Меню

Цепь переменного тока с емкостью формулы

Цепь переменного тока с емкостью

Как известно из курса физики, совокупность двух проводников, разделенных слоем диэлектрика, называется конденсатором и представляет собой электрическую емкость.

Следовательно, всякая электрическая линия передачи (воздушная или кабельная) может рассматриваться как некоторая система конденсаторов или емкость.

Особенно большой емкостью обладают кабельные линии. Если приложить к кабелю периодически изменяющееся напряжение и оставить разомкнутым все его жилы в конце линии, то в кабеле, при его значительной длине, будут непрерывно циркулировать зарядно-разрядные токи.

Представим себе электрическую цепь переменного тока, в которую включен конденсатор с емкостью С (рис. 13).

Активное и индуктивное сопротивления будем считать равными нулю.

Пусть генератор имеет синусоидальное напряжение

При повышении напряжения электрические заряды будут притекать к обкладкам конденсатора, заряжая его. Вследствие появления зарядов на обкладках конденсаторов появится э.д.с. емкости, которая в любой момент времени равна и противоположна по знаку приложенному напряжению.

Рисунок 13 – Цепь с емкостью.

При понижении напряжения заряды будут стекать с обкладок обратно к генератору.

Под влиянием сил переменного электрического поля между обкладками конденсатора в атомах диэлектрика происходит смещение электронов то в одну, то в другую сторону. Это направленное колебательное движение электронов в атомах диэлектрика представляет собой так называемый ток смещения.

Таким образом, в проводах, соединяющих генератор с конденсатором, будут циркулировать зарядный и разрядный токи проводимости, а в диэлектрике между обкладками конденсатора – токи смещения. Поэтому принято считать, что конденсатор как бы «пропускает» через себя переменный электрический ток.

Для любого момента времени можно написать

где q – заряд;

и – напряжение в данный момент времени.

Подставляя выражение (34) в (35), получим

Производная будет представлять собой мгновенное значение тока, поэтому

Из выражения (37) следует, что ток опережает по фазе напряжение на угол (или на периода).

Наибольшее значение i будет при , т.е.

Разделив левую и правую части выражения (38) на , получим

Выражения (38) и (39) представляют собой закон Ома для цепи переменного тока с емкостью. Здесь носит название емкостного сопротивления, или реактивного сопротивления емкости, и измеряется в Омах.

Из формулы (38) и (39) следует, что величина тока при и зависит от емкости: при увеличении емкости ток возрастает, при уменьшении – убывает. Поэтому можно считать, что любой конденсатор ведет себя в цепи переменного тока как некоторое сопротивление.

На рисунке 14 показаны векторная (а) и волновые (б) диаграммы напряжения и тока.

а – векторная; б — волновые

Рисунок 14 – Диаграммы цепи с емкостным сопротивлением

Для данной цепи составим уравнение по второму закону Кирхгофа

т.е. в любой момент времени мгновенное значение приложенного к цепи напряжения равно и противоположно по знаку э.д.с. емкости. Следовательно, все ординаты кривой э.д.с. емкости (в том числе и амплитуды) будут равны и противоположны по знаку ординатам кривой напряжения. Поэтому кривая еL (см. рис. 14) будет сдвинута относительно кривой и на угол 180 о (или π). На такой же угол будут сдвинуты и векторы этих величин.

Мгновенная мощность в цепи переменного тока с емкостью будет равна

Из выражения (41) следует, что мгновенная мощность изменяется в этом случае также по синусоидальному закону с двойной частотой. Кривую мгновенной мощности можно получить путем умножения ординат тока и напряжения (рис. 14).

Если отсчет времени (t = 0) для тока вести с момента, когда он будет равен нулю (как это сделано на рис. 12), то

Отсюда следует, что ординаты кривой мгновенной мощности для цепи с емкостью равны (при равенстве хL и хс) и противоположны по знаку ординатам кривой мощности для цепи с индуктивностью, т.е. эти кривые сдвинуты между собой на угол π.

Из рисунка 14 видно, что в течение первой и третьей четвертей периода, когда напряжение возрастает от нуля до максимального значения, мощность положительна. Это значит, что генератор посылает энергию в конденсатор (конденсатор заряжается), где она накапливается в виде энергии электрического поля; при этом э.д.с. емкости направлена против тока.

Читайте также:  В цепи с активным сопротивлением энергия электрического тока преобразуется в энергию

В течение второй и четвертой периода, при убывании напряжения от максимального значения до нуля, мощность отрицательна. Это значит, что энергия , накопленная в электрическом поле конденсатора, при его разряде переходит в электромагнитную энергию и возвращается генератору; при этом э.д.с. емкости совпадает по направлению с током.

Таким образом, происходит непрерывный обмен энергией между генератором и конденсатором.

Средняя мощность генератора за период будет равна

Следовательно, и энергия, отдаваемая генератором в сеть за период, будет также равна нулю. Поэтому в цепи с емкостью, точно также как и в цепи с индуктивностью, отсутствует необратимый процесс преобразования электрической энергии в тепловую или механическую.

Энергия, полученная конденсатором от генератора за четверть периода,

т.е. она равна энергии, запасенной в электрическом поле конденсатора.

Мощность в цепи, содержащей только емкость, оценивается по ее наибольшему значению и называется реактивной мощностью.

Как следует из формулы (41), амплитуда мощности, или реактивная мощность будет равна, как и в случае цепи с индуктивностью:

Обобщая изложенное, можно сделать следующие выводы:

— в цепя переменного ока только с емкостным сопротивлением (R = 0; L = 0) ток опережает по фазе приложенное напряжение на угол , или на четверть периода во времени.

— закон Ома справедлив для амплитудных и действующих значений тока и напряжения. Сопротивлением в данном случае является величина , выражаемая в Омах и называемая емкостным сопротивлением или реактивным сопротивлением емкости. Это сопротивление – следствие противодействия внутреннего электрического поля диэлектрика конденсатора внешнему электрическому полю генератора, осуществляющему перенос электронов.

— при прохождении тока в цепи происходят колебания энергии от генератора к конденсатору и от конденсатора к генератору. Так как R = 0, то средняя мощность и энергия за период равны нулю.

Источник

Цепь переменного тока с ёмкостью

date image2015-02-24
views image502

facebook icon vkontakte icon twitter icon odnoklasniki icon

Проанализируем процессы в цепи переменного тока, представленной на рис.2.18. Зададимся напряжением на зажимах источника , тогда ток в цепи с ёмкостью так же будет меняться по синусоидальному закону. Ток определяется по формуле . Количество электричества Q конденсатора связано с напряжением на ёмкости и его ёмкостью: . Следовательно,

Рис.2.18. Цепь переменного тока с ёмкостью

Таким образом, ток в цепи с ёмкостью опережает по фазе напряжение на угол (рис. 2.19).

Рис.2.19. Зависимости мгновенных значений напряжения, тока и мощности цепи переменного тока с ёмкостью

Сопоставляя значения для мгновенного тока и напряжения в цепи с ёмкостью, из рис.2.19 имеем: . Из формулы (2.16) выведем закон Ома для амплитудных значений: или

Введем обозначение: , где — емкостное сопротивление.

Действительно, если , то измеряется в Омах.

Закон Ома для действующих значений напряжения и тока имеет выражение:

Для комплексных чисел закон Ома записывается в виде

Диаграммы в векторном и комплексном видах представлены на рис. 2.20.

Рис.2.20. Векторные диаграммы действующих значений тока и напряжения цепи переменного тока с ёмкостью в векторном и комплексном виде

Так как напряжение на ёмкости отстает от тока на угол , который изменяется по косинусоиде, то мгновенную мощность выразим в виде:

Мгновенная мощность p имеет частоту , но в отличие от индуктивности, здесь мощность положительна, пока возрастает напряжение на ёмкости. Происходит накопление энергии электрического поля на конденсаторе. Затем конденсатор разряжается на источник, и мощность становится отрицательной.

Из рис. 2.19 видно, что средняя или активная мощность P = Pср= 0. Амплитуда колебаний мощности в цепи с ёмкостью называют реактивной емкостной мощностью:

Единицей реактивной емкостной мощности является вольт-ампер реактивный (вар).

Источник



§53. Емкость в цепи переменного тока

Ток и напряжение. В цепи постоянного тока емкость (идеальный конденсатор) имеет сопротивление бесконечно большое, так как после окончания процесса заряда такой конденсатор не пропускает электрический ток. Однако при подключении емкости к источнику переменного тока (рис. 191,а) происходит непрерывный процесс его заряда и разряда, при этом через емкость проходит переменный ток.

Читайте также:  Синхронный двигатель переменного тока как генератор

Ток i при включении в цепь переменного тока емкости определяется количеством электричества q, проходящим по этой цепи в единицу времени. Следовательно,

где ?q — изменение количества электричества (заряда q) за время ?t.

Количество электричества q, накопленное в конденсаторе при изменении напряжения и, также непрерывно изменяется. Поэтому, учитывая формулу (69), будем иметь:

где ?u — изменение напряжения и за время ?t.

Из рис. 191,б видно, что скорость изменения напряжения ?u/?t будет наибольшей в моменты времени, когда угол ?t равен 0; 180 и 360°. Следовательно, в эти моменты времени ток i имеет максимальное значение. В моменты же времени, когда угол ?t равен 90° и 270°, скорость изменения напряжения ?u/?t = 0 и поэтому i = 0.

В течение первой четверти периода происходит заряд емкости и в цепи течет ток заряда, который считаем положительным. При этом по мере заряда емкости и увеличения разности потенциалов на электродах ток i уменьшается. При ?t = 90° емкость полностью заряжается, разность потенциалов на электродах становится равной напряжению и источника и ток i = 0.

Во второй четверти периода емкость начнет разряжаться и ток i изменяет свое направление (становится отрицательным). При

Рис. 191. Схема включения в цепь переменного тока емкости (а), кривые тока i напряжения u (б) и векторная диаграмма (в)

?t =180°, когда u = 0, ток i разряда достигает максимального значения. В этот момент изменяется полярность напряжения и источника и начинается процесс перезаряда емкости при противоположном (отрицательном) направлении тока i. При со/ = 270° заряд прекращается, ток i становится равным нулю и начинается разряд при первоначальном (положительном) направлении тока.

Таким образом, емкость в течение одного периода изменения напряжения и дважды заряжается и дважды разряжается. Следовательно, в цепи (см. рис. 191, а) непрерывно протекает переменный ток i. Из рис. 191,б видно, что при включении в цепь переменного тока емкости ток i опережает по фазе напряжение и на угол 90° или же что напряжение и отстает по фазе от тока i на угол 90° (рис. 191,в).

Емкостное сопротивление. Сопротивление, которое оказывает емкость переменному току, называют емкостным. Оно обозначается Xс и измеряется в омах. Физически емкостное сопротивление обусловлено действием э. д. с. ес, возникающей в конденсаторе С. Эта э. д. с. направлена против приложенного напряжения u, так как заряженный конденсатор можно рассматривать как источник с некоторой э. д. с. ес, действующей между его пластинами. Поэтому э. д. с. ес препятствует изменению тока под действием напряжения u, т. е. оказывает прохождению переменного тока определенное сопротивление.

Из формулы (70) следует, что чем больше емкость С и скорость изменения напряжения ?u/?t, т. е. частота его изменения f (значение ?), тем больше ток i в цепи с емкостью и тем меньше емкостное сопротивление:

Закон Ома для цепи с емкостью:

I = U / Xс = U / ( 1 /(?C) )

Электрическая мощность. Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с емкостью. Ее можно получить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах ?t. Кривая мгновенной мощности (см. рис. 179,б) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения u. Следовательно, в этой цепи тоже имеет место непрерывный колебательный процесс обмена энергией между источником и емкостью. В первую и третью четверти периода мощность положительна, т. е. конденсатор получает энергию W от источника и накапливает ее в своем электрическом поле. Во вторую и четвертую четверть периода конденсатор отдает накопленную энергию источнику (мощность отрицательна); при этом протекание тока по цепи поддерживается э. д. с. ес. В целом за период в емкостное сопротивление не поступает электрическая энергия (среднее значение мощности за период равно нулю). Поэтому емкостное сопротивление, так же как и индуктивное, относят к группе реактивных сопротивлений.

Для характеристики процесса обмена энергией между источником и емкостью введено понятие реактивной мощности емкости:

где Uс — напряжение, приложенное к конденсатору (действующее значение) .

Читайте также:  Каким током лучше варить переменным или постоянным

Эту мощность можно выразить также в виде

Следует отметить, что в реальных конденсаторах имеют место потери мощности, вследствие чего они потребляют от источника некоторую электрическую энергию. Потери мощности вызваны тем, что в диэлектрике, разделяющем пластины конденсатора, под действием переменного электрического поля возникают токи смещения, нагревающие диэлектрик. Чем больше напряжение и частота его изменения, тем больше потери мощности в конденсаторах от токов смещения. Однако эти потери имеют значение только в конденсаторах, применяемых в высокочастотных установках. При стандартной частоте 50 Гц потери в конденсаторах настолько малы, что их обычно не учитывают.

Источник

Цепь переменного тока с ёмкостью

Поскольку после того, как конденсатор зарядился полностью, он не пропускает через себя электрический ток, и поэтому идеальный конденсатор (ёмкость), установленный в цепи постоянного тока, обладает бесконечно большим сопротивлением.

Электрическая цепь переменного тока с емкостью

Цепь переменного тока с ёмкостью

Если же произвести подключение конденсатора к источнику переменного тока, то процесс его заряда и разряда будет осуществляться непрерывно. Это означает, что через ёмкость будет проходить переменный электрический ток.

Ток i при условии включения в цепь переменного тока некоторой ёмкости будет определяется количеством электричества q , протекающего по этой цепи в единицу времени. Из этого следует, что:

где Δq – это изменение заряда q (то есть количества электричества) в течение времени Δt .

Что касается заряда q , который накоплен при изменениях напряжения u в конденсаторе, то он также подвержен непрерывному изменению, которое выражается формулой:

где Δu – это изменение напряжения u в течение промежутка времени Δt .

Та скорость, с которой изменяется напряжение (она выражается отношением Δu / Δt ) будет иметь свои наибольшие значения тогда, когда угол ωt равняется 360° , 180° и 0° . Из этого следует, что значение тока i принимает свои наибольшие величины именно в эти моменты времени. Если же угол ωt равняется 270° и 90° , то i = 0 , поскольку скорость изменения напряжения Δu / Δt = 0 .

Почему ток отстает от напряжения по фазе

Ток и напряжение в цепи переменного тока с ёмкостью

Ток заряда, который принято считать положительным, в цепи течет тогда, когда происходит заряд конденсатора, то есть на протяжение первой четверти периода. По мере того, как разница потенциалов на электродах ёмкости растет вследствие накопления ею электрического заряда, значение тока i падает. Когда ωt = 90° , наступает полный заряд емкости, значение i = 0 , а разность потенциалов между электродами конденсатора обретает то же самое значение, что и напряжение источника тока.

Значение тока i становится отрицательным тогда, когда он меняет свое направление. Это происходит тогда, когда ёмкость начинает разряжаться, то есть во второй четверти периода. Тогда, когда u = 0 а ωt = 180° , значение тока i становится максимальным. В этот же самый момент ток i начинает течь в обратном направлении (его принято считать отрицательным), начинается процесс перезарядки емкости, а полярность напряжения u источника также меняется на противоположную. Когда ωt = 270° значение тока i становится равным нулю, и поэтому процесс заряда прекращается. После чего начинается разряд при первоначальном (то есть положительном) направлении тока.

Получается, что ёмкость и заряжается, и разряжается два раза на протяжении одного периода изменения напряжения. Из этого следует, что переменный ток i протекает в цепи непрерывно. Когда ёмкость включается в цепь переменного тока, то ток i опережает напряжение u по фазе на угол, равный 90° . Можно также сказать, что напряжение u отстает по фазе от тока i на угол, равный 90° .

Емкостное сопротивление

Сопротивление, которое проявляет ёмкость к переменному току, носит название емкостного. Единицей измерения этой величины является Ом, а обозначается оно Хс. Физическая природа емкостного сопротивления заключается в том, что оно обусловлено возникающей в конденсаторе ЭДС ес . Направление этой электродвижущей силы противоположно приложенному напряжению u , поскольку заряженная ёмкость рассматривается в качестве источника, у которого между пластинами действует некоторая ЭДС ес . Именно она препятствует тому, чтобы под действием напряжения u происходило изменение тока, то есть оказывает определенное сопротивление его прохождению.

Источник