Меню

Топографические диаграммы для цепи синусоидального тока

Топографические диаграммы для цепи синусоидального тока

Каждая точка электрической схемы, в которой соединяются элементы схемы, имеет свое значение комплексного потенциала.

Совокупность точек комплексной плоскости, изображающих комплексные потенциалы одноименных точек электрической схемы, называют топографической диаграммой.

Термин «топографическая» объясняется тем, что диаграмма напоминает топографическую карту местности, где каждой точке местности отвечает определенная точка карты. Расстояние между двумя точками на местности можно определить, измерив расстояние между одноименными точками на карте.

Аналогичные измерения можно проводить и на топографической диаграмме. Напряжение между любыми двумя точками электрической схемы, например между точками а и по значению и направлению определяется вектором, проведенным на топографической диаграмме от точки b к точке а.

При построении топографической диаграммы, как и потенциальной (см. § 2.10), потенциал любой точки схемы может быть принят равным нулю. На диаграмме эту точку помещают в начало координат. Тогда положение остальных точек схемы на диаграмме определяется параметрами цепи, ЭДС и токами ветвей. Рассмотрим несколько примеров.

Пример 37. По данным примера 35 построить топографическую диаграмму для схемы рис. 3.16, а.

Решение. Обозначим буквами а, точки схемы рис. 3.16, а, которые хотим отобразить на топографическом диаграмме. Примем потенциал точки а равным нулю:

Выразим потенциал точки b через потенциал точки а:

Знак плюс перед слагаемым обусловлен тем, что при переходе отточки а к точке b перемещение происходит навстречу току (при этом потенциал увеличивается на ). Точка b на диаграмме имеет координату но оси абсцисс Аналогично,

Совокупность точек а, b, с, d, е на комплексной плоскости (рис. 3.18) представляет собой топографическую диаграмму схемы рис. 3.16, а. По ней удобно определять напряжение между любыми двумя точками схемы и сдвиг по фазе этого напряжения относительно любого другого напряжения.

Пример 38. Найти токи в схеме (рис. 3.19) методом узловых потенциалов. Положительные направления ЭДС указаны на схеме стрелками, .

Решение. Запишем ЭДС в комплексной форме:

Выберем положительные направления для токов в ветвях к узлу а. Определим проводимости ветвей:

Заземлим точку Уравнение по методу узловых потенциалов

Пример 39. Найти токи в схеме рис. 3.20, а методом контурных токов и построить топографическую диаграмму, если .

Решение. Выберем направления контурных токов по часовой стрелке. Запишем в общем виде уравнения для контурных токов с уравнениями (2.46)]

где — собственное сопротивление первого контура; — собственное сопротивление второго контура, — собственное сопротивление второго контура, взятое со знаком минус, — алгебраическая сумма ЭДС первого контура, -алгебраическая сумма ЭДС второго контура,

Топографическая диаграмма изображена на рис. 3.20, б.

Источник

Топографическая диаграмма.

Для наглядного определения величины и фазы напряжения между различными точками электрической цепи удобно использовать топографические диаграммы. Они представляют собой соединенные соответственно схеме электрической цепи точки на комплексной плоскости, отображающие их потенциалы. На топографической диаграмме, представляющей собой в принципе векторную диаграмму, порядок расположения векторов напряжений строго соответствует порядку расположения элементов в схеме, а вектор падения напряжения на каждом последующем элементе примыкает к концу вектора напряжения на каждом предыдущем элементе.

В качестве примера построим векторную диаграмму токов, а также топографическую диаграмму потенциалов для схемы, расчет которой был приведен в лекции № 5 (см. рис. 1).

При данных параметрах и заданном напряжении на входе схемы найденные значения токов (см. лекцию № 5) равны: ; ; .

При построении векторной диаграммы зададимся масштабами токов и напряжений (см. рис. 2). Векторную диаграмму можно строить, имея запись комплекса в показательной форме, т.е. по значениям модуля и фазы . Однако на практике удобнее проводить построения, используя алгебраическую форму записи, поскольку при этом вещественная и мнимая составляющие комплексной величины непосредственно откладываются на соответствующих осях комплексной плоскости, определяя положение точки на ней.

Построение векторной диаграммы токов осуществляется непосредственно на основании известных значений их комплексов. Для построения топографической диаграммы предварительно осуществим расчет комплексных потенциалов (другой вариант построения топографической диаграммы предполагает расчет комплексов напряжений на элементах цепи с последующим суммированием векторов напряжений вдоль контура непосредственно на комплексной плоскости).

При построении топографической диаграммы обход контуров можно производить по направлению тока или против. Чаще используют второй вариант.

В этом случае с учетом того, что в электротехнике принято, что ток течет от большего потенциала к меньшему, потенциал искомой точки равен потенциалу предыдущей плюс падение напряжения на элементе между этими точками. Если на пути обхода встречается источник ЭДС, то потенциал искомой точки будет равен потенциалу предыдущей плюс величина этой ЭДС, если направление обхода совпадает с направлением ЭДС, и минус величина ЭДС, если не совпадает. Это вытекает из того, что напряжение на источнике ЭДС имеет направление, противоположное ЭДС.

Читайте также:  Сколько нужно тока чтобы зарядить аккумулятор автомобиля

Обозначив на схеме по рис. 1 точки между элементами цепи e и a и приняв потенциал точки а за нуль( ), определим потенциалы этих точек:

Таким образом, в результате проведенных вычислений получено, что . Но разность потенциалов точек е и а равно напряжению U, приложенному к цепи, а оно равно 120 В. Таким образом, второй закон Кирхгофа выполняется, а следовательно, вычисления выполнены верно. В соответствии с полученными результатами строится топографическая диаграмма на рис. 2. Следует обратить внимание на ориентацию векторов, составляющих топографическую диаграмму, относительно векторов тока: для резистивных элементов соответствующие векторы параллельны, для индуктивного и емкостных – ортогональны.

В заключение заметим, что векторы напряжений ориентированы относительно точек топографической диаграммы противоположно положительным направлениям напряжений относительно соответствующих точек электрической цепи. В этой связи допускается не указывать на топографической диаграмме направления векторов напряжений.

Дата добавления: 2015-04-16 ; просмотров: 18 ; Нарушение авторских прав

Источник



Топографическая диаграмма

ads

Напряжение на выводах цепи переменного тока или на любом из её участков можно выразить комплексным числом – комплексным напряжением и изобразить на комплексной плоскости вектором. Напряжение между двумя точками электрической цепи представляет собой разность потенциалов между этими точками. Следовательно, потенциалы отдельных точек цепи также можно представить комплексами – комплексными потенциалами и изображать соответствующими векторами. Вектор, изображающие комплексный потенциал, начинается в начале координат; его конец обозначают той же буквой (или цифрой), что в точке цепи, потенциал которой изображает вектор. Например, на рисунке 1 построены векторы комплексных потенциалов ϕа = 10 + j20 В и ϕб = 30 – j15 В и разность векторов или вектор напряжения Uаб = ϕа ϕб = 10 + j20 – 30 + j15 = -20 + j35 В.

Напряжение Uаб построено по правилу вычитания векторов, так что ϕа = ϕб + Uаб рисунок 1. Поэтому напряжение Uаб изображается вектором, направленным от точки б (второй индекс у напряжения Uаб) к точке а (первый индекс).

Напряжение Uба = ϕб ϕа = 30 – j15 -10 — j20 В = 20 – j35 В. Очевидно, Uба = — Uаб и изображается вектором, направленным от точки а к точке б (штриховая линия на рисунке 1).

Комплексные потенциалы

Рисунок 1 — Комплексные потенциалы

Такая векторная диаграмма называется топографической; она удовлетворяет двум условиям:

  1. Каждой точке электрической цепи соответствует определенная точка на векторной диаграмме и
  2. вектор, проведённый из начала координат в какую-либо точку диаграммы изображает комплексный потенциал соответствующей точки цепи.

Построение топографической диаграммы

При построении топографической диаграммы потенциал одной из точек цепи принимают равным нулю и на диаграмме точку нулевого потенциала совмещают с началом координат. На такой диаграмме отрезок, соединяющий любые две точки, также определяет комплексное напряжение между соответствующими точками цепи.

Рисунок 2 а — Неразветвлённая цепь

На рисунке 2, а представлена неразветвлённая цепь.

1) Для построения топографической диаграммы примем, например, потенциал точки д равным нулю, т.е. ϕд = 0.

2) Обходим контур в направлении, встречно току, определим потенциалы всех точек цепи. Начальную фазу общего тока примем равной нулю, т. е. I = I, поэтому вектор тока I направлен вдоль положительной полуось действительных величин.

3) Потенциал точки г или ϕг выше потенциала ϕд на падение напряжения в сопротивлении R2, т.е. на R2*I или ϕг = ϕд R2*I = 0 + R2*I = R2*I. Построив вектор R2*I, получим на диаграмме точку г.

4) Потенциал точки в или ϕв больше потенциала ϕг, на падение напряжения на индуктивном сопротивлении XL2 или в комплексной форме на jXL2*I. Построив вектор напряжения Uвг = ϕв ϕг = jXL2*I, начинающийся в точке г и опережающий ток по фазе на 90 градусов (индуктивное сопротивление — вектор направлен вверх), получим точку в.

5) Потенциал точки б или ϕб больше ϕв на падение напряжения R1*I. Построив из точки в вектор напряжения Uбв = ϕб ϕв = R1*I, параллельный току, находим точку б.

6) Потенциал точки а или ϕа больше ϕб на падение напряжения на емкости -jXc1*I. Построив из точки б вектор напряжения Uаб = ϕа ϕб = -jXc1*I, отстающий по фазе от тока на угол 90 градусов (емкостное сопротивление — вектор напряжения направлен вниз), получим точку а.

Читайте также:  Переменный ток основные характеристики цепей переменного тока

Вектор, соединяющий точки д и а направленный от точки д к точке а, изображает напряжение Uад на выходах цепи.

Необходимо учесть, что векторы напряжений на топографической диаграмме имеют по отношению к точкам цепи направления, обратные положительным направлениям напряжений относительно тех же точек цепи.

Например, напряжение Uвд = ϕв ϕд , направленное на схеме от точки в к точке д (по направлению тока), на топографической диаграмме имеет противоположное направление относительно этих точек, что согласуется с правилом вычитания векторов, согласно которому вектор разности всегда направлен в одну сторону с уменьшаемым вектором.

Источник

Топографические диаграммы для цепи синусоидального тока

Совокупность радиус-векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения, токи и т. д., называется векторной диаграммой. Векторные диаграммы наглядно иллюстрируют ход решения задачи. При точном построении векторов можно непосредственно из диаграммы определить амплитуды и фазы искомых величин. Приближенное (качественное) построение диаграмм при аналитическом решении служит надежным контролем корректности хода решения и позволяет легко определить квадрант, в котором находятся определяемые векторы.

При построении векторных диаграмм для цепей с последовательным соединением элементов за базовый (отправной) вектор следует принимать вектор тока (см. лекцию № 8), а к нему под соответствующими углами подстраивать векторы напряжений на отдельных элементах. Для цепей с параллельным соединением элементов за базовый (отправной) вектор следует принять вектор напряжения (см. лекцию № 8), ориентируя относительно него векторы токов в параллельных ветвях.

Для наглядного определения величины и фазы напряжения между различными точками электрической цепи удобно использовать топографические диаграммы. Они представляют собой соединенные соответственно схеме электрической цепи точки на комплексной плоскости, отображающие их потенциалы. На топографической диаграмме, представляющей собой в принципе векторную диаграмму, порядок расположения векторов напряжений строго соответствует порядку расположения элементов в схеме, а вектор падения напряжения на каждом последующем элементе примыкает к концу вектора напряжения на каждом предыдущем элементе.

В качестве примера построим векторную диаграмму токов, а также топографическую диаграмму потенциалов для схемы, расчет которой был приведен в лекции № 5 (см. рис. 1).

При данных параметрах и заданном напряжении на входе схемы найденные значения токов (см. лекцию № 5) равны: ; ; .

При построении векторной диаграммы зададимся масштабами токов и напряжений (см. рис. 2). Векторную диаграмму можно строить, имея запись комплекса в показательной форме, т.е. по значениям модуля и фазы . Однако на практике удобнее проводить построения, используя алгебраическую форму записи, поскольку при этом вещественная и мнимая составляющие комплексной величины непосредственно откладываются на соответствующих осях комплексной плоскости, определяя положение точки на ней.

Построение векторной диаграммы токов осуществляется непосредственно на основании известных значений их комплексов. Для построения топографической диаграммы предварительно осуществим расчет комплексных потенциалов (другой вариант построения топографической диаграммы предполагает расчет комплексов напряжений на элементах цепи с последующим суммированием векторов напряжений вдоль контура непосредственно на комплексной плоскости).

При построении топографической диаграммы обход контуров можно производить по направлению тока или против. Чаще используют второй вариант.

В этом случае с учетом того, что в электротехнике принято, что ток течет от большего потенциала к меньшему, потенциал искомой точки равен потенциалу предыдущей плюс падение напряжения на элементе между этими точками. Если на пути обхода встречается источник ЭДС, то потенциал искомой точки будет равен потенциалу предыдущей плюс величина этой ЭДС, если направление обхода совпадает с направлением ЭДС, и минус величина ЭДС, если не совпадает. Это вытекает из того, что напряжение на источнике ЭДС имеет направление, противоположное ЭДС.

Обозначив на схеме по рис. 1 точки между элементами цепи e и a и приняв потенциал точки а за нуль( ), определим потенциалы этих точек:

Таким образом, в результате проведенных вычислений получено, что . Но разность потенциалов точек е и а равно напряжению U, приложенному к цепи, а оно равно 120 В. Таким образом, второй закон Кирхгофа выполняется, а следовательно, вычисления выполнены верно. В соответствии с полученными результатами строится топографическая диаграмма на рис. 2. Следует обратить внимание на ориентацию векторов, составляющих топографическую диаграмму, относительно векторов тока: для резистивных элементов соответствующие векторы параллельны, для индуктивного и емкостных – ортогональны.

Читайте также:  Метод изображений для токов

В заключение заметим, что векторы напряжений ориентированы относительно точек топографической диаграммы противоположно положительным направлениям напряжений относительно соответствующих точек электрической цепи. В этой связи допускается не указывать на топографической диаграмме направления векторов напряжений.

Потенциальная диаграмма

Потенциальная диаграмма применяется при анализе цепей постоянного тока. Она представляет собой график распределения потенциала вдоль участка цепи или контура, при этом по оси абсцисс откладываются сопротивления резистивных элементов, встречающихся на пути обхода ветви или контура, а по оси ординат – потенциалы соответствующих точек. Таким образом, каждой точке рассматриваемого участка или контура соответствует точка на потенциальной диаграмме.

Рассмотрим построение потенциальной диаграммы на примере схемы на рис. 3.

При параметрах схемы ; ; ; ; и токи в ветвях схемы равны: ; ; .

Построим потенциальную диаграмму для контура abcda.

Для выбора масштаба по оси абсцисс просуммируем сопротивления резисторов вдоль рассматриваемого контура: после чего определим потенциалы точек контура относительно потенциала произвольно выбранной точки a, потенциал которой принят за нуль:

Таким образом, координаты точек потенциальной диаграммы: а(0;0);b(4;-20); c(4;17); d(7;2). С учетом выбранных масштабов на рис. 4 построена потенциальная диаграмма для выбранного контура.

Преобразование линейных электрических схем

Для упрощения расчета и повышения наглядности анализа сложных электрических цепей во многих случаях рационально подвергнуть их предварительному преобразованию. Очевидно, что преобразование должно приводить к упрощению исходной схемы за счет уменьшения числа ее ветвей и (или) узлов. Такое преобразование называется целесообразным. При этом при любых способах преобразований должно выполняться условие неизменности токов в ветвях участков схемы, не затронутых этими преобразованиями. Из последнего вытекает, что, если преобразованию подвергаются участки цепи, не содержащие источников энергии, то мощности в исходной и эквивалентной схемах одинаковы. Если в преобразуемые участки входят источники энергии, то в общем случае мощности в исходной и преобразованной цепях будут различны.

Рассмотрим наиболее важные случаи преобразования электрических цепей.

1. Преобразование последовательно соединенных элементов

Рассмотрим участок цепи на рис. 5,а. При расчете внешней по отношению к этому участку цепи данную ветвь можно свести к виду на рис. 5,б, где

При этом при вычислении эквивалентной ЭДС k-я ЭДС берется со знаком “+”, если ее направление совпадает с направлением эквивалентной ЭДС, и “-”, если не совпадает.

2. Преобразование параллельно соединенных ветвей

Пусть имеем схему на рис. 6,а.

Согласно закону Ома для участка цепи с источником ЭДС

; (3)
, (4)

причем со знаком “+” в (4) записываются ЭДС и ток , если они направлены к тому же узлу, что и ЭДС ; в противном случае они записываются со знаком “-”.

3. Взаимные преобразования “треугольник-звезда”

В ряде случаев могут встретиться схемы, соединения в которых нельзя отнести ни к последовательному, ни к параллельному типу (см. рис. 7). В таких случаях преобразования носят более сложный характер: преобразование треугольника в звезду и наоборот.

Преобразовать треугольник в звезду – значит заменить три сопротивления, соединенных в треугольник между какими-то тремя узлами, другими тремя сопротивлениями, соединенными в звезду между теми же точками. При этом на участках схемы, не затронутых этими преобразованиями, токи должны остаться неизменными.

Без вывода запишем формулы эквивалентных преобразований

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш.шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Что представляют собой векторные диаграммы?
  2. Что такое топографические диаграммы, для чего они служат?
  3. В чем сходство и различие топографической и потенциальной диаграмм?
  4. Какой практический смысл преобразований электрических цепей?
  5. В чем заключается принцип эквивалентности преобразований?
  6. Построить потенциальные диаграммы для левого и внешнего контуров цепи рис.3.

  • Полагая в цепи на рис. 8 известными ток и параметры всех ее элементов, качественно построить векторную диаграмму токов и топографическую диаграмму потенциалов для нее.
  • Определить входное сопротивление цепи на рис. 8, если .

    Определить сопротивления ветвей треугольника, эквивалентного звезде между узлами a,c и d в цепи на рис. 8.

    Определить сопротивления ветвей звезды, эквивалентной треугольнику в цепи на рис. 8, состоящему из элементов , и .

    Источник