Меню

Трансформаторы тока в сетях 110 кв

Трансформаторы тока ТГФ-110.

Данная статья носит информативный характер. Чтобы узнать цены, сроки, наличие, аналоги, перейдите в каталог

Трансформаторы тока ТГФ-110.

Трансформаторы тока ТГФ-110.

Трансформаторы тока ТГФ-110 кВ серийно изготавливаются в соответствии с ТУ 3414-004-05755697-2008 и ТУ 3414-006-05755697-2008, согласованными с РАО «ЕЭС России». Этот тип оборудования внесен в Государственный реестр средств измерения РФ, имеет сертификаты соответствия и утверждения типа.

Трансформаторы тока ТГФ-110 предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления в сетях переменного тока частотой 50 и 60 Гц напряжением 110 кВ. Конструкция трансформаторов устойчива к воздействию окружающей среды, а высокий класс точности измерительной обмотки (0,5S и 0,2S) позволяет использовать их для коммерческого учета электроэнергии и в АСКУЭ.

Трансформаторы тока выпускаются с шестью и более вторичными обмотками, комплектуются опорными изоляторами, как отечественного, так и зарубежного производства.

Особенностью конструкции является:

  • наличие защитной мембраны, исключающей взрыв при пробое изоляции внутри трансформатора (итспытания с искусственным перекрытием изоляции внутри корпуса показали полную надежность этой защиты при токах КЗ 50 кА длительностью 0,5с;
  • высокая врыво- пожаробезопасность, т.к. элегаз не поддерживает горение;
  • обслуживание в эксплуатации, которое сводится к мониторингу давления элегаза в трансформаторе;
  • отсутствие необходимости контроля качества элегаза методом взятия проб;
  • правильно выбранные и изготовленные уплотнения гарантирующие эксплуатацию трансформатора без подпитки элегазом в течение 20 лет.

Предприятие-изготовитель осуществляет гарантийное, в течение 5 лет и сервисное обслуживание трансформаторов тока типа ТГФ-110 кВ.

Технические характеристики трансформаторов тока ТГФ-110.

(*) – для измерений и учета

  • при cosφ2 = 0,8 2÷60 кВа
  • при cosφ2 = 1 I= 1 А 1;2 ВА
  • при cosφ2 = 1 I= 5 А 2,5;3,75 ВА

Источник

Разновидности и классификация трансформаторов тока

Июль 26th, 2012 Рубрика: Трансформаторы тока, Электрооборудование

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_12

Добро пожаловать на страницы сайта «Заметки электрика».

В прошлой статье я рассказал Вам про трансформаторы тока и их назначение.

Но в настоящее время на рынке существует большой выбор и разнообразие трансформаторов тока. И чтобы Вам было легче ориентироваться среди них, необходимо их классифицировать.

Вот сегодня мы и поговорим об их разновидностях и классификации.

Классификация ТТ по назначению

Как разделяются трансформаторы тока по назначению, я подробно описал в статье про применение и назначение трансформаторов тока.

Еще существуют лабораторные трансформаторы тока, о которых я не упомянул в вышесказанной статье. Эти лабораторные ТТ имеют высокий класс точности и имеют несколько коэффициентов трансформации.

Так выглядит лабораторный трансформатор тока УТТ-6м1, установленный на моем рабочем стенде для проверки релейной защиты. Также мы его используем для измерения тока в первичной цепи при прогрузке автоматических выключателей более 100 (А).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Сейчас я подробно на нем останавливаться не буду. Расскажу о нем в отдельной статье. Кому интересно, то можете подписываться на статьи (в правой колонке сайта) и получать уведомление на почту о выходе новой статьи на сайте.

Классификация трансформаторов тока по месту установки

По месту установки трансформаторов тока их можно классифицировать следующим образом:

Наружные трансформаторы тока могут устанавливаться на открытом воздухе, т.е. это может быть открытое распределительное устройство (ОРУ). Категория размещения электрооборудования в данном случае является I и регламентируется ГОСТ 15150-69.

На фотографии ниже показаны трансформаторы тока наружной установки, установленные на стороне 110 (кВ).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Внутренние трансформаторы тока могут быть установлены только в закрытых помещениях. Это может быть закрытое распределительное устройство (ЗРУ), так и комплектное распределительное устройство (КРУ), а также все помещения закрытого типа, регламентируемого ГОСТом 15150-69.

Пример внутренней установки трансформаторов тока смотрите на фотографиях ниже.

Вот установка высоковольтного трансформатора тока ТПШЛ-10 в ЗРУ-110 (кВ). Этот трансформатор стоит в цепи короткозамыкателя.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

На фотографии ниже показан пример установки высоковольтных трансформаторов тока ТПЛ-10 в кабельном отсеке ячейки КРУ напряжением 10 (кВ).

transformatory_toka_трансформаторы_тока

Это трансформаторы ТПФМ-10 на одной из распределительных подстанций 10 (кВ).

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока_11

А это несколько примеров низковольтных трансформаторов тока внутренней установки: КЛ-0,66 и ТТИ-А.

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_25

peregruzka_transformatorov_toka_перегрузка_трансформаторов_тока_26

Встроенные трансформаторы тока встраиваются в силовые трансформаторы, выключатели, генераторы и другие электрические машины. В качестве внутренней среды электрооборудования применяется трансформаторное масло или газ.

Пример встроенных ТТ Вы можете посмотреть на фотографии ниже. Эти трансформаторы тока ТВТ встроены в бак силового трансформатора 110/10 (кВ) мощностью 40 (МВА). Они установлены на стороне 110 (кВ) и основная цель их установки — это осуществление дифференциальной защиты трансформатора.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Переносные ТТ применяются для лабораторных электрических измерений и испытаний электрооборудования. Примером переносного трансформатора тока является лабораторный трансформатор тока, о котором я говорил в самом начале статьи.

Специальные ТТ предназначаются и устанавливаются в специальных электроустановках шахт, морских судов, электровозов. Сюда можно отнести трансформаторы тока, установленные в силовой цепи питания электрических печей высокой частоты. Мне лично не приходилось их видеть своими глазами.

Разделение ТТ по способу установки

По способу установки трансформаторов тока их можно классифицировать следующим образом:

Проходные ТТ применяют тогда, когда необходимо их установить в проеме стены или металлической поверхности (основания). Чаще всего они применяются в качестве вводов, а также на старых подстанциях с бетонным распределительным устройством (БРУ), по особенностям конструкций бетонных перегородок. Проходные трансформаторы тока играют роль проходного изолятора.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Как видно по фотографиям, проходные трансформаторы тока легко узнать по особенностям расположения выводов первичной обмотки. Один вывод всегда расположен вверху, другой — внизу.

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Опорные трансформаторы тока применяют и устанавливают на ровную опорную плоскость.

Читайте также:  Как изменится емкостное сопротивление конденсатора при уменьшении частоты переменного тока в 4 раза

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

Отличительной особенностью опорных трансформаторов тока является то, что вывода первичной обмотки располагаются либо все вверху, либо один вывод слева, другой — справа.

Классификация трансформаторов тока по коэффициенту трансформации

В чем же заключается классификация трансформаторов тока по коэффициенту трансформации?

Трансформаторы тока бывают:

Трансформаторы тока с одним коэффициентом трансформации имеют на протяжении всего срока их службы и эксплуатации один постоянный коэффициент, который никаким образом изменить нельзя. Они и нашли самое широкое применение.

parametry_transformatora_toka_параметры_трансформатора_тока

У трансформаторов тока с несколькими коэффициентами трансформации можно изменить этот коэффициент путем несложных манипуляций. Например, изменить число витков обмоток, как первичной, так и вторичной.

Опять же в пример Вам привожу свой лабораторный трансформатор тока УТТ-6м1.

Классификация трансформаторов тока по первичной обмотке

По конструкции первичной обмотки, трансформаторы тока можно разделить следующим образом:

Об этом мы поговорим с Вами в отдельной статье про одновитковые и многовитковые трансформаторы тока, т.к. материала по этой теме очень много.

Разделение ТТ по типу изоляции

Суть этого разделения заключается в способах изоляции обмоток трансформатора тока (первичной и вторичной). Существует следующие способы изоляции обмоток между собой:

  • твердая изоляция
  • вязкая изоляция
  • смешанная изоляция
  • газовая изоляция

Под твердой изоляцией подразумевается использование фарфора, полимерных материалов, бакелита, капрона и эпоксидной изоляции (смолы).

Вязкая изоляция состоит из компаундов различных составов.

Под смешанной изоляцией понимают бумажно-масляную изоляцию.

В качестве газовой изоляции применяется воздух или элегаз.

Классификация ТТ по методу преобразования

Классификация трансформаторов тока по методу преобразования заключается в самом принципе преобразования переменного электрического тока.

Различают следующие методы преобразования:

Классификация трансформаторов тока по классу напряжения

Ну вот мы и добрались до класса напряжения. И конечно же трансформаторы тока тоже по ним делятся. Деление происходит очень легко и просто:

klassifikaciya_transformatorov_toka_классификация_трансформаторов_тока

oshibka_v_podklyuchenii_elektroschetchika_ошибка_в_подключении_электросчетчика_3

Разницу по классу напряжения трансформаторов тока видно не вооруженным глазом.

Выводы

Из опыта эксплуатации и технического обслуживания трансформаторов тока на подстанциях своего предприятия скажу, что чаще всего трансформаторы тока с классом напряжения от 3-10 (кВ) выполняются проходными, реже опорными. Все они предназначены для внутренней установки и имеют один коэффициент трансформации. Также у них используется 2 вторичные обмотки, одна из которых используется для цепей измерения и учета электроэнергии, а другая — для релейной защиты.

Источник



Описание, виды и перемещение трансформаторов тока 110 кВ

Трансформатор – главная часть схемы подачи электроэнергии. Его основная функция – перевод мощности из одной системы подачи тока в другую.

Описание

Трансформатор тока 110 кВ выполнен в форме прямоугольника, где наверху размещается корпус, выполненный из металла. Крепится он на изолятор опорного типа, который монтируется на основную часть. В ней находится пульт для вторичных обмоток. Главная обмотка расположена непосредственно в корпусе, там же где и её вывод. Внутренняя часть корпуса полностью обрабатывается газом, который играет роль изолятора.

Силовой трансформатор

При монтировании первичной обмотки следует отталкиваться от коэффициента трансформации. Он необходим для корректировки витков, используя соединение последовательно-параллельного типа.

Обмотки второго уровня размещаются в экране электрической статики, которые помогают нормализовать магнитное поле внутри конструкции. Главная часть выполнена из сплава железа и нанокристаллов, защитные элементы – сталь анизотропного типа.

Различают такие виды трансформаторов переменного тока на 110 кв:

Масляный трехфазный двухобмоточный с мощностью 25000 кВА

Имеет защитные модели для регулировки напряжения и температуры, в зависимости от нагрузки. Рекомендуется использовать в схемах общего применения. Подходит для мест с умеренным климатическим поясом, и для работы в отрытом пространстве. При установке необходимо обратить внимание:

  • Устанавливается на высоте не более 1 км от уровня моря.
  • Температурный показатель должен быть от -45°С до +40°С.

Силовой трансформатор

Конструкция включает в себя:

  • активная часть, которая расположена в емкости со специальной жидкостью;
  • контрольный элемент мощности для системы нагрузки (РПН);
  • расширитель входных процессов (ВН – 110 кВ, для нулевой подачи – 35 кВ, вводный НН – 11кВ);
  • охлаждающий элемент класса Д;
  • защитные комплектующие (два маслоуказателя стрелочного типа);
  • два типа реле (струйное и газовое);

Силовой трансформатор

  • клапан для предохранения
  • датчик температур для верхнего слоя масла;
  • фильтр из термосифона, с помощью которого удаляется влага из масла;
  • элемент для сушки воздуха;
  • кабели соединения.

Технические характеристики трансформатора тока 110 кв

Обладает мощностью в 25 тысяч потребляемой мощности (кВА) и частотой работы в 50 Гц. Напряжение трансформатора для ВН-115, а для НН – 11 кВ. Процент движения холостого тока не поднимается выше 0,55. Использует продольно-поперечный вид движения, с шириной колеи до двух метров. Общая масса составляет 49,2 тонны, масса основной части – 25 тонн. Срок эксплуатации – 25 лет. Размер конструкции – 6,1 м, ширина – 4,3 м и высота примерно 5,38 метров.

Трехфазный, двух обмоточный с мощностью 10000 кВА

Силовой трансформатор

Этот вид предназначен для общего назначения и является статическим. Применяется в климатической зоне умеренного типа при наружной установке. Уровень климатического исполнения – У.

Элементы, входящие в конструкцию:

  • масляный указатель для расширителя;
  • клапан предохранения;
  • каретки с системой поворота;
  • радиатор с наличием вентиляции;
  • элементы контроля и измерения масла (устанавливается при наличии масло проводимости навесной системы охлаждения);
  • пульт для контроля системы нагревания;
  • защитное и газовое реле;
Читайте также:  Вращательный момент рамки с током в магнитном

Силовой трансформатор

  • трубы для отвода газа;
  • термометры для манометрического сигнала;
  • устройство ввода;
  • элементы фильтрации;
  • трансформаторное масло;
  • элементы для сушки воздуха;
  • табличка.

Трехфазный, двух обмоточный с мощностью 6300 кВА

Имеет систему регулировки напряжения при нагрузке в 25%, система охлаждения типа М. Служит для изменения переменного тока в электросетях

  • расширительный элемент;
  • нейтраль ВН;
  • разъемы для открытия составных частей;
  • подъемная скоба;
  • коробка с клеммами;
  • регулятор для слива масла;
  • подъемный элемент;

Силовой трансформатор

  • отверстие для оценки качества масляного раствора;
  • каретки;
  • масляный разъем;
  • РПН;
  • контроллер для масла;
  • радиатор.

Трехфазный, двух обмоточный 2500 кВА

Используется для активного движения воздушных потоков. Обладает системой контроля при большой нагрузке.

Имеет схожие комплектующие, как и предыдущая модель.

Перемещение трансформатора

Трансформатор комфортно перемешать, так как он имеет 4 каретки для поворота. При этом процессе входы высокого напряжение следует монтировать на фланцы, где находятся трансформаторы тока. Нижние элементы ограждаются бакелитовой зашитой, корпус – экранами для распределения электрического поля.

Силовой трансформатор

Альтернативные виды

В качестве альтернативы используются выносные трансформаторы тока 110 кв.
Применяются при потенциальной опасности повреждения цепи от главного элемента до выключателя.

Устанавливаются сзади выключателя, располагаясь со стороны подключения. Подключение происходит путем токопровода с закрытым комплектом.

Такой способ служит дополнительной защитой для устройства и защищает его шины от дифференциации.

  • Высокий уровень защиты от любого типа перегрева.
  • Простота эксплуатации.
  • Стабильная работа и длительный срок применения.
  • Служит как распределитель, для больших потоков электроэнергии.
  • Низкий уровень коррозии.
  • Компактные размеры, масса и цена.

Источник

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Читайте также:  Утечка тока бмв х5 е70

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник