Меню

Ток светильников с газоразрядной лампой

Схемы включения газоразрядных ламп

Искусственные источники освещения, использующие для выработки световых волн электрический разряд газовой среды в парах ртути, называют газоразрядными ртутными лампами.

Газ, закачанный в баллон, может находиться под низким, средним или высоким давлением. Низкое давление применяется в конструкциях ламп:

Высокое давление используется в лампах:

дуговой ртутной люминофорной (ДРЛ);

металлогенной ртутной с излучающими добавками (ДРИ) галогенидов металлов;

дуговой натриевой трубчатой (ДНаТ);

дуговой натриевой зеркальной (ДНаЗ).

Их устанавливают в тех местах, где необходимо освещать большие территории с малыми затратами электроэнергии.

Устройство лампы, использующей четыре электрода, схематично показано на картинке.

Устройство лампы ДРЛ

Ее цоколь, как и у обычных моделей, служит для подключения к контактам при вкручивании в патрон. Стеклянная колба герметично защищает все внутренние элементы от внешних воздействий. В ней закачан азот и размещены:

электрические проводники от контактов цоколя;

два токоограничивающих сопротивления, вмонтированные в цепь дополнительных электродов

Горелка выполнена в форме герметичной трубки из кварцевого стекла с закачанным аргоном, в которую помещены:

две пары электродов — основной и дополнительный, расположенные на противоположных концах колбы;

небольшая капелька ртути.

Источником света ДРЛ является разряд электрической дуги в среде аргона, протекающий между электродами в кварцевой трубке. Он возникает под действием приложенного к лампе напряжения в два этапа:

1. первоначально между близкорасположенными основным и зажигающим электродами начинается тлеющий разряд за счет движения свободных электронов и положительно заряженных ионов;

2. образование внутри полости горелки большого количества носителей зарядов приводит к быстрому пробою среды азота и образованию дуги через основные электроды.

Стабилизация пускового режима (электрического тока дуги и света) требует времени порядка 10-15 минут. В этот промежуток ДРЛ создает нагрузки, значительно превышающие токи номинального режима. Для их ограничения применяется пускорегулирующее устройство — дроссель.

Излучение дуги в парах ртути имеет голубой и фиолетовый оттенок и сопровождается мощным ультрафиолетовым излучением. Оно проходит через люминофор, смешивается с образуемым им спектром и создает яркий свет, приближенный к белому оттенку.

ДРЛ чувствительна к качеству питающего напряжения, а при его снижении до 180 вольт тухнет и не зажигается.

Во время дугового разряда создается высокая температура, передающаяся всей конструкции. Она влияет на качество контактов в патроне и вызывает нагрев подключенных проводов, которые из-за этого используют только с термостойкой изоляцией.

При работе лампы давление газов в горелке сильно увеличивается и осложняет условия для пробоя среды, что требует повышения приложенного напряжения. Если питание отключить и подать, то сразу лампа не запустится: ей надо остыть.

Схема подключения лампы типа ДРЛ

Четырехэлектродная ртутная лампа включается в работу через дроссель и предохранитель.

Схема подключения ламп ДРЛ

Плавкая вставка защищает схему от возможных коротких замыканий, а дроссель ограничивает ток, проходящий через среду кварцевой трубки. Индуктивное сопротивление дросселя подбирается по мощности светильника. Включение лампы под напряжение без дросселя приводит к ее быстрому перегоранию.

Конденсатор, включенный в схему, компенсирует реактивную составляющую, вносимую индуктивностью.

Внутреннее устройство лампы ДРИ очень похоже на то, которое используется У ДРЛ.

Устройство лампы ДРИ

Но в ее горелке введена определенная доза добавок из гапогенидов металлов индия, натрия, таллия или некоторых других. Они позволяют увеличить выделение света до 70-95 лм/Вт и более с хорошей цветностью.

Колба выполняется в форме цилиндра или эллипса, показанного на рисунке ниже.

Прожектор с лампой ДРИ

Материалом горелки может быть кварцевое стекло или керамика, которая обладает лучшими эксплуатационными свойствами: меньшее затемнение и больший срок службы.

Форма горелки в виде шара, используемая в современных конструкциях, повышает светоотдачу и яркость источника.

Основные процессы, происходящие при выработке света ламп ДРИ и ДРЛ совпадают. Отличие состоит в схеме зажигания. ДРИ не может запуститься в работу от приложенного напряжения сети. Ей этой величины недостаточно.

Для создания дугового разряда внутри горелки необходимо к межэлектродному пространству приложить высоковольтный импульс. Его образование возложено на ИЗУ — импульсное зажигающее устройство.

Как работает ИЗУ

Принцип действия устройства создания высоковольтного импульса условно можно представить упрощенной принципиальной схемой.

Принцип работы ИЗУ

Рабочее напряжения питания подводится на вход схемы. В цепочке диода D, резистора R и конденсатора C создается зарядный ток емкости. По окончании заряда через конденсатор выдается импульс тока сквозь открывшийся тиристорный ключ в обмотку подключенного трансформатора Т.

В повышающей напряжение выходной обмотке трансформатора создается высоковольтный импульс величиной до 2-5 кВ. Он поступает на контакты лампы и создает дуговой разряд газовой среды, обеспечивающий свечение.

Схемы подключения лампы типа ДРИ

Устройства ИЗУ выпускаются для газоразрядных ламп двух модификаций: с двумя или тремя выводами. Для каждого из них создается своя схема подключения. Она приводится прямо на корпусе блока.

При использовании двухконтактного устройства фаза сети через дроссель подключается к центральному контакту цоколя лампы и одновременно на соответствующий вывод ИЗУ.

Схема подключения лампы ДРИ с двухконтактным ИЗУ

Нулевой провод подводится на боковой контакт цоколя и свой вывод ИЗУ.

У трехконтактного устройства схема подключения нуля остается такой же, а подвод фазы после дросселя изменяется. Она подключается через два оставшихся вывода на ИЗУ, как показано на картинке ниже: вход на устройство осуществляется через клемму «В», а вывод на центральный контакт цоколя через — «Lp».

Схема подключения лампы ДРИ с трехконтактным ИЗУ

Таким образом, в состав пускорегулирующей аппаратуры (ПРА) для ртутных ламп с излучающими добавками входят в обязательном порядке:

импульсное зарядное устройство.

Компенсирующий величину реактивной мощности конденсатор может входить в состав ПРА. Его включение определяет общее снижение потребления энергии осветительным устройством и продление срока эксплуатации лампы при правильно подобранной величине емкости.

Ориентировочно ее значение в 35 мкФ соответствует лампам с мощностью 250 Вт, а 45 — 400 Вт. При завышенной емкости возникает резонанс в схеме, который проявляется «миганием» света лампы.

Наличие в работающей лампе импульсов высокого напряжения определяет использование в схеме подключения исключительно высоковольтных проводов минимальной длины между ПРА и лампой, не более 1-1,5 м.

Это разновидность описанной выше лампы ДРИ, внутри колбы которой частично нанесено зеркальное покрытие для отражения света, которое формирует направленный поток лучей. Он позволяет фокусировать излучение на освещаемый объект и снижать световые потери, возникающие из-за переотражений.

Внутри колбы этой газоразрядной лампы вместо ртути используются пары натрия, расположенные в среде инертных газов: неона, ксенона или других, либо их смесей. По этой причине их называют «натриевыми».

За счет такой модификации устройства конструкторам удалось придать им наибольшую эффективность работы, которая доходит до 150 лм/Вт.

Принцип действия ДНаТ и ДРИ один и тот же. Поэтому схемы подключения их одинаковы и при соответствии характеристик ПРА параметрам ламп их можно использовать для зажигания дуги в обеих конструкциях.

Однако производители металл галогенных и натриевых ламп выпускают пускорегулирующие устройства под конкретные виды своих изделий и поставляют их в едином корпусе. Эти ПРА полностью налажены и готовы к работе.

Схемы подключения ламп типа ДНаТ

В отдельных случаях конструкции ПРА для ДНаТ могут иметь отличия от представленных выше схем запуска ДРИ и выполняться по одной из трех нижеприведенных схем.

Схемы подключения ламп ДНаТ

В первом случае ИЗУ включено параллельно контактам лампы. После зажигания дуги внутри горелки рабочий ток не течет через лампу (см принципиальную схему ИЗУ), что экономит потребление электричества. При этом дроссель испытывает воздействие высоковольтных импульсов. Поэтому он создается с усиленной изоляцией для защиты от зажигающих импульсов.

Из-за этого схема параллельного включения используется с лампами маленькой мощности и импульсом зажигания до двух киловольт.

Во второй схеме применяется ИЗУ, работающее без импульсного трансформатора, а высоковольтные импульсы вырабатывает дроссель специальной конструкции, имеющий отвод для подключения к контакту лампы. Изоляция обмоток этого дросселя также усиливается: она подвергается воздействию высоковольтного напряжения.

В третьем случае используется метод последовательного подключения дросселя, ИЗУ и контакта лампы. Здесь высоковольтный импульс от ИЗУ не поступает на дроссель, а изоляция его обмоток не требует усиления.

Недостаток этой схемы в том, что ИЗУ потребляет повышенный ток, за счет чего происходит его дополнительный нагрев. Это обуславливает необходимость увеличения габаритов конструкции, которые превышают размеры предшествующих схем.

Этот третий вариант конструкции наиболее часто используется для работы ламп ДНаТ.

Во всех схемах может быть использована компенсация реактивной мощности подключением конденсатора так, как показано в схемах подключения ламп ДРИ.

Читайте также:  Укажите направление силовых линий магнитного поля соленоида задав самостоятельно направление тока

Перечисленные схемы включения ламп высокого давления, использующих газовый разряд для свечения, обладают рядом недостатков:

заниженный ресурс свечения;

зависимость от качества питающего напряжения;

шум работающего дросселя и ПРА;

повышенное потребление электричества.

Большая часть этих недостатков устраняется применением электронных пусковых аппаратов (ЭПРА).

Типы электронных ПРА для ламп ДНаТ

Они позволяют не только экономить до 30% электроэнергии, но и обладают возможностью плавного регулирования освещенности. Однако, стоимость таких устройств пока еще довольно высокая.

Донат на развитие сайта «Школа для электрика»:

Источник

Газоразрядные лампы: виды, устройство, как правильно выбрать лучшие

Василий Боруцкий

Вы хотите приобрести газоразрядные лампы, чтобы создать в помещении особую атмосферу? Или ищите лампочки для стимуляции роста растений в теплице? Оснащение экономичными источниками света не только сделает более выигрышным интерьер и поможет в растениеводстве, но и позволит экономить электроэнергию. Ведь верно?

Мы поможем вам разобраться с ассортиментом осветительных приборов газоразрядного типа. В статье рассмотрены их особенности, характеристики и сфера применения лампочек высокого и низкого давления. Подобраны иллюстрации и видеоролики, которые помогут найти оптимальный вариант энергосберегающих ламп.

Устройство и характеристики разрядных ламп

Все основные детали лампы заключены в стеклянную колбу. Здесь происходит разряд электрических частиц. Внутри могут находиться как пары натрия или ртути, так и какой-либо из инертных газов.

В качестве газового наполнения применяют такие варианты, как аргон, ксенон, неон, криптон. Более популярны изделия, наполненные парообразной ртутью.

Элементы газоразрядной лампы

Конденсатор отвечает за работу без мигания. Транзистор владеет положительным температурным коэффициентом, который обеспечивает мгновенный запуск ГРЛ без мерцания. Работа внутренней конструкции начинается после того, как в газоразрядной трубке пройдет генерация электрического поля.

В процессе в газе появляются свободные электроны. Соударяясь с атомами металла, они его ионизируют. При переходе отдельных из них, появляется избыточная энергия, порождающая источники свечения — фотоны. Электрод, являющийся источником свечения, находится в центре ГРЛ. Всю систему объединяет цоколь.

Лампа может излучать разные световые оттенки, которые может видеть человек — от ультрафиолетовых до инфракрасных. Чтобы это стало возможным, внутреннюю часть колбы покрывают люминесцентным раствором.

Сферы применения ГРЛ

Газоразрядные лампы востребованы в самых разных областях. Наиболее часто их можно встретить на городских улицах, в производственных цехах, магазинах, офисах, вокзалах, больших торговых центрах. Применяют их и для подсвечивания щитов с рекламой, фасадов зданий.

ГРЛ используют и в фарах автомобилей. Наиболее часто это лампы, отличающиеся высокой светоотдачей — неоновые модели. Некоторые автомобильные фары наполняют металлогалоидными солями, ксеноном.

Первые газоразрядные осветительные приборы для транспортных средств имели обозначение D1R, D1S. Следующие — D2R и D2S, где S указывает на прожекторную оптическую схему, а R — рефлекторную. Применяют лампочки ГР и при фотосъемках.

Импульсные ГРЛ

В процессе фотографирования эти лампы позволяют держать под контролем световой поток. Они компактные, яркие и экономичные. Отрицательным моментом является неумение визуально управлять светотенями, которые образует сам источник света.

В сельскохозяйственной сфере ГРЛ используют для облучения животных, растений, для стерилизации и обеззараживания продуктов. Для этой цели лампы должны иметь длину волн соответствующего диапазона.

Концентрация мощности излучения в этом случае также имеет большое значение. По этой причине наиболее подходящими являются изделия мощные.

Виды газоразрядных ламп

Делят ГРЛ на виды по типу свечения, такому параметру, как давление, применительно к цели использования. Все они образуют конкретный световой поток. Исходя из этого признака, они подразделяются на:

В первых из них источником света являются атомы, молекулы или их комбинации, возбуждаемые разрядом в газовой среде.

Во вторых – люминофоры, газовый разряд активизирует покрывающий колбу фотолюминесцентный слой, в итоге осветительный прибор начинает источать свет. Лампы третьего вида функционируют за счет свечения электродов, раскаленные от газового разряда.

Автомобильная лампа

В зависимости от наполнения дугоразрядные приборы делят на ртутные, натриевые, ксеноновые, металлогалогенные лампы и другие. Исходя из давления внутри колбы происходит их дальнейшее разделение.

Начиная от значения давления от 3х10 4 и до 10 6 Па их относят к лампам высокого давления. В категории низкого приборы попадают при величине параметра от 0,15 до 10 4 Па. Больше чем 10 6 Па — сверхвысокого.

Вид #1 — лампы высокого давления

Отличаются РЛВД тем, что содержимое колбы подвержено высокому давлению. Для них характерно наличие значительного светового потока в сочетании с небольшими энергозатратами. Обычно это ртутные образцы, поэтому их наиболее часто применяют для уличного освещения.

Такие разрядные лампы обладают солидной светоотдачей и эффективной работой в условиях плохой погоды, но низкие температуры они переносят плохо.

Есть несколько базовых категорий ламп высокого давления: ДРТ и ДРЛ (ртутные дуговые), ДРИ — такие же, как и ДРЛ, но с йодидами и ряд модификаций, созданных на их основе. В этот же ряд входят также дуговые натриевые (ДНаТ) и ДКсТ — дуговые ксеноновые.

Первая разработка — модель ДРТ. В маркировке Д обозначает дуговая, символ Р — ртутная, на то, что эта модель трубчатая, указывает буква Т в маркировке. Визуально это прямая трубка, изготовленная из кварцевого стекла. С двух ее сторон — вольфрамовые электроды. Используют ее в облучательных установках. Внутри — немного ртути и аргона.

Лампа ДРТ

Подсоединение лампы в сеть выполняют последовательно с дросселем с использованием резонансной схемы. Световой поток лампы ДРТ состоит на 18% из ультрафиолетового излучения и на 15% — из инфракрасного. Такой же процент составляет видимый свет. Остальное — потери (52%). Основное применение — как надежный источник ультрафиолетового излучения.

Для освещения мест, где качество цветоотдачи не очень важно, применяют осветительные устройства ДРЛ (дуговые ртутные). Здесь практически нет ультрафиолетового излучения. Инфракрасное составляет 14%, видимое — 17%. На тепловые потери приходится 69%.

Особенности конструкции ламп ДРЛ позволяют зажигать их от 220 В без применения высоковольтного импульсного поджигающего устройства. Из-за того, что в схеме есть дроссель и конденсатор, колебания светового потока уменьшаются, коэффициент мощности возрастает.

Когда лампа подключена последовательно с дросселем, происходит тлеющий разряд между дополнительными электродами и основными соседними. Разрядный промежуток ионизируется в результате появляется разряд между главными вольфрамовыми электродами. Работа поджигающих электродов прекращается.

Конструкция лампы ДРЛ

Горелки ДРЛ в основном имеют четыре электрода — два рабочих, два поджигающих. Внутренность их наполнена инертными газами с добавкой в их смесь определенного количества ртути.

Металлогалогенные лампы ДРИ также относятся к разряду приборов высокого давления. Их цветовой КПД и качество цветопередачи выше, чем у предыдущих. На вид спектра излучения влияет состав добавок. Форма колбы, отсутствие дополнительных электродов и люминофорного покрытия — главные отличия ламп ДРИ от ДРЛ.

Схема, по которой включают ДРЛ в сеть, содержит ИЗУ — импульсное зажигающее устройство. В трубках ламп присутствуют составляющие, входящие в галогенную группу. Они повышают качество спектра видимого излучения.

Лампа МГЛ

По мере прогревания как ртуть, так и добавки испаряются, изменяя тем самым сопротивление лампы, световой поток, излучающий спектр. На основе приборов этого типа созданы ДРИЗ и ДРИШ. Первую из ламп используют в запыленных влажных помещениях, а также в сухих. Второй — освещают цветные телевизионные съемки.

Наиболее эффективными являются лампы ДНаТ— натриевые . Связано это с длиной излучаемых волн — 589 – 589,5 нм. Приборы натриевые высокого давления функционируют при величине этого параметра около 10 кПа.

Для разрядных трубок таких ламп применяется специальный материал — светопропускающая керамика. Силикатное стекло для этой цели непригодно, т.к. пары натрия очень опасны для него. Рабочие пары натрия, вводимого в колбу, обладают давлением от 4 до 14 кПа. Для них характерны небольшие потенциалы ионизации и возбуждения.

Характеристики натриевых ламп

Чтобы возместить потери натрия, неизбежно возникающие в процессе горения, необходим некоторый его избыток. Это порождает пропорциональную зависимость показателей давления ртути, натрия и температуры холодной точки. В последней происходит конденсация излишка амальгамы.

Когда лампа горит, на ее торцах оседают продукты испарения, что приводит к потемнению концов колбы. Процесс сопровождается изменением в сторону роста температуры катода, повышением давления натрия и ртути. В результате увеличивается потенциал и напряжение лампы. При монтаже ламп натриевых балласты от ДРЛ и ДРИ непригодны.

Вид #2 — лампы низкого давления

Во внутренней полости таких приборов находится газ под давлением более низким, чем внешнее. Разделяют их на ЛЛ и КЛЛ и применяют не только для освещения торговых точек, но и для домашнего обустройства. Люминесцентные лампы в этом ряду — наиболее популярны.

Читайте также:  Почему сопротивление катушки при переменном токе больше чем при постоянном токе

Преобразование энергии электричества в световую происходит в два этапа. Ток между электродами провоцирует излучение в ртутных парах. Основным составляющим лучистой энергии, появляющейся при этом, является коротковолновое УФ излучение. Видимый свет составляет близко 2%. Далее излучение дуги в люминофоре трансформируется в световое.

Маркировка люминесцентных ламп содержит как буквы, так и цифры. Первый символ — это характеристика спектра излучения и конструктивные признаки, второй — мощность в ваттах.

  • ЛД — люминесцентная дневного света;
  • ЛБ — белого света;
  • ЛХБ — так же белого, но холодного;
  • ЛТБС — теплого белого.

У некоторых приборов освещения спектральный состав излучения улучшен с целью получения более совершенной светопередачи. В их маркировке присутствует символ «Ц». Люминесцентные лампы снабжают помещения равномерным, мягким светом.

Люминесцентные лампы

Поверхность излучения ЛЛ довольно большая, поэтому сложно управлять пространственным рассредоточением света. В нестандартных условиях, в частности, при большой запыленности, применяют лампы рефлекторные. В этом случае внутреннюю площадь колбы не полностью закрывает диффузный отражающий слой, а только на две третьих ее.

Люминофором покрывают 100% внутренней поверхности. Часть колбы, не имеющая рефлекторного покрытия, пропускает световой поток намного больший, чем такая же по объему трубка обычной лампы — около 75%. Распознать такие лампы можно по маркировке — в нее включена буква «Р».

В отдельных случаях основной характеристикой ЛЛ выступает цветовая температура Тц. Приравнивают ее к температуре черного тела, выдающего ту же цветность. По очертаниям ЛЛ бывают линейными, U-образными, в форме символа W, кольцевыми. В обозначение таких ламп входит соответствующая буква.

Наиболее популярны приборы, имеющие мощность 15 – 80 Вт. При светоотдаче 45 – 80 лм/Вт горение ЛЛ длится минимум 10 000 часов. На качество работы ЛЛ очень влияет окружающая среда. Рабочей для них считается наружная температура от 18 до 25⁰.

При отклонениях уменьшается как световой поток, так и эффективность светоотдачи, и напряжение зажигания. При низкой температуре шанс на зажигание приближается к нулю.

Компактная лампа

К лампам низкого давления принадлежат и люминесцентные компактные — КЛЛ.

Устройство их аналогично обычным ЛЛ:

  1. Проходит высокое напряжение между электродами.
  2. Воспламеняются пары ртути.
  3. Возникает ультрафиолетовое свечение.

Люминофор внутри трубки делает ультрафиолетовые лучи невидимыми для человеческого зрения. Доступным становится только видимое свечение. Компактное исполнение прибора стало возможным после изменения состава люминофора. КЛЛ, как и обычные ЛН, имеют разную мощность, но показатели первых значительно ниже.

Сравнение мощностей КЛЛ и ЛН

Измерение цветовой температуры происходит в кельвинах. Значение 2700 – 3300 К указывает на цвет теплый желтого оттенка. 4200 – 5400 — белый обычный, 6000 – 6500 — белый холодный с синевой, 25000 — сиреневый. Регулировку цветности осуществляют путем изменения составляющих люминофора.

Индекс цветопередачи дает характеристику такому параметру, как идентичность естественности цвета со стандартом, приближенным по максимуму к солнечному. Абсолютно черный — 0 Rа, наибольшая величина — 100 Rа. Осветительные приборы КЛЛ входят в диапазон от 60 до 98 Rа.

Лампы натриевые, относящиеся к группе низкого давления, обладают высокой температурой максимально холодной точки — 470 К. Более низкая не сможет способствовать сохранению требуемого уровня концентрации паров натрия.

К своему пику резонансное излучение натрия подходит при температуре 540 – 560 К. Эта величина соизмерима с давлением испарений натрия 0,5 – 1,2 Па. Светоотдача ламп этой категории самая высокая по сравнению с другими осветительными приборами общего применения.

Положительные и отрицательные стороны ГРЛ

Встречаются ГРЛ как в профессиональной аппаратуре, так и в приборах, предназначенных для научных исследований.

Как главные преимущества осветительных приборов этого вида обычно называют такие их характеристики:

  • Уровень светоотдачи высокий. Этот показатель не очень снижает даже толстое стекло.
  • Практичность, выражающаяся в долговечности, что позволяет применять их для уличного освещения.
  • Устойчивость в сложных климатических условиях. До первого понижения температуры их используют с применением обычных плафонов, а зимой — со специальными фонарями и фарами.
  • Доступная стоимость.

Минусов у этих ламп не очень много. Неприятной особенностью является довольно высокий уровень пульсирования светового потока. Вторым веским недостатком является сложность включения. Для устойчивого горения и нормальной работы им просто необходим балласт, ограничивающий напряжение для необходимых приборам пределов.

Третий минус заключается в зависимости параметров горения от достигаемой температуры, которая опосредованно влияет на давление рабочего пара в колбе.

Поэтому большинство газоразрядных приборов набирает стандартные характеристики горения спустя некоторый временной период после включения. Излучающий спектр у них ограничен, поэтому цветопередача как у ламп высокого напряжения, так и низкого неидеальна.

Характеристики ДРЛ

Работа приборов возможна только в условиях переменного тока. Активируют их при помощи балластного дросселя. Для разогрева необходимо какое-то время. Из-за содержания ртутных паров, они не совсем безопасны.

Выводы и полезное видео по теме

Видео #1. Сведения о ГЛ. Что это такое, принцип работы, плюсы и минусы в следующем видеоролике:

Видео #2. Популярно о люминесцентных лампах:

Несмотря на появление все более совершенных осветительных приборов, газоразрядные лампы не теряют своей актуальности. В некоторых сферах они просто незаменимы. Со временем ГРЛ обязательно найдут новые области применения.

Расскажите о том, как выбирали газоразрядную лампочку для установки в дачный уличный или домашний светильник. Поделитесь тем, что лично для вас стало решающим фактором приобретения. Оставляйте, пожалуйста, комментарии в находящемся ниже блоке, задавайте вопросы и размещайте фото по теме статьи.

Источник



Правда и вымысел о пусковых токах светильников

Светодиодные светильники за последние пять лет превратились из экзотических устройств для сторонников экологического стиля жизни в предметы повседневного обихода. Поэтому не удивительно, что установка таких светильников все чаще осуществляется не инженерами экстра-класса в рамках проектов государственной важности, а в самых обычных офисах рядовыми электриками или вообще людьми, имеющими об электричестве только самые элементарные представления. И каким же бывает разочарование, когда при включении вроде бы «экономичных» светодиодных светильников срабатывает защитный автомат, выбранный, вроде бы, с соблюдением всех правил. Или возникает парадоксальная ситуация, когда при замене люминесцентных светильников на светодиодные срабатывает предохранитель, который ранее без проблем «держал» очень «прожорливые» приборы еще советского производства. Самое время разувериться в экономичности светодиодных светильников. Проблемы возникают потому, что не учитывается важнейший параметр любого светильника — значение пускового тока. Причем такой подход навязывают сами производители светильников, зачастую утверждающие, что у их продукции пусковых токов просто нет.

Правда и вымысел о пусковых токах светильников

При включении электрического устройства, как правило, наблюдаются переходные процессы. Кроме этого, для запуска устройства может потребоваться большая мощность, чем в установившемся режиме. Из-за этого наблюдается такое явление как пусковой ток. Значение пускового тока равно максимальному значению входного тока при включении устройства. Пусковой ток выражается либо в абсолютных значениях, либо как кратность максимального значения входного тока к потребляемому току в установившемся режиме. Другим важным значением является длительность пускового тока — время при запуске, в течение которого входной ток устройства превышает потребляемый ток в установившемся режиме.

Наличие пускового тока характерно даже для такого «древнего» и простого источника света как лампа накаливания. Вольфрамовая нить в охлажденном состоянии имеет сопротивление в 10-15 раз меньше, чем в нагретом до температуры, когда она светится. Соответственно, пусковой ток лампы накаливания в 10-15 раз больше потребляемоготокавустановившемся режиме.

Вот, кстати, почему лампы накаливания (и похожи по принципу работы галогенные лампы) выходят из строя чаще всего при включении.

В разрядных источниках света при запуске энергия затрачивается на создание плазмы между электродами, то есть электрического разряда, дающего свечение. К таким источникам света относятся, например, натриевые, металлогалогенные и люминесцентные лампы. Данные по кратности пусковых токов и их продолжительности можно найти в таблице 1.

Таблица 1. Параметры запуска для традиционных источников света

Источник

Газоразрядная лампа: устройство, принцип работы, классификация

Среди большого разнообразия осветительного оборудования существуют лампы различного принципа действия. Сегодня достаточно весомую нишу в общем объеме устройств освещения занимают газоразрядные лампы. В чем заключается принцип их работы, и как они устроены, мы рассмотрим в данной статье.

Читайте также:  Коэффициент усиления по току в биполярном транзисторе определяют из

Устройство и принцип работы

В сравнении с другими типами ламп, газоразрядные устройства имеют целый ряд отличий. Что сказывается и на их конструктивных особенностях, и на принципе действия. Чтобы разобраться с основами получения светового излучения в газоразрядных лампах, для начала рассмотрим их конструктивные особенности.

Газоразрядная лампа: устройство

Рис. 1. Устройство газоразрядной лампы

  • Цоколя – предназначен для подключения газоразрядного устройства к электрической сети. Может выполняться в различных типах и размерах, под параметры конкретного светильника.
  • Колбы – изготавливается из жаропрочного стекла, предназначена для создания вакуума вокруг горелки. Выполняется герметичной для предотвращения нарушения разреженной среды по отношению к окружающему пространству.
  • Кронштейна крепления – представляет собой несущую конструкцию, выступающую и в роли опоры для газовой горелки, и в качестве одного из проводников электрического тока.
  • Горелки – как правило, трубка из оксида металла, внутри которой и происходит электрический разряд. Наполняется смесью инертных газов и паров металла, в зависимости от модели, наполняемые компоненты могут существенно отличаться.
  • Электродов – предназначены для начала искрообразования и продолжения горения тлеющего разряда.

Принцип действия газоразрядных ламп заключается в получении светового потока от ионизации смести газа и паров металла. Рассмотрим принцип их работы на следующем примере (см. рисунок 2):

Принцип действия газоразрядной лампы

Рис. 2. Принцип действия газоразрядной лампы

При подаче напряжения на светильник с газоразрядной лампой осуществляется его преобразование через пускорегулирующий аппарат (ПРА). Затем повышенное напряжение порядка 2 – 5кВ поступает на электроды лампы. Этого достаточно для пробоя газового промежутка, поэтому, сначала возникает искра, а затем загорается тлеющий разряд внутри трубки.

Температура горения разряда достигает 1300 ºС, за счет чего смесь разогревается до такого состояния, когда все свободные частицы обладают достаточной энергией для выхода за пределы атома. Физически этот процесс сопровождается планомерным повышением интенсивности светового потока по мере разогрева газоразрядной среды. При этом можно наблюдать некоторые колебания цветового спектра свечения по мере изменения диапазона излучаемой волны.

Заметьте, несмотря на то, что в конструкции самой газоразрядной лампы ПРА отсутствует, без него запустить устройство не получится. В состав пускорегулирующего аппарата входит:

  • дроссель-трансформатор, предотвращающий резкое нарастание тока при протекании переходного процесса;
  • импульсное зажигающее устройство — кратковременно увеличивает напряжение на электродах лампы до величины пробоя искрового промежутка;
  • конденсатор – применяется для сглаживания кривой напряжения, но устанавливается не во все модели ПРА.

В зависимости от типа газоразрядной лампы, будет отличаться и устройство ПРА, технические особенности его компонентов. Поэтому для каждого конкретного вида осветительного оборудования устанавливаются свои модули.

Чем заполняются газоразрядные лампы?

Пример наполнения газоразрядной лампы

Рис. 3. Пример наполнения газоразрядной лампы

Для наполнения газоразрядных ламп применяются различные типы инертных газов, которые будут активироваться при подаче напряжения на контакты цоколя. Наиболее распространенными из них являются аргон, неон, ксенон и криптон. В некоторых моделях применяется смесь нескольких газовых для получения газоразрядной среды с заданными свойствами.

Помимо инертного газа, лампа может заполняться парами металлов, самые известные из которых натрий и ртуть. В зависимости от способа приведения газоразрядной лампы в рабочее состояние они также разделяются на несколько видов. Но, следует отметить, что наличие металла не является обязательным условием, так как на практике встречаются лампы исключительно с инертным газом – ксеноновые и неоновые. Поэтому в таких моделях в качестве наполнителя используется только газ.

Отдельной категорией являются металлогалогенные лампы, колба которых заполняется не только инертными газами и парами натрия и ртути, но и галогенидами металлов.

Классификация

Современный рынок газоразрядных источников света предоставляет достаточно большое разнообразие моделей. В зависимости от технических параметров, наполнения и других факторов можно выделить несколько категорий, по которым они будут отличаться.

Так, в зависимости от наполнения, все модели можно разделить на:

  • натриевые;
  • ртутные;
  • металлогалогенные;
  • ксеноновые;
  • неоновые.

В зависимости от источника света газоразрядные лампы можно подразделить на:

  • индукционные;
  • газосветные;
  • люминесцентные.

В зависимости от величины давления, создаваемого газом внутри колбы, все устройства подразделяются на лампы:

  • низкого давления;
  • высокого давления;
  • сверхвысокого давления.

Рассмотрим два последних фактора разделения газоразрядных ламп по видам более детально.

По источнику света

Типы газоразрядных ламп

Рис. 4. Типы газоразрядных ламп

В зависимости от источника получения светового излучения все газоразрядное оборудование бывает индукционное, газосветное, люминесцентное. Индукционные модели приводятся в свечение посредством электродов, которые раскаляются от протекания электрического разряда. За счет чего их еще называют электродосветными лампами.

В газосветных лампочках источником излучения выступают молекулы или атомы, возбуждаемые протекающим электрическим процессом. При этом в газовой среде образуется достаточное количество энергии для постоянного излучения. Люминесцентные лампы имеют специальное покрытие на поверхности колбы, содержащее люминофоры. Протекающий в газоразрядной лампе разряд активизирует частицы газа, которые, в свою очередь, воздействуют на люминофор.

По величине давления

Лампы высокого и низкого давления

Рис. 5. Лампы высокого и низкого давления

В зависимости от величины формируемого давления внутри газоразрядного источника света все модели подразделяются на три класса:

  • Низкого давления – от 0,15 до 10 4 Па, часто применяются в бытовых целях, ярко выраженным представителем являются люминесцентные лампы;
  • Высокого давления – от 3×10 4 до 10 6 Па, отличаются достаточно большим потоком света при малом потреблении электроэнергии, как правило, устанавливаются на улице, так как хорошо переносят сложные метеоусловия;
  • Сверхвысокого давления – более 10 6 Па, применяются для медицинских целей, пищевой промышленности и прочих отраслей, где требуется получить высокоинтенсивное излучение на малой площади.

Характеристики

Для сравнения с другими видами осветительного оборудования, необходимо детально изучить рабочие параметры газоразрядных ламп:

  • Время готовности – согласно п.34 ГОСТ 24127-80 это временной интервал, протекающий с начала подачи напряжения до момента выхода лампы на рабочие характеристики.
  • Потребляемая мощность – отображает величину нагрузки, потребляемую из сети;
  • Срок службы – характеризует продолжительность активной работы лампы, может колебаться от 2000 до 20 000 часов;
  • Светоотдача – определяет величину светового потока, получаемого с одного ватта потребленной электроэнергии, может колебаться в пределах от 40 до 220 Лм/Вт;
  • Температура цветового свечения – определяет спектр цвета, излучаемого газоразрядной лампой, в зависимости от модели находится в пределах от 2200 до 20 000 К;

Температура цветопередачиРис. 6. Температура цветопередачи

  • Индекс цветопередачи – указывает на интенсивность восприятия цветов той поверхности, на которую попадает свет;

Пример влияния индекса цветопередачиРис. 7. Пример влияния индекса цветопередачи

  • Напряжение зажигания – в соответствии с п.35 ГОСТ 24127-80 это такая наименьшая разность потенциалов на электродах, которой будет достаточно для начала образования разряда.

Утилизация

В виду наличия ртути и других загрязняющих веществ в составе лампочки, способ их утилизации в корне отличается от остальных видов ламп. Для этих целей работают специальные организации, занимающиеся сбором и дальнейшей демеркуризацией определенной категории газоразрядных ламп.

Утилизация газоразрядных ламп

Рис. 8. Утилизация газоразрядных ламп

Если такая лампочка разобьется у вас дома, необходимо сразу принять для предотвращения отравления парами ртути домочадцев. Более детально об этом вы можете узнать из следующей статьи: https://www.asutpp.ru/razbilas-energosberegayuschaya-lampa.html

Преимущества и недостатки

К основным преимуществам газоразрядных источников света следует отнести:

  • Высокий уровень светоотдачи – такие устройства куда эффективнее обычных лампочек Ильича и прекрасно освещают даже через непрозрачные плафоны.
  • Длительный период эксплуатации – существенно превосходят лампочки накаливания, а некоторые модели, могут конкурировать даже со светодиодными источниками.
  • Простая схема подключения.
  • Демократичная стоимость, комплектуется недорогими элементами, которые легко меняются в процессе работы.
  • Некоторые версии отлично подходят для установки на улице, но, как правило, плохо справляются в условиях сильных морозов.

К основным недостаткам следует отнести наличие пульсации светового потока, необходимость подключения ПРА для запуска, ограниченный диапазон рабочего напряжения, чувствительность к качеству питающего напряжения. Требуется время на разогрев, из-за чего их нецелесообразно использовать в сетях с частой коммутацией. Невозможно регулировать интенсивность свечения при помощи диммера.

Области применения

Несмотря на серьезную конкуренцию со стороны светодиодных осветительных приборов, газоразрядные источники света остаются популярными в ряде отраслей хозяйственной деятельности. Так их часто можно встретить в:

  • уличном освещении;
  • подсветке рекламных вывесок;
  • магазинах, промышленных объектах, торговых центрах, офисных, вокзальных и складских помещениях;
  • парках, скверах, зонах отдыха;
  • подсветке фасадов зданий и т.д.

Источник