Меню

Цепь переменного тока с индуктивностью задачи

Лекция № 19 — Цепь переменного тока с индуктивностью

При включении индуктивности в цепь и при всяком изменении тока в электрической цепи вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная электродвижущая сила (ЭДС). Эту ЭДС назвали ЭДС самоиндукции.

ЭДС самоиндукции имеет реактивный характер. Так, например, при увеличении тока в цепи ЭДС самоиндукции будет направлена против ЭДС источника напряжения, и поэтому ток в электрической цепи не может установиться сразу. И, наоборот, при уменьшении тока в цепи индуктируется ЭДС самоиндукции такого направления, что, мешая току исчезать, она поддерживает этот убывающий ток.

Цепь переменного тока, содержащая индуктивность

ЭДС самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (числа витков, наличия стальных сердечников).

В цепи переменного тока ЭДС самоиндукции возникает непрерывно, так как ток в цепи непрерывно изменяется.

На рисунке 1 представлена схема цепи переменного тока, содержащей катушку с индуктивностью L без стального сердечника. Для простоты будем считать сначала, что активное сопротивлениекатушки очень мало и им можно пренебречь.

Рассмотрим внимательнее изменение переменного тока за время одного периода. На рисунке 2 показана кривая изменения переменного тока. Первая половина периода разбита на мелкие одинаковые части.

Определение скорости изменения переменного тока

Рисунок 2. Определение скорости изменения переменного тока

За промежуток времени 1 величина тока изменилась от нуля до 11’. Прирост величины тока за это время равен а.

За время, обозначенное отрезком 12, мгновенная величина выросла до 22’, причем прирост величины тока равен б.

В течение времени, обозначенного отрезком 23, ток увеличивается до 33’, прирост тока показывает отрезок в и так далее.

Так, с течением времени переменный ток возрастет до максимума (при 90°). Но, как видно из чертежа, прирост тока делается все меньше и меньше, пока, наконец, при максимальном значении тока этот прирост не станет равным нулю.

При дальнейшем изменении тока от максимума до нуля убыль величины тока становится все больше и больше, пока, наконец, около нулевого значения ток, изменяясь с наибольшей скоростью, не исчезнет, но тут же появляется вновь, протекая в обратном направлении.

Рассматривая изменение тока в течение периода, мы видим, что с наибольшей скоростью изменяется ток около своих нулевых значений. Около максимальных значений скорость изменения тока падает, а при максимальном значении тока прирост его равен нулю. Таким образом, переменный ток меняется не только по величине и направлению, но также и по скорости своего изменения. Переменный ток, проходя по виткам катушки, создает переменное магнитное поле. Магнитные линии этого поля, пересекая витки своей же катушки, индуктируют в них ЭДС самоиндукции.

На рисунке 3 кривая i показывает изменение переменного тока в катушке. Как было уже указано, величина ЭДС самоиндукции зависит от скорости изменения тока и от индуктивности катушки. Но так как индуктивность катушки в нашем случае остается без изменения, ЭДС самоиндукции будет зависеть только от скорости изменения тока. Выше было показано, что наибольшая скорость изменения тока имеет место около нулевых значений тока. Следовательно, наибольшее изменение ЭДС самоиндукции имеет те же моменты.

ЭДС самоиндукции в катушке, включенной в цепь переменного тока

Рисунок 3. ЭДС самоиндукции в катушке, включенной в цепь переменного тока

В момент а ток резко и быстро увеличивается от нуля, а поэтому, как следует из вышеприведенной формулы, ЭДС самоиндукции (кривая eL) имеет отрицательное максимальное значение. Так как ток увеличивается, то ЭДС самоиндукции по правилу Ленца должна препятствовать изменению (здесь увеличению) тока. Поэтому ЭДС самоиндукции при возрастании тока будет иметь направление, обратное току (положение б), что следует также из указанной формулы. Скорость изменения тока по мере приближения его к максимуму уменьшается. Поэтому ЭДС самоиндукции также уменьшается, пока, наконец, при максимуме тока, когда изменения его будут равны нулю, она не станет равной нулю (положение в).

Переменный ток, достигнув максимума, начинает убывать. По правилу Ленца ЭДС самоиндукции будет мешать току убывать и, направленная уже в сторону протекания тока, будет его поддерживать (положение г).

При дальнейшем изменении переменный ток быстро убывает до нуля. Резкое уменьшение тока в катушке повлечет за собой также быстрое уменьшение магнитного поля и в результате пересечения магнитными линиями витков катушки в них будет индуктироваться наибольшая ЭДС самоиндукции (положение д).

Ток в катушке опережает ЭДС самоиндукции по фазе на 90°

Во вторую половину периода изменения тока картина повторяется и снова при возрастании тока ЭДС самоиндукции будет мешать ему, имея направление, обратное току (положение е).

При убывании тока ЭДС самоиндукции, имея направление в сторону тока, будет поддерживать его, не давая ему исчезнуть сразу (положение з).

На рисунке видно, что ЭДС самоиндукции отстает по фазе от тока на 90° или на ¼ периода. Так как магнитный поток совпадает по фазе с током, то можно сказать, что ЭДС, наводимая магнитным потоком, отстает от него по фазе на 90° или на ¼ периода.

Нам уже известно, что две синусоиды, сдвинутые одна относительно другой на 90°, можно изобразить векторами, расположенными под углом 90° (рисунок 4).

Так как ЭДС самоиндукции в цепях переменного тока непрерывно противодействует изменениям тока, то, чтобы дать возможность току протекать по виткам катушки, напряжение сети должно уравновешивать ЭДС самоиндукции. Иными словами, напряжение сети в каждый момент времени должно быть равно и противоположно ЭДС самоиндукции.

Приложенное к катушке напряжение сети опережает ток на 90° и противоположно ЭДС самоиндукции

Вектор напряжения сети, равный и противоположный ЭДС самоиндукции eL, мы обозначим через U (рисунок 5). Только при условии, что к зажимам катушки будет приложено напряжение сети, равное и противоположное ЭДС самоиндукции, и, стало быть, это напряжение сети U уравновесит ЭДС самоиндукции eL, по катушке сможет проходить переменный ток I.

Но в этом случае напряжение сети U будет опережать по фазе ток I на 90°.

Таким образом, в цепях переменного тока ЭДС самоиндукции, возникая непрерывно, вызывает сдвиг фаз между током и напряжением. Возвращаясь к рисунку 3, мы видим, что ток i по катушке будет проходить и тогда, когда напряжение сети (кривая uL) равно нулю (положение в), и даже тогда, когда напряжение сети направлено в сторону, обратную току (положение г и з).

Итак отметим, что в цепи переменного тока, когда ЭДС самоиндукции отсутствует, напряжение сети и ток совпадают по фазе. Индуктивная же нагрузка в цепях переменного тока (обмотки электродвигателей и генераторов, обмотки трансформаторов, индуктивные катушки) всегда вызывает сдвиг фаз между током и напряжением.

Читайте также:  Как изменятся показания приборов при перемещении ползунка реостата влево сила тока

Можно показать, что скорость изменения тока пропорциональна угловой частоте ω. Следовательно, действующее значение ЭДС самоиндукции eLможет быть найдено по формуле:

Как было отмечено выше, напряжение, приложенное к зажимам цепи, содержащей индуктивность, в каждый момент времени должно быть по величине равно ЭДС самоиндукции:

Формула закона Ома для цепи переменного тока, содержащего индуктивность, будет такова:

Величина xL называется индуктивным сопротивлением цепи, или реактивным сопротивлением индуктивности, и измеряется в омах. Таким образом, реактивное индуктивное сопротивление представляет собой своеобразное препятствие, которое оказывает цепь изменениям тока в ней. Оно равно произведению индуктивности на угловую частоту. Формула индуктивного сопротивления имеет вид:

Индуктивное сопротивление проводника зависит от частоты переменного тока и индуктивности проводника. Поэтому индуктивное сопротивление катушки, включаемой в цепь токов различной частоты, будет различным. Например, если имеется катушка индуктивностью 0,05 Гн, то путем расчета индуктивного сопротивления выяснится, что в цепи частотой 50 Гц ее индуктивное сопротивление будет:

а в цепи тока частотой 400 Гц

Та часть напряжения сети, которая идет на преодоление (уравновешивание) ЭДС самоиндукции, называется индуктивным падением напряжения или реактивной слагающей напряжения.

Рассмотрим теперь, какая мощность потребляется от источника переменного напряжения, если к его зажимам подключена индуктивность.

Кривые мгновенных значений напряжения, тока и мощности для цепи, содержащей индуктивность

Рисунок 6. Кривые мгновенных значений напряжения, тока и мощности для цепи, содержащей индуктивность

На рисунке 6 даны кривые мгновенных значений напряжения, тока и мощности для этого случая. Мгновенное значение мощности равно произведению мгновенных значений напряжения и тока:

Из чертежа видно, что если u и i имеют одинаковые знаки, то кривая p положительная и располагается выше оси ωt. Если же u и i имеют разные знаки, то кривая p отрицательна и располагается ниже оси ωt.

В первую четверть периода ток, а в месте с ним и магнитный поток катушки увеличиваются. Катушка забирает из сети мощность. Площадь, заключенная между кривой p и осью ωt, есть работа (энергия) электрического тока. За первую четверть периода энергия, забираемая из сети, идет на создание магнитного поля вокруг витков катушки (мощность положительная). Количество энергии, запасаемое в магнитном поле за время роста тока, можно определить по формуле:

За вторую четверть периода ток убывает. ЭДС самоиндукции, которая в первую четверть периода стремилась помешать возрастанию тока, теперь, когда ток начинает уменьшаться, будет мешать ему уменьшаться. Сама катушка становится как бы генератором электрической энергии. Она возвращает в сеть энергию, запасенную в ее магнитном поле. Мощность отрицательна, и на рисунке 6 кривая pрасполагается ниже оси ωt.

За вторую половину периода явление повторяется. Таким образом, между источником переменного напряжения и катушкой, содержащей индуктивность, происходит обмен мощностью. В течение первой и третьей четвертей периода мощность поглощается катушкой, в течение второй и четвертой мощность возвращается источнику.

В этом случае, в среднем, расхода мощности не будет, несмотря на то, что на зажимах цепи есть напряжение U и в цепи протекает ток I.

Тот же результат мы получим, если вычислим среднюю или активную мощность по формуле, приведенной выше:

В нашем случае между напряжением и током существует сдвиг фаз, равный 90°, и cos φ = 90° = 0.

Поэтому активная мощность также равна нулю, то есть расхода мощности нет.

Источник

Задачи на цепи переменного тока

В электротехнике большое количество задач посвящено цепям переменного тока . Рассмотрим примеры решения некоторых из них.

Задача 1

В сеть переменного тока включены последовательно катушка индуктивностью 3 мГн и активным сопротивлением 20 Ом и конденсатор емкостью 30 мкФ. Напряжение Uc на конденсаторе 50 В. Определите напряжение на зажимах цепи, ток в цепи, напряжение на катушке, активную и реактивную мощность.

Решение задачи начнём с определения тока в цепи, но для этого нужно сначала определить реактивное сопротивление конденсатора.

Как известно, реактивное сопротивление конденсатора зависит от частоты переменного тока (при её увеличении уменьшается, а при её уменьшении увеличивается), следовательно

Ток в цепи находим из соображения, что элементы в цепи соединены последовательно, а значит, ток на конденсаторе и катушке будет одним и тем же.

Следующим шагом мы определяем индуктивное сопротивление и напряжение катушки

Зная активное сопротивление обмотки катушки, можем определить падение напряжения на нем

Теперь, когда мы знаем напряжение на каждом из элементов, мы можем определить напряжение на зажимах цепи, которое будет равно

Активную мощность в данном случае можно определить как мощность, выделяемую на обмотке катушки

Для определения реактивной мощности необходимо для начала определить угол сдвига ϕ

Так как реактивная мощность имеет отрицательное значение, то цепь имеет емкостной характер.

Задача 2

В цепи как показано на схеме, подключены катушка, конденсатор и резисторы. Индуктивность катушки – 15 мГн, емкость конденсатора 20 мкФ, R1=10 Ом, R2=30 Ом. Напряжение источника 100 В, частота 100 Гц. Определить токи в цепи, активную, реактивную и полную мощность в цепи.

Данную задачу удобнее решать с помощью проводимостей, так как катушка и конденсатор соединены параллельно.

Тогда активная проводимость первой ветви равна

Реактивная проводимость первой ветви равна

Полная проводимость первой ветви

Аналогичный расчет произведем для второй ветви содержащей конденсатор

Полная проводимость цепи

Токи в цепи определим зная напряжение и проводимости

Источник



Цепь переменного тока с индуктивностью задачи

§ 54. Индуктивность в цепи переменного тока

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока (рис. 57, а), в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю.
Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

где L — индуктивность катушки;
— скорость изменения тока в ней.
Электродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д. с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается XL и измеряется в омах.

Читайте также:  Клещи для измерения постоянного тока без разрыва цепи

Таким образом, индуктивное сопротивление катушки XL, зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты ω) и от индуктивности катушки L

XL = ωL, (58)

где XL — индуктивное сопротивление, ом;
ω — угловая частота переменного тока, рад/сек;
L — индуктивность катушки, гн.
Так как угловая частота переменного тока ω = 2πf, то индуктивное сопротивление

XL = 2πf L, (59)

где f — частота переменного тока, гц.

Пример. Катушка, обладающая индуктивностью L = 0,5 гн, присоединена к источнику переменного тока, частота которого f = 50 гц. Определить:
1) индуктивное сопротивление катушки при частоте f = 50 гц;
2) индуктивное сопротивление этой катушки переменному току, частота которого f = 800 гц.
Решение . Индуктивное сопротивление переменному току при f = 50 гц

XL = 2πf L = 2 · 3,14 · 50 · 0,5 = 157 ом.

При частоте тока f = 800 гц

XL = 2πf L = 2 · 3,14 · 800 · 0,5 = 2512 ом.

Приведенный пример показывает, что индуктивное сопротивление катушки повышается с увеличением частоты переменного тока, протекающего по ней. По мере уменьшения частоты тока индуктивное сопротивление убывает. Для постоянного тока, когда ток в катушке не изменяется и магнитный поток не пересекает ее витки, э. д. с. самоиндукции не возникает, индуктивное сопротивление катушки XL равно нуло. Катушка индуктивности для постоянного тока представляет собой лишь сопротивление

Выясним, как изменяется з. д. с. самоиндукции, когда по катушке индуктивности протекает переменный ток.
Известно, что при неизменной индуктивности катушки э. д. с. самоиндукции зависит от скорости изменения силы тока и она всегда направлена навстречу причине, вызвавшей ее.
На графике (рис. 57, в) переменный ток показан в виде синусоиды (сплошная линия). В первую четверть периода сила тока возрастает от нулевого до максимального значения. Электродвижущая сила самоиндукции ес, согласно правилу Ленца, препятствует увеличению тока в цепи. Поэтому на графике (пунктирной линией) показано, что ес в это время имеет отрицательное значение. Во вторую четверть периода сила тока в катушке убывает до нуля. В это время э. д. с. самоиндукции изменяет свое направление и увеличивается, препятствуя убыванию силы тока. В третью четверть периода ток изменяет свое направление и постепенно увеличивается до максимального значения; э. д. с. самоиндукции имеет положительное значение и далее, когда сила тока убывает, э. д. с. самоиндукции опять меняет свое направление и вновь препятствует уменьшению силы тока в цепи.

Из сказанного следует, что ток в цепи и э. д. с. самоиндукции не совпадают по фазе. Ток опережает э. д. с. самоиндукции по фазе на четверть периода или на угол φ = 90°. Необходимо также иметь в виду, что в цепи с индуктивностью, не содержащей г, в каждый момент времени электродвижущая сила самоиндукции направлена навстречу напряжению генератора U. В связи с этим напряжение и э. д. с. самоиндукции ес также сдвинуты по фазе друг относительно друга на 180°.
Из изложенного следует, что в цепи переменного тока, содержащей только индуктивность, ток отстает от напряжения, вырабатываемого генератором, на угол φ = 90° (на четверть периода) и опережает э. д. с. самоиндукции на 90°. Можно также сказать, что в индуктивной цепи напряжение опережает по фазе ток на 90°.
Построим векторную диаграмму тока и напряжения для цепи переменного тока с индуктивным сопротивлением. Для этого отложим вектор тока I по горизонтали в выбранном нами масштабе (рис. 57, б.)
Чтобы на векторной диаграмме показать, что напряжение опережает по фазе ток на угол φ = 90°, откладываем вектор напряжения U вверх под углом 90°. Закон Ома для цепи с индуктивностью можно выразить так:

Следует подчеркнуть, что имеется существенное отличие между индуктивным и активным сопротивлением переменному току.
Когда к генератору переменного тока подключена активная нагрузка, то энергия безвозвратно потребляется активным сопротивлением.
Если же к источнику переменного тока присоединено индуктивное сопротивление r = 0, то его энергия, пока сила тока возрастает, расходуется на возбуждение магнитного поля. Изменение этого поля вызывает возникновение э. д. с. самоиндукции. При уменьшении силы тока энергия, запасенная в магнитном поле, вследствие возникающей при этом э. д. с. самоиндукции возвращается обратно генератору.
В первую четверть периода сила тока в цепи с индуктивностью возрастает и энергия источника тока накапливается в магнитном поле. В это время э. д. с. самоиндукции направлена против напряжения.
Когда сила тока достигнет максимального значения и начинает во второй четверти периода убывать, то э. д. с. самоиндукции, изменив свое направление, стремится поддержать ток в цепи. Под действием э. д. с. самоиндукции энергия магнитного поля возвращается к источнику энергии — генератору. Генератор в это время работает в режиме двигателя, преобразуя электрическую энергию в механическую.
В третью четверть периода сила тока в цепи под действием э. д. с. генератора увеличивается, и при этом ток протекает в противоположном направлении. В это время энергия генератора вновь накапливается в магнитном поле индуктивности.
В четвертую четверть периода сила тока в цепи убывает, а накопленная в магнитном поле энергия при воздействии э. д. с. самоиндукции вновь возвращается генератору.
Таким образом, в первую и третью четверть каждого периода генератор переменного тока расходует свою энергию в цепи с индуктивностью на создание магнитного поля, а во вторую и четвертую четверть каждого периода энергия, запасенная в магнитном поле катушки в результате возникающей э. д. с. самоиндукции, возвращается обратно генератору.
Из этого следует, что индуктивная нагрузка в отличие от активной в среднем не потребляет энергию, которую вырабатывает генератор, а в цепи с индуктивностью происходит «перекачивание» энергии от генератора в индуктивную нагрузку и обратно, т. е. возникают колебания энергии.
Из сказанного следует, что индуктивное сопротивление является реактивным. В цепи, содержащей реактивное сопротивление, происходят колебания энергии от генератора к нагрузке и обратно.

Источник

Решение задач по теме «Переменный ток»

Решение задач по теме «Переменный ток»

1. В сеть переменного тока с действующим напряжением 220 В включено активное сопротивление 55 Ом. Определить действующее и амплитудное значение силы тока.

Читайте также:  Максимальный ток герметичного аккумулятора

Действующее значение силы тока . Амплитудное значение силы тока связано с действующим соотношением

.

2.В подводящих ветвях текут: а) постоянный; б) переменный ток (см. рис.). Какой ток будет в ветвях в случае а? В случае б)?

В случае постоянного тока ток будет течь в ветви, где есть катушка индуктивности и резистор. Тока в ветви конденсатора не будет.

В случае б) ток будет во всех ветвях.

3.Найти период переменного тока, для которого конденсатор ёмкостью 2 мкФ представляет сопротивление 20 Ом.

Так как емкостное сопротивление равно

а период Т связан с частотой соотношением

Выразим отсюда период Т

4.Определить действующие значения токов для зависимостей , представленных на графиках.

1.Определим количество теплоты, выделяющееся на сопротивлении R за период колебаний

Таким образом, в этом случае действующее значение тока . Результат очевиден, если понимать, что количество теплоты, выделяемое на активном сопротивлении не зависит от направления тока.

2. Определим количество теплоты, выделяющееся на сопротивлении R за период колебаний

Таким образом, действующее значение силы тока равно

3. Определим количество теплоты, выделяющееся на сопротивлении R за период колебаний

Следовательно, действующее значение силы тока равно

5. Неоновая лампа включена в сеть переменного тока с эффективным напряжением VЭ=71 В и периодом T=(1/50)с. Найти промежуток времени , в течение которого длится вспышка лампы, и частоту вспышек лампы n. Напряжение зажигания лампы VЗ=86,7 В считать равным напряжению гашения VГ.

В сети с эффективным напряжением VЭ амплитуда напряжения . Принимая начальную фазу напряжения равной нулю, запишем закон изменения напряжения с течением времени:

Зажигания (гашения) лампы происходят в моменты времени , когда мгновенное напряжение в сети равно напряжению зажигания (см. рисунок):

Наименьшее положительное значение, которое может иметь величина , стоящая под знаком синуса, составляет . В общем случае

где m=0,1,2,… Следовательно,

Знак плюс здесь соответствует моментам зажигания лампы (напряжение в эти моменты возрастает по модулю), а знак минус – моментам гашения лампы (напряжение убывает по модулю). В частности, первая вспышка происходит при и первое гашение – при . Таким образом, длительность вспышки мс.

Вспышки и гашения происходят в течение каждой половины периода; следовательно, частота вспышек .

6. В цепь последовательно включены резистор с сопротивлением R, конденсатор с емкостью C и катушка с индуктивностью L. По цепи протекает переменный ток . Определите амплитуды напряжения на каждом из элементов цепи и во всей цепи. По какому закону изменяется приложенное к цепи напряжение?

Амплитуда напряжения на резисторе ; амплитуда напряжения на конденсаторе ; амплитуда напряжения на катушке . Здесь — емкостное сопротивление, — индуктивное сопротивление.

Казалось бы, при последовательном соединении . Но это не так, потому что в цепи переменного тока мгновенные значения напряжения на отдельных элементах – это функции времени, а не постоянные величины! По существу речь идет о сложении гармонических колебаний. При этом очень важно, что фазы трех складываемых гармонических колебаний различны: совпадает по фазе с силой тока,

отстает от тока на , опережает ток на . Запишем закон изменения каждого из напряжений:

Мгновенное значение приложенного к цепи напряжения

Итак, при сложении мгновенных значений периодически изменяющихся величин (в данном случае — напряжений) их амплитуды не всегда складываются. Выражение (1) можно записать в виде , где амплитуда напряжения во всей цепи . Выведенное здесь соотношение обычно записывают в виде и называют законом Ома для цепи переменного тока, а величину Z – полным сопротивлением цепи переменного тока. Величина характеризует сдвиг фаз между колебаниями силы тока и напряжения в цепи. Ее можно записать в виде . Полезно также иметь в виду, что .

7. В цепь переменного тока включены последовательно резистор с сопротивлением R, конденсатор с емкостью C и катушка с индуктивностью L. Амплитуда силы тока в цепи равна . Определите среднюю мощность P, потребляемую за период каждым из элементов цепи. Конденсатор и катушку считайте идеальными.

Мгновенная (т. е. средняя за очень малый промежуток времени) мощность на любом участке цепи , где u, i – мгновенные значения напряжения и силы тока. Если , то напряжение на резисторе изменяется по закону , на конденсаторе , а на катушке . При нахождении средних значений произведений ui воспользуемся тем, что

(черта сверху означает здесь усреднение за время, равное периоду колебаний). Тогда , где — действующее значение силы тока;

Таким образом, конденсатор и катушка в среднем не потребляют энергии (напомним, что речь идет об идеализированных элементах цепи, не обладающих активным сопротивлением). Конденсатор четверть периода заряжается, запасая энергию электрического поля , но следующую четверть периода он разряжается, полностью возвращая энергию в цепь. При возрастании силы тока в катушке, т. е. также в течение четверти периода, она запасает энергию магнитного поля , однако за следующую четверть периода эта энергия также полностью возвращается в цепь. Только в резисторе (элементе цепи, обладающем активным сопротивлением) происходит необратимое превращение электрической энергии во внутреннюю.

Ответ: , где ; .

8. В цепи переменного тока (см. рисунок) показания первого и второго вольтметров В и В. Каково показание третьего вольтметра?

Разумеется, из-за сдвига фаз между напряжениями на различных участках цепи . Вольтметры переменного тока показывают действующие значения соответствующих напряжений. Значит, амплитуда напряжения на конденсаторе , а амплитуда напряжения на резисторе . Если сила тока в цепи изменяется по закону , то

Следовательно, полное напряжение в цепи равно .

Итак, . Третий вольтметр показывает действующее значение полного напряжения В.

9. Два одинаковых идеальных трансформатора имеют обмотки из и витков. Они соединены последовательно различными обмотками (см. рисунок) и подключены к источнику переменного напряжения В. Определите напряжение между точками A и C.

Напряжение равно сумме напряжений на выходе каждого из трансформаторов (поскольку и совпадают по фазе). Эти напряжения можно выразить через напряжения и на выходе трансформаторов:

Итак, задача свелась к определению и . Пренебрегая активным сопротивлением обмоток трансформаторов, можно записать силу тока I в первичных обмотках в виде ( — индуктивность катушки с числом витков ). Тогда

Для катушек, отличающихся только числом витков, . Поэтому

Интересно, что при любых значениях и получаем , причем равенство достигается лишь при . Это следует из неравенства .

Источник