Меню

Цепи переменного тока с индуктивным сопротивлением векторная диаграмма индуктивное сопротивление

Временная и векторная диаграммы индуктивной цепи

На рис. 4.2.3. в) изображена векторная диаграмма, из которой видно, что в цепи с «чистой» индуктивностью напряжение U опережает по фазе ток на 90°, а ЭДС самоиндукции отстает по фазе от тока на 90°.

На рис. 4.2.3.г) изображен график мощности.

Мощность цепи

Отсюда видно, что кривая мощности имеет синусоидальную форму и частоту, в 2 раза большую, чем частота тока, напряжения.

4.2.3. Цепь с индуктивностью и активным сопротивлением.

На практике используются реальные катушки индуктивности, которые обладают активным и индуктивным сопротивлением.

На схеме рис. 4.2.3.1 индуктивность и активное сопротивление отделены друг от друга и показан как участки цепи для удобства расчетов.

Допустим, что в цепи протекает синусоидальный ток

Напряжение цепи распределится на двух участках

Приведем векторную диаграмму цепи (рис.4.2.3.2 )

Треугольник напряжений Треугольник сопротивлений

Из теоремы Пифагора:

Действующее значение тока определим по закону Ома:

При расчете цепи используются формулы:

1) Из треугольника напряжений

2) Из треугольника сопротивлений

Если умножим стороны треугольника напряжений на ток, то получим треугольник мощности

где, — активная мощность цепи

— называется коэффициентом мощности.

Он показывает, какую часть от полной мощности составляет активная мощность и характеризует энергию, которая безвозвратно преобразуется в другие виды энергии.

В символическом виде:

Из треугольника сопротивлений

поэтому Z в алгебраической форме

Пример:

Дано:

Опр: XL,Z,I,S

Написать уравнение мгновенных значений тока и напряжения.

Решение

1. Индуктивное сопротивление катушки

2. Полное сопротивление в комплексной форме

4. Амплитудное значение тока и напряжения

5. Напишем уравнение мгновенных значений тока и напряжения:

6. Комплекс мощности

Вопросы для самоконтроля

1. Приведите свойства цепи с активным сопротивлением.

2. Свойства цепи с индуктивностью.

3. Запишите формулу полного сопротивления в символическом виде для цепи RL.

4. Запишите закон Ома для цепи с RL в комплексном виде.

Цепь с емкостью.

На вход цепи подадим синусоидальное напряжение

Ток в цепи с емкостью

Выразим через , получим

Т.е. ток опережает по фазе напряжения на . Из выражения тока следует, что .

Это выражение можно написать в таком виде:

— что является выражением закона Ома для цепи с идеальной емкостью.

— выражает величину сопротивления, которое называется реактивным емкостным сопротивлением и обозначается ХС .

ХС — это величина, характеризующая противодействие, оказываемое напряжением на обкладках конденсатора переменному току.

В комплексной форме:

Для алгебраической формы:

Зависимость ХС от частоты приведена на графике 4.2.4.1

Рисунок 4.2.4.1

Векторная диаграмма цепи на рис. 4.2.4.2

Рисунок 4.2.4.1

4.2.4. Цепь с активным сопротивлением и емкостью

Если в цепи с последовательно соединенными R и С протекает синусоидальный ток , то он создает падения напряжений на активном и емкостном сопротивлениях.

Напряжение цепи изменяется по синусоидальному закону и отстает по фазе от тока на угол ; 2)

Рис. 4.2.6.2.

Знак перед углом зависит от режима цепи.

Если > , > , цепь имеет индуктивный характер, угол положительный.

Источник

Векторные диаграммы электрических цепей

При исследовании электрических цепей и моделировании часто пользуются векторными диаграммами токов и напряжений. Под векторной диаграммой понимается совокупность векторов, изображающих синусоидальные функции времени [1].

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Представление синусоидальных функций в виде комплексных чисел

Векторная диаграмма – это удобный инструмент представления синусоидальных функций времени, коими являются, к примеру, напряжения и токи электрической цепи переменного тока.

Рассмотрим, например, произвольный ток, представленный в виде синусоидальной функции

$$ i(t) = 10 \sin(\omega t + 30 \degree). $$

Читайте также:  Схема лабораторный блок питания с током

Данный синусоидальный сигнал можно представить в виде комплексной величины

$$ \underline = 10 \angle 30 \degree. $$

Для формирования комплексного числа используются модуль и фаза синусоидального сигнала.

Закон Ома в комплексной форме

Известно [1], что напряжение $ \underline $ на сопротивлении $ \underline $ связано с током $ \underline $, протекающим через это сопротивление, согласно закону Ома:

$$ \underline = \underline \cdot \underline. $$

Кроме того, известны соотношения, определяющие активное сопротивление резистора, индуктивное сопротивление катушки и ёмкостное сопротивление конденсатора:

где $ X_ = \omega L $, $ X_ = \frac<1> <\omega C>$, $ R $ – сопротивление резистора, $ L $ – индуктивность катушки, $ C $ – ёмкость конденсатора, $ \omega = 2 \pi f $ – циклическая частота, $ f $ – частота сети, $ j $ – мнимая единица.

Векторная диаграмма при последовательном соединении элементов

Для построения векторных диаграмм сперва составляют уравнения по законам Кирхгофа для рассматриваемой электрической цепи.

Рассмотрим электрическую цепь, представленную на рис. 1, и нарисуем для неё векторную диаграмму напряжений. Обозначим падение напряжение на элементах.

Последовательное соединение элементов электрической цепи для построения векторной диаграммы напряжений

Рис. 1. Последовательное соединение элементов цепи

Составим уравнение для данной цепи по второму закону Кирхгофа:

$$ \underline_ + \underline_ + \underline_ = \underline. $$

По закону Ома падение напряжений на элементах определяется по следующим выражениям:

$$ \underline_ = \underline \cdot R, $$

$$ \underline_ = \underline \cdot jX_, $$

$$ \underline_ = -\underline \cdot jX_. $$

Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости. Обычно вектора токов и напряжений отображаются в своих масштабах: отдельно для напряжений и отдельно для токов.

Из курса математики известно, что $ j = 1 \angle 90 \degree $, $ -j = 1 \angle -90 \degree $. Отсюда при построении векторной диаграммы умножение какого-либо вектора на мнимую единицу $ j $ приводит к повороту этого вектора на 90° против часовой стрелки, а умножение на $ -j $ приводит к повороту этого вектора на 90° по часовой стрелке.

При построении векторной диаграммы напряжений на комплексной плоскости сперва отобразим вектор тока $ \underline $, после чего относительного него будем отображать вектора падений напряжений (рис. 2) с учётом приведённых выше соотношений для мнимой единицы.

Падение напряжения на резисторе $ \underline_ $ совпадает по направлению с током $ \underline $ (т.к. $ \underline_ = \underline \cdot R $, а $ R $ – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Падение напряжения на индуктивном сопротивлении опережает вектор тока на 90° (т.к. $ \underline_ = \underline \cdot jX_ $, а умножение на $ j $ приводит повороту этого вектора на 90° против часовой стрелки). Падение напряжения на ёмкостном сопротивлении отстаёт от вектора тока на 90° (т.к. $ \underline_ = -\underline \cdot jX_ $, а умножение на $ -j $ приводит повороту этого вектора на 90° по часовой стрелке).

Векторная диаграмма напряжений при последовательном соединение элементов цепи
Рис. 2. Векторная диаграмма напряжений при последовательном соединении элементов цепи

Векторная диаграмма при параллельном соединении элементов

Рассмотрим электрическую цепь, представленную на рис. 3, и нарисуем для неё векторную диаграмму токов. Обозначим направление токов в ветвях.

Параллельное соединение элементов электрической цепи для построения векторной диаграммы напряжений

Рис. 3. Параллельное соединение элементов цепи

Составим уравнение для данной цепи по первому закону Кирхгофа:

$$ \underline— \underline_— \underline_— \underline_ = 0, $$

$$ \underline = \underline_ + \underline_ + \underline_ = 0. $$

Определим по закону Ома токи в ветвях по следующим выражениям, учитывая, что $ \frac<1> = -j $:

Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости.

При построении векторной диаграммы токов на комплексной плоскости сперва отобразим вектор ЭДС $ \underline $, после чего относительного него будем отображать вектора токов токов (рис. 4) с учётом приведённых выше соотношений для мнимой единицы.

Ток в резисторе IR совпадает по направлению с ЭДС $ \underline $ (т.к. $ \underline_ = \frac<\underline> $, а $ R $ – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Ток в индуктивном сопротивлении отстаёт от вектора ЭДС на 90° (т.к. $ \underline_ = -j \frac<\underline>> $, а умножение на $ -j $ приводит повороту этого вектора на 90° по часовой стрелке). Ток в ёмкостном сопротивлении опережает вектор ЭДС на 90° (т.к. $ \underline_ = j \frac<\underline>> $, а умножение на $ j $ приводит повороту этого вектора на 90° против часовой стрелки). Результирующий вектор тока определяется после геометрического сложения всех векторов по правилу параллелограмма.

Читайте также:  Когда холодильник ударит током

Векторная диаграмма токов при параллельном соединении элементов цепи

Рис. 4. Векторная диаграмма токов при параллельном соединении элементов цепи

Для произвольной цепи алгоритм построения векторных диаграмм аналогичен вышеизложенному с учётом протекаемых в ветвях токов и прикладываемых напряжений.

Обращаем ваше внимание, что на сайте представлен инструмент для построения векторных диаграмм онлайн для трёхфазных цепей.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

Рекомендуемые записи

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие…

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Источник



Цепи переменного тока с индуктивным сопротивлением векторная диаграмма индуктивное сопротивление

§ 56. Цепь переменного тока с активным и индуктивным сопротивлениями

Любая проволочная катушка, включенная в цепь переменного тока, обладает активным сопротивлением, зависящим от материала, длины и сечения проволоки и индуктивным сопротивлением, которое зависит от индуктивности катушки и частоты переменного тока, протекающего по ней (XL = ωL = 2πf L). Такую катушку можно рассматривать как приемник энергии, в котором активное и индуктивное сопротивления соединены последовательно.
Рассмотрим цепь переменного тока, в которую включена катушка индуктивности (рис. 59, а) с активным r и индуктивным сопротивлением XL. Падение напряжения на активном сопротивлении

Падение напряжения на индуктивном сопротивлении

Построим векторную диаграмму тока и напряжения (рис. 59, б) для рассматриваемой цепи.

Отложим по горизонтали вектор тока 1 в выбранном масштабе. Известно, что ток и напряжение в цепи с активным сопротивлением совпадают по фазе, поэтому вектор падения напряжения на активном сопротивлении откладываем по вектору тока.
В цепи с индуктивностью ток отстает от напряжения на угол φ = 90°. Поэтому вектор падения напряжения на индуктивном сопротивлении откладываем на диаграмме вверх под углом 90° к вектору тока.
Для определения общего напряжения, приложенного к цепи, сложим векторы Суммой этих векторов будет диагональ параллелограмма — вектор Треугольник АОБ, стороны которого выражают соответственно напряжения Ua , UL и общее напряжение U, называется треугольником напряжений. На основании теоремы Пифагора — в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов — следует, что общее напряжение на зажимах цепи

Пример. Падение напряжения на активном сопротивлении Ua = 15 в. Напряжение на индуктивном сопротивлении UL = 26 в. Вычислить общее напряжение, приложенное к цепи.
Решение . Общее напряжение на зажимах цепи переменного тока с последовательно соединенными активным и индуктивным сопротивлениями

Чтобы определить полное сопротивление цепи переменного тока с активным и индуктивным сопротивлениями, следует разделить векторы Ua =I r и UL = IXL, на число I, выражающее силу тока в цепи, и построить треугольник А′О′Б′ (рис. 59, в), стороны которого меньше сторон треугольника напряжений в I раз. Образованный треугольник называется треугольником сопротивлений. Его сторонами являются сопротивления r и ХL и полное сопротивление цепи Z.
Пользуясь теоремой Пифагора, можно написать, что

отсюда полное сопротивление цепи

Пример. Активное сопротивление катушки r = 7 ом, а ее индуктивное сопротивление ХL = 24 ом. Вычислить полное сопротивление катушки.
Решение . Полное сопротивление катушки переменному току

Сила тока в цепи с активным и индуктивным сопротивлениями определяется по закону Ома:

На векторной диаграмме видно, что в цепи переменного тока с активным и индуктивным сопротивлениями ток и напряжение не совпадают по фазе.
Ток отстает от напряжения на угол φ.
Угол сдвига между током и напряжением можно определить, если известен косинус этого угла.
Из треугольника напряжений косинус угла сдвига фаз

Читайте также:  Трансформатор тока тол 35б

Теперь можно, пользуясь таблицей тригонометрических функций, определить угол φ.

Пример. Падение напряжения на активном сопротивлении катушки Ua = 30 в. Общее напряжение на ее зажимах Uв = 60 в. Определить угол сдвига фаз между током и напряжением в цепи.
Решение. На основании данных найдем

По таблице тригонометрических функций угол сдвига фаз при cos φ = 0,5 составляет 60°.
По треугольнику сопротивлений можно также определить угол сдвига фаз между током и напряжением:

Пример. Активное сопротивление катушки составляет 5 ом, а ее полное сопротивление Z = 30 ом. Определить угол сдвига фаз.
Решение .

Источник

35. Цепь переменного тока с индуктивностью: напряжение, ток, мощность, векторная диаграмма. Индуктивное сопротивление.

Рассмотрим цепь, в которой к катушке индуктивности L, не обладающей активным сопротивлением (R = 0), приложено синусоидальное напряжение. Протекающий через катушку переменный ток создаёт в ней ЭДС самоиндукции eL, которая в соответствии с правилом Ленца направлена таким образом, что препятствует изменению тока. Другими словами, ЭДС самоиндукции направлена навстречу приложенному напряжению.

Это соотношение представляет собой закон Ома для цепи с идеальной индуктивностью, а величина XL = ω∙L называется индуктивным сопротивлением. Индуктивное сопротивление измеряется в Омах. Из формулы (4.12) мы видим, что в рассмотренной цепи ток отстаёт по фазе от напряжения на угол π/2. Векторная диаграмма этой цепи:

Мгновенная мощность в цепи с чисто индуктивным сопротивлением равна: p(t) = Im∙Um∙sinωt∙sin(ωt — π/2) = ∙sin2ωt

Положительные значения мощности соответствуют потреблению энергии катушкой, а отрицательные – возврату запасённой энергии обратно источнику. Средняя за период мощность равна нулю. Следовательно, цепь с индуктивностью энергии не потребляет – это чисто реактивная нагрузка. В этой цепи происходит лишь перекачивание электрической энергии от источника в катушку и обратно.

36. Цепь переменного тока с емкостью: напряжение, ток, мощность, векторная диаграмма. Ёмкостное сопротивление.

Рассмотрим электрическую цепь, в которой переменное напряжение U(t) = Um∙sinωt приложено к ёмкости.

Мгновенное значение тока в цепи с ёмкостью равно скорости изменения заряда на обкладках конденсатора i =, но q = CU, то

I = C∙ = ω∙C∙Um∙cosωt = Im∙sin(ωt + π/2) (4.24), где

Мы видим, что в этой цепи ток опережает напряжение на угол π/2. Перейдя в формуле (4.25) к действующим значениям переменного тока I = Im / √2, U = Um / √2, получим: I = U / Xc (4.26).

Это закон Ома для цепи переменного тока с ёмкостью, а величина Xc = 1 / ω∙C называется емкостным сопротивлением. Векторная диаграмма для этой цепи:

Здесь ток опережает напряжение на π/2.Посмотрим, что будет представлять собой мгновенная мощность в цепи, содержащей ёмкость.

p(t) = Im∙Um∙sinωt∙sin(ωt + π/2) = Im∙Um∙sin2ωt (4.27).Временная диаграмма показана ниже.

Мы видим, что мгновенная мощность изменяется с удвоенной частотой. При этом положительные значения мощности соответствуют заряду конденсатора, а отрицательные – возврату запасённой энергии в источник. Средняя за период мощность здесь равна нулю, поскольку в цепи с конденсатором активная мощность не потребляется, а происходит обмен электрической энергии между конденсатором и источником. Следовательно, конденсатор так же, как и индуктивность является реактивным сопротивлением.

37. Неразветвленная цепь переменного тока ri: напряжение, ток, мощность, векторная диаграмма напряжений. Треугольник сопротивлений и мощностей. Нет(

39. Общий случай последовательного соединения RLC: напряжение, ток, мощность, полное сопротивление. Векторные диаграммы напряжений а)Xl=Xc б)Xl>Xc в)Xl 9 / 15 9 10 11 12 13 14 15 > Следующая > >>

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник