучшим решением будет установка на ввод электропитания в жилище стабилизатора и фильтров помех. Но такое решение громоздко и достаточно дорого. Компромиссом являются сетевые фильтры для бытовой техники. В них удачно сочетаются невысокая стоимость и необходимый уровень защиты.

Устройство сетевого фильтра

В зависимости от комплектации и ценовой категории сетевого фильтра, в нем могут быть установлены различные компоненты, являющиеся элементами тех или иных видов защиты. На данном этапе познакомимся с максимальной комплектацией сетевого фильтра.

Итак, «правильный» сетевой фильтр должен содержать в своем составе следующие элементы.

Кнопка включения

Подает питающее напряжение на группу розеток. Функционал достаточно простой — банальное включение и отключение напряжения для всех устройств, подключенных к фильтру. Может совмещать в себе функции предохранителя, вызывая обесточивание розеток при необходимости.

Если нужна более гибкая конфигурация фильтра — есть модели с индивидуальными кнопками для каждой розетки.

С точки зрения безопасности наиболее правильными считаются широкие кнопки, одновременно размыкающие линейный и нейтральный проводники. Так фаза никогда не появится на контактах при отключенной кнопке.

Предохранитель

Основная задача предохранителя — защита питающей сети от коротких замыканий в цепях потребителей, а также отключение устройств при превышении расчетной мощности, на которую спроектирован сетевой фильтр. Значения мощности и допустимого тока указываются на информационной табличке, нанесенной на корпус устройства.

Предохранитель состоит из биметаллической пластинки, разрывающей цепь питания при превышении заданной температуры, обусловленной протеканием по цепям токов больших величин. Восстановить цепь можно спустя некоторое время, необходимое для отключения неисправного устройства и остывания биметаллической пластины, просто нажав на кнопку предохранителя.

Варистор

Варистор выполняет в устройстве функцию защиты от импульсного (кратковременного) перенапряжения, вызванного помехами или грозовыми разрядами.

Физически он представляет собой переменный резистор, сопротивление которого резко меняется при достижении определенного порогового значения напряжения. Причем чем выше напряжение порогового значения, тем меньше сопротивление элемента. Таким образом, при прохождении импульса высокого напряжения, варистор шунтирует цепь и вызывает срабатывание предохранителя. При этом, как правило, элемент приходит в негодность.

Конденсатор

Основная задача конденсатора — отсечь от нагрузки высокочастотную помеху, возникающую между фазным и нейтральным проводниками, и вернуть ее обратно в сеть, поскольку он является прекрасным проводником сигналов высокой частоты.

Как правило, для защиты используются конденсаторы, рассчитанные на работу с напряжением питающей сети до 250 В и способные «пережить» кратковременный его всплеск до 2,5 кВ. Обычно емкость используемых конденсаторов находится в диапазоне от 0,1 мкФ до 1 мкФ.

Дроссель

Из курса электротехники известно, что с ростом частоты растет и реактивное сопротивление катушки индуктивности. Она просто не способна пропустить через себя высокочастотные помехи, поскольку они в ней, что называется, «вязнут» и преобразовываются в тепло. Если катушка намотана на ферритовый сердечник, то ее способность противостоять высокочастотным помехам только усиливается.

Свойства дросселя и конденсатора нашли широкое применение в борьбе с помехами высокой частоты, а именно в LC-фильтрах, являющихся недорогим и достаточно эффективным способом противостояния паразитным возмущениям.

Катушка за счет своего индуктивного сопротивления не пропускает к розеткам фильтра высокочастотные помехи, зато их хорошо проводит конденсатор, возвращая их обратно в сеть.

Как работает сетевой фильтр

Работа сетевого фильтра в плане «очистки» от помех и импульсов высокого напряжения наглядно показана на схеме.

В итоге, «грязное» напряжение, пройдя последовательно через функциональные блоки сетевого фильтра, очищается от помех и попадает на сетевые розетки устройства с пригодными для работы подключенных потребителей параметрами.

Источник